Что называется фотоэлектрическим эффектом. Практическая физика: внешний фотоэффект

12.10.2019

ФОТОЭФФЕКТ, группа явлений, связанных с освобождением электронов твердого тела от внутриатомной связи под действием электромагнитного излучения. Различают: 1) внешний фотоэффект, или фотоэлектронная эмиссия, испускание электронов с поверхности… … Современная энциклопедия

ФОТОЭФФЕКТ - явление, связанное с освобождением электронов твердого тела (или жидкости) под действием электромагнитного излучения. Различают:..1) внешний фотоэффект испускание электронов под действием света (фотоэлектронная эмиссия), ? излучения и др.;..2)… … Большой Энциклопедический словарь

ФОТОЭФФЕКТ - испускание эл нов в вом под действием эл. магн. излучения. Ф. был открыт в 1887 нем. физиком Г. Герцем. Первые фундам. исследования Ф. выполнены А. Г. Столетовым (1888), а затем нем. физиком Ф. Ленардом (1899). Первое теоретич. объяснение законов … Физическая энциклопедия

фотоэффект - сущ., кол во синонимов: 2 фото эффект (1) эффект (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

фотоэффект - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN photoeffect … Справочник технического переводчика

ФОТОЭФФЕКТ - (1) вентильный возникновение электродвижущей силы (фотоЭДС) между двумя разнородными полупроводниками или между полупроводником и металлом под действием электромагнитного излучения; (2) Ф. внешний (фотоэлектронная эмиссия) испускание электронов с … Большая политехническая энциклопедия

фотоэффект - а; м. Физ. Изменение свойств вещества под воздействием световой энергии; фотоэлектрический эффект. * * * фотоэффект явление, связанное с освобождением электронов твёрдого тела (или жидкости) под действием электромагнитного излучения. Различают:… … Энциклопедический словарь

Фотоэффект - испускание электронов веществом под действием электромагнитного излучения (Фотонов). Ф. был открыт в 1887 Г. Герцем. Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым (1888). Он установил, что в возникновении фототока в… … Большая советская энциклопедия

фотоэффект - (см. фото... + аффект) физ. изменение электрических свойств вещества под действием электромагнитных излучений (света, ультрафиолетовых, рентгеновских и других лучей), напр, испускание электронов вовне под действием света (внешний ф.), изменение… … Словарь иностранных слов русского языка

Книги

  • , П.С. Тартаковский. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство`ГИТТЛ`). В… Купить за 2220 грн (только Украина)
  • Внутренний фотоэффект в диэлектриках , П.С. Тартаковский. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство "ГИТТЛ"…

§ 3 . Фотоэффект

Внешний фотоэффект – это явление вырывания электронов из твердых и жидких тел под действием света.

Обнаружил явление фотоэффекта Генрих Герц (1857 – 1894) в 1887 году. Он заметил, что проскакивание искры между шариками разрядника значительно облегчается, если один из шариков осветить ультрафиолетовыми лучами.

Затем в1888-1890 -х годах фотоэффект исследовал Александр Григорьевич Столетов (1839 – 1896).

Он установил, что:

    наибольшее действие оказывают ультрафиолетовые лучи;

    с ростом светового потока растет фототок;

    заряд частиц, вылетающих из твердых и жидких тел под действием света отрицателен.

Параллельно со Столетовым фотоэффект исследовал немецкий ученый Филипп Ленард (1862 – 1947).

Они и установили основные законы фотоэффекта.

Прежде чем сформулировать эти законы, рассмотрим современную схему для наблюдения и исследования фотоэффекта. Она проста. В стеклянных баллон впаяны два электрода (катод и анод), на которые подается напряжениеU. В отсутствии света амперметр показывает, что тока в цепи нет.

Когда катод освещается светом даже при отсутствии напряжения между катодом и анодом амперметр показывает наличие небольшого тока в цепи – фототока. То есть электроны, вылетевшие из катода, обладают некоторой кинетической энергией
и достигают анода «самостоятельно».

При увеличении напряжения фототок растет.

Зависимость величины фототока от величины напряжения между катодом и анодом называется вольтамперной характеристикой.

Она имеет следующий вид. При одной и той же интенсивности монохроматического света с ростом напряжения ток сначала растет, но затем его рост прекращается.Начиная с некоторого значения ускоряющего напряжения, фототок перестает изменяться, достигая своего максимального (при данной интенсивности света) значения. Этот фототок называется током насыщения.

Чтобы «запереть» фотоэлемент, то есть фототок уменьшить до нуля, необходимо подать «запирающее напряжение»
. В этом случае электростатическое поле совершает работу и тормозит вылетевшие фотоэлектроны

. (1)

Это означает, что ни один из вылетающих из металла электронов не достигает анода, если потенциал анода ниже потенциала катода на величину
.

Эксперимент показал, чтопри изменении частоты падающего света начальная точка графика сдвигается по оси напряжений. Из этого следует, что величина запирающего напряжения, а, следовательно, кинетическая энергия и максимальная скорость вылетающих электронов, зависят от частоты падающего света.

Первый закон фотоэффекта . Величина максимальной скорости вылетающих электронов зависит от частоты падающего излучения (растет с ростом частоты) и не зависит от его интенсивности.

Если сравнить вольтамперные характеристики, полученные при разных значениях интенсивности (на рисункеI 1 и I 2) падающего монохроматического (одночастотного) света, то можно заметить следующее.

Во-первых, все вольтамперные характеристики берут начало в одной и той же точке, то есть, при любой интенсивности света фототок обращается в ноль при конкретном (для каждого значения частоты) задерживающем напряжении
. Это является еще одним подтверждением верности первого закона фотоэффекта.

Во-вторых. При увеличении интенсивности падающего света характер зависимости тока от напряжения не изменяется, лишь увеличивается величина тока насыщения.

Второй закон фотоэффекта . Величина тока насыщения пропорциональная величине светового потока.

При изучении фотоэффекта было установлено, что не всякое излучение вызывает фотоэффект.

Третий закон фотоэффекта . Для каждого вещества существует минимальная частота (максимальная длина волны) при которой еще возможен фотоэффект.

Эту длину волны называют «красной границей фотоэффекта» (а частоту – соответствующей красной границе фотоэффекта).

Через 5 лет после появления работы Макса Планка Альберт Эйнштейн использовал идею дискретности излучения света для объяснения закономерностей фотоэффекта. эйнштейн предположил, что свет не только излучается порциями, но и распространяется и поглощается порциями. Это означает, что дискретность электромагнитных волн – это свойство самого излучения, а не результат взаимодействия излучения с веществом. По Эйнштейну, квант излучения во многом напоминает частицу. Квант либо поглощается целиком, либо не поглощается вовсе. Эйнштейн представил вылет фотоэлектрона как результат столкновения фотона с электроном металла, при котором вся энергия фотона передается электрону. Так Эйнштейн создал квантовую теорию света и, исходя из нее, написал уравнение для фотоэффекта:

.

Здесь – постоянная Планка,– частота,
– работа выхода электрона из металла,
– масса покоя электрона,v – скорость электрона.

Это уравнение объясняло все экспериментально установленные законы фотоэффекта.

    Так как работа выхода электрона из вещества постоянна, то, с ростом частоты, растет и скорость электронов.

    Каждый фотон выбивает один электрон. Следовательно, количество выбитых электронов не может быть больше числа фотонов. Когда все выбитые электроны достигнут анода, фототок расти прекращает. С ростом интенсивности света растет и число фотонов, падающих на поверхность вещества. Следовательно, увеличивается число электронов, которые эти фотоны выбивают. При этом растет фототок насыщения.

    Если энергии фотоны хватает лишь на совершение работы выхода, то скорость вылетающий электронов будет равна нулю. Это и есть «красная граница» фотоэффекта.

Внутренний фотоэффект наблюдается в кристаллических полупроводниках и диэлектриках. Он состоит в том, что под действием облучения увеличивается электропроводность этих веществ за счет возрастания в них числа свободных носителей тока (электронов и дырок).

Иногда это явление называют фотопроводимостью.

Внешний фотоэффект

Внешним фотоэлектрическим эффектом (фотоэффектом) называется процесс испускания электронов веществом при поглощении им квантов электромагнитного излучения (фотонов). Внешний фотоэффект был открыт в 1887 г. Г.Герцем, который обнаружил, что искровой разряд между двумя металлическими шариками происходит значительно интенсивнее, если один из шариков освещать ультрафиолетовыми лучами. После открытия электрона измерение удельного заряда вылетающих из металла под действием излучения частиц позволило установить, что частицы являются электронами.

Детальное экспериментальное исследование закономерностей внешнего фотоэффекта для металлов было выполнено в 1888 – 1889 гг. А.Г.Столетовым на установке с фотоэлементом, схема которой приведена на рисунке. Фотоэлемент в виде вакуумной двухэлектродной лампы имеет металлический катод К , который при освещении его через кварцевое окошко видимым светом или ультрафиолетовым излучением испускает электроны. Вылетевшие из катода фотоэлектроны, достигая анода А , обеспечивают протекание в цепи электрического тока, который фиксируется гальванометром или миллиамперметром. Специальная схема подключения источника позволяет изменять полярность напряжения, подаваемого на фотоэлемент.

На следующем рисунке представлена зависимость фототока от напряжения между катодом и анодом (вольт-амперные характеристики) при падении на катод монохроматического света с длиной волны при неизменном световом потоке для двух значений светового потока ( > ). Из вольт-амперной характеристики видно, что при некотором положительном напряжении фототок достигает насыщения – все электроны, испущенные катодом, достигают анода. Ток насыщения определяется числом электронов, испускаемых катодом в единицу времени под действием света. Из рисунка видно, что число электронов, вылетающих из катода при данной частоте падающего света зависит от светового потока ( > ) так как ( > ). При напряжении фототок не исчезает, это свидетельствует о том, что электроны покидают катод со скоростью, отличной от нуля, т.е. обладают кинетической энергией, достаточной для достижения анода. При отрицательном напряжении испущенный катодом электрон попадает в тормозящее электрическое поле, преодолеть которое он может, лишь имея определенный запас кинетической энергии. Электрон с малой кинетической энергией, вылетев из катода, не может преодолеть тормозящее поле и попасть на анод. Такой электрон возвращается на катод, не давая вклада в фототок. Поэтому, плавный спад фототока в области отрицательных напряжений указывает на то, что вылетающие из катода фотоэлектроны имеют разные значения кинетической энергии. При некотором отрицательном напряжении , величину которого называют задерживающим напряжением (потенциалом), фототок становится равным нулю. При таком напряжении ни одному из электронов не удается преодолеть задерживающее поле и долететь до анода. Соответствующее тормозящее электрическое поле при этом задерживает все вылетающие из катода электроны, включая электроны с максимальной кинетической энергией.

Измерив задерживающее напряжение, можно определить эту максимальную энергию или максимальную скорость фотоэлектронов из соотношения

, (6.41.1)

где – масса электрона, – заряд электрона, – максимальная скорость вылетевших электронов.

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

1. Максимальная кинетическая энергия фотоэлектронов (следовательно и ) линейно возрастает с увеличением частоты света ν и не зависит от светового потока (см. рисунок, приведенный ниже).

2. Для каждого вещества существует так называемая красная граница фотоэффекта , то есть наименьшая частота , при которой еще возможен внешний фотоэффект.

3. При неизменном спектральном составе падающего на катод света число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально световому потоку :

Это утверждение носит название закона Столетова.

4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Попытки объяснить закономерности фотоэффекта с использованием классической волновой теории, в которой излучение рассматривалось как электромагнитные волны, приводили к выводам, противоположным наблюдаемым в эксперименте. Действительно, объясняя вырывание электронов из металла силовым воздействием на них со стороны электрического поля волны, такая теория неизбежно приходила к выводу о том, что максимальная кинетическая энергия фотоэлектронов должна определяться световым потоком, падающим на катод. Наличие красной границы у фотоэффекта также противоречило выводам волновой теории.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе развития гипотезы М. Планка о том, что электромагнитное излучение испускается в виде отдельных порций – квантов, энергия которых зависит от частоты. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что и свет имеет прерывистую дискретную структуру: свет не только испускается, но и распространяется и взаимодействует с веществом в виде отдельных порций.

Электромагнитная волна состоит из отдельных порций – квантов , впоследствии названных фотонами . При взаимодействии с веществом фотон целиком передает всю свою энергию одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Если электрон находится на самой поверхности, Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода , зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

(6.41.3)

Таким образом, энергия падающего фотона расходуется на совершение электроном работы выхода из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии По закону сохранения энергии

(6.41.4)

Выражение (6.41.4) называется формулой (уравнением) Эйнштейна для внешнего фотоэффекта. С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Если энергия падающих фотонов < , то фотоэффект не наблюдается. Отсюда частота и длина волны красной границы фотоэффекта определяются слеющими формулами:



(6.41.5)

Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Важной количественной характеристикой фотоэффекта является квантовый выход, определяющий число вылетевших электронов, приходящихся на один падающий на металл фотон. Вблизи красной границы для большинства металлов квантовый выход составляет порядка 10 -4 электрон/фотон. Малость квантового выхода обусловлена тем, что энергию, достаточную для выхода из металла сохраняют только те электроны, которые получили энергию от фотонов на глубине от поверхности, не превышающей 0,1 мкм. Кроме того, поверхность металлов сильно отражает излучение. С увеличением энергии фотонов, то есть с уменьшением длины волны излучения квантовый выход увеличивается, составляя 0,01 – 0,05 электрон/фотон для энергии фотонов порядка одного электрон-вольта. Для рентгеновского излучения с энергией фотонов эВ уже практически на каждые десять падающих на поверхность фотонов приходится один вылетевший из металла электрон.

5. . 6. .

В 1900 г. немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается отдельными порциями - квантами (или фотонами). Энергия каждого фотона определяется формулой , где - постоянная Планка, равная , - частота света. Гипотеза Планка объяснила многие явления: в частности, явление фотоэффекта, открытого и 1887 г. немецким ученым Генрихом Герцем и изученного экспириментально русским ученым Александром Григорьевичем Столетовым.

Фотоэффект - это явление испускания электронов веществом под действием света. Если зарядить цинковую пластину, присоединенную к электрометру, отрицательно и освещать ее электрической дутой (рис. 35), то электрометр быстро разрядится.

В результате исследований были установлены следующие эмпирические закономерности:

Количество электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны;

Максимальная кинетическая энергия фото электронов линейно возрастает с частотой света и н зависит от его интенсивности.

Кроме того, были установлены два фундаменталь ных свойства.

Во-первых, безынерционность фотоэффекта: процесс начинается сразу в момент начала освещения.

Во-вторых, наличие характерной для каждого металла минимальной частоты - красной границы фотоэффекта . Эта частота такова, что при фотоэффект не происходит при любой энергии света а если , то фотоэффект начинается даже при малой энергии.

Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергии . При вылете из металла энергия каждого электро на уменьшается на определенную величину, котору называют работой выхода (). Работа выхода это работа, которую необходимо затратить, чтобы удалить электрон из металла. Поэтому максимальная кинетическая энергия электронов после вылета (если нет других потерь) равна: . Следовательно,

.

Это уравнение носит название уравнения Эйнштейна .

Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлементы, и которых под действием света происходит изменение концентрации носителей тока. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в качестве невозобновляемых источников тока в часах, микрокалькуляторах, проходят испытания первые солнечные автомобили, используются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях.

С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием света в фотографических материалах.

Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта – явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. В 1887 году Г. Герц обнаружил, что при освещении отрицательного электрода ультрафиолетовыми лучами разряд между электродами происходит при меньшем напряжении. Это явление, как показали опыты В. Гальвакса (1888 г.) и А.Г. Столетова (1888–1890 гг.), обусловлено выбиванием под действием света отрицательных зарядов из электрода. Электрон еще не был открыт. Лишь в 1898 году Дж.Дж. Томпсон и Ф. Леонард, измерив удельный заряд испускаемых телом частиц, установили, что это электроны.

Различают фотоэффект внешний, внутренний, вентильный и многофотонный фотоэффект.

Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация).

Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению электродвижущей силы (ЭДС).

Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую.

Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А.Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис. 2.1.

Рис. 2.1 Рис. 2.2

Два электрода (катод К из исследуемого материала и анод А , в качестве которого Столетов применял металлическую сетку) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое стекло), измеряется включенным в цепь миллиамперметром.

В 1899 г. Дж. Дж. Томпсон и Ф. Ленард доказали, что при фотоэффекте свет выбивает из вещества электроны.

Вольт-амперная характеристика (ВАХ) фотоэффекта – зависимость фототока I , образуемого потоком электронов, от напряжения, – приведена на рис. 2.2.

Такая зависимость соответствует двум различным энергетическим освещенностям катода (частота света в обоих случаях одинакова). По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями.

Максимальное значение фототока насыщения определяется таким значением напряжения U , при котором все электроны, испускаемые катодом, достигают анода:

где n – число электронов, испускаемых катодом в 1 с.

Из ВАХ следует, при U = 0 фототок не исчезает. Следовательно, электроны, выбитые из катода, обладают некоторой начальной скоростью υ, а значит и отличной от нуля кинетической энергией, поэтому они могут достигнуть катода без внешнего поля. Для того, чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение . При ни один из электронов, даже обладающий при вылете из катода максимальной скоростью , не может преодолеть задерживающего поля и достигнуть анода. Следовательно,



© dagexpo.ru, 2024
Стоматологический сайт