Что называется переходными вероятностями однородной цепи маркова. Однородные цепи маркова

21.09.2019

по себе, а отчасти рассматриваем мы ее из-за того, что ее изложение не требует введения большого количества новых терминов.

Рассмотрим задачу об осле, стоящем точно между двумя копнами: соломы ржи и соломы пшеницы (рис. 10.5).

Осел стоит между двумя копнами: "Рожь" и "Пшеница" (рис. 10.5). Каждую минуту он либо передвигается на десять метров в сторону первой копны (с вероятностью ), либо в сторону второй копны (с вероятностью ), либо остается там, где стоял (с вероятностью ); такое поведение называется одномерным случайным блужданием. Будем предполагать, что обе копны являются "поглощающими" в том смысле, что если осел подойдет к одной из копен, то он там и останется. Зная расстояние между двумя копнами и начальное положение осла, можно поставить несколько вопросов, например: у какой копны он очутится с большей вероятностью и какое наиболее вероятное время ему понадобится, чтобы попасть туда?


Рис. 10.5.

Чтобы исследовать эту задачу подробнее, предположим, что расстояние между копнами равно пятидесяти метрам и что наш осел находится в двадцати метрах от копны "Пшеницы". Если места, где можно остановиться, обозначить через ( - сами копны), то его начальное положение можно задать вектором -я компонента которого равна вероятности того, что он первоначально находится в . Далее, по прошествии одной минуты вероятности его местоположения описываются вектором , а через две минуты - вектором . Ясно, что непосредственное вычисление вероятности его нахождения в заданном месте по прошествии минут становится затруднительным. Оказалось, что удобнее всего ввести для этого матрицу перехода .

Пусть - вероятность того, что он переместится из в за одну минуту. Например, и . Эти вероятности называются вероятностями перехода , а -матрицу называют матрицей перехода . Заметим, что каждый элемент матрицы неотрицателен и что сумма элементов любой из строк равна единице. Из всего этого следует, что - начальный вектор -строка, определенный выше, местоположение осла по прошествии одной минуты описывается вектором-строкой , а после минут - вектором . Другими словами, -я компонента вектора определяет вероятность того, что по истечении минут осел оказался в .

Можно обобщить эти понятия. Назовем вектором вероятностей вектор -строку, все компоненты которого неотрицательны и дают в сумме единицу. Тогда матрица перехода определяется как квадратная матрица , в которой каждая строка является вектором вероятностей. Теперь можно определить цепь Маркова (или просто цепь) как пару , где есть - матрица перехода , а есть - вектор -строка. Если каждый элемент из рассматривать как вероятность перехода из позиции в позицию , а - как начальный вектор вероятностей, то придем к классическому понятию дискретной стационарной цепи Маркова , которое можно найти в книгах по теории вероятностей (см. Феллер В. Введение в теорию вероятностей и ее приложения. Т.1. М.: Мир. 1967) Позиция обычно называется состоянием цепи . Опишем различные способы их классификации.

Нас будет интересовать следующее: можно ли попасть из одного данного состояния в другое, и если да, то за какое наименьшее время. Например, в задаче об осле из в можно попасть за три минуты и вообще нельзя попасть из в . Следовательно, в основном мы будем интересоваться не самими вероятностями , а тем, положительны они или нет. Тогда появляется надежда, что все эти данные удастся представить в виде орграфа , вершины которого соответствуют состояниям, а дуги указывают на то, можно ли перейти из одного состояния в другое за одну минуту. Более точно, если каждое состояние представлено соответствующей ему вершиной).

Все возможные состояния системы в однородной цепи Маркова, а - определяющая эту цепь стохастическая матрица, составленная из переходных вероятностей (см. стр. 381).

Обозначим через вероятность нахождения системы в состоянии в момент времени если известно, что в момент времени система находилась в состоянии (,). Очевидно, . Пользуясь теоремами о сложении и умножении вероятностей, мы легко найдем:

или в матричной записи

Отсюда, давая последовательно значения , получим важную формулу

Если существуют пределы

или в матричной записи

то величины называются предельными или финальными переходными вероятностями.

Для выяснения, в каких случаях существуют предельные переходные вероятности, и для вывода соответствующих формул введем следующую терминологию.

Мы будем стохастическую матрицу и соответствующую ой однородную цепь Маркова называть правильной, если у матрицы нет характеристических чисел, отличных от единицы и равных по модулю единице, и регулярной, если дополнительно единица является простым корнем характеристического уравнения матрицы .

Правильная матрица характеризуется том, что в ее нормальной форме (69) (стр. 373) матрицы являются примитивными. Для регулярной матрицы дополнительно .

Кроме того, однородная цепь Маркова называется неразложимой, разложимой, ациклической, циклической, если для этой цепи стохастическая матрица является соответственно неразложимой, разложимой, примитивной, импримитивной.

Поскольку примитивная стохастическая матрица является частным видом правильной матрицы, постольку ациклическая цепь Маркова является частным видом правильной цепи.

Мы покажем, что предельные переходные вероятности существуют только у правильных однородных цепей Маркова.

Действительно, пусть - минимальный многочлен правильной матрицы . Тогда

Согласно теореме 10 можно принять, что

На основании формулы (24) гл. V (стр. 113)

(96)

где - приведенная присоединенная матрица и

Если - правильная матрица, то

и потому в правой части формулы (96) все слагаемые, кроме первого, при стремится к нулю. Поэтому для правильной матрицы существует матрица , составленная из предельных переходных вероятностей, и

Обратное положение очевидно. Если существует продел

то матрица не может иметь характеристического числа , для которого , а , так как тогда не существовал бы предел [Этот же предел должен существовать в силу существования предела (97").]

Мы доказали, что для правильной (и только для правильной) однородной цепи Маркова существует матрица . Эта матрица определяется формулой (97).

Покажем, как можно выразить матрицу через характеристический многочлен

и присоединенную матрицу .

Из тождества

в силу (95), (95") и (98) вытекает:

Поэтому формулу (97) можно заменить формулой

(97)

Для регулярной цепи Маркова, поскольку она является частным видом правильной цепи, матрица существует и определяется любой из формул (97), (97"). В этом случае и формула (97") имеет вид

2. Рассмотрим правильную цепь общего типа (нерегулярную). Соответствующую матрицу запишем в нормальной форме

(100)

где - примитивные стохастические матрицы, а у неразложимых матриц максимальные характеристические числа . Полагая

,

запишем в виде

(101)

Но , поскольку все характеристические числа матрицы по модулю меньше единицы. Поэтому

(102)

Поскольку - примитивные стохастические матрицы, то матрицы согласно формулам (99) и (35) (стр. 362) положительны

и в каждом столбце любой из этих матриц все элементы равны между собой:

.

Заметим, что нормальному виду (100) стохастической матрицы соответствует разбиение состояний системы на группы:

Каждой группе в (104) соответствует своя группа рядов в (101). По терминологии Л. Н. Колмогорова состояния системы, входящие в , называются существенными, а состояния, входящие в остальные группы - несущественными.

Из вида (101) матрицы следует, что при любом коночном числе шагов (от момента к моменту ) возможен только переход системы а) из существенного состояния в существенное состояние той же группы, б) из несущественного состояния в существенное состояние и в) из несущественного состояния в несущественное состояние той же или предшествующей группы.

Из вида (102) матрицы следует, что в продело при переход возможен только из любого состояния в существенное состояние, т. е. вероятность перехода в любое несущественное состояние при числе шагов стремится к нулю. Поэтому существенные состояния иногда называются и предельными состояниями.

3. Из формулы (97) следует:

.

Отсюда видно, что каждый столбец матрицы является собственным вектором стохастической матрицы для характеристического числа .

Для регулярной матрицы число 1 является простым корнем характеристического уравнения и этому числу соответствует только один (с точностью до скалярного множителя) собственный вектор матрицы . Поэтому в любом -м столбце матрицы все элементы равны одному и тому же неотрицательному числу :

Таким образом, в регулярной цепи предельные переходные вероятности но зависят от начального состояния.

Обратно, если в некоторой правильной однородной цепи Маркова продельные переходные вероятности не зависят от начального состояния, т. е. имеют место формулы (104), то в схеме (102) для матрицы обязательно . Но тогда и цепь является регулярной.

Для ациклической цепи, которая является частным случаем регулярной цепи, - примитивная матрица. Поэтому при некотором (см. теорему 8 на стр. 377). Но тогда и .

Обратно, из следует, что при некотором , а это по теореме 8 означает примитивность матрицы и, следовательно, ацикличность данной однородной цепи Маркова.

Полученные результаты мы сформулируем в виде следующей теоремы:

Теорема 11. 1 .Для того чтобы в однородной цепа Маркова существовали все предельные переходные вероятности, необходимо и достаточно, чтобы цепь была правильной. В этом случае матрица , составленная из предельных переходных вероятностей, определяется формулой (95) или (98).

2. Для того чтобы в правильной однородной цепи Маркова предельные переходные вероятности не зависели от начального состояния, необходимо и достаточно, чтобы цепь была регулярной. В этом случае матрица определяется формулой (99).

3. Для того чтобы в правильной однородной цепи Маркова все предельные переходные вероятности были отличны от нуля, необходимо и достаточно, чтобы цепь была ациклической.

4. Введем в рассмотрение столбцы из абсолютных вероятностей

(105)

где - вероятность нахождения системы в момент в состоянии (,). Пользуясь теоремами сложения и умножения вероятностей, найдем:

(,),

или в матричной записи

где - транспонированная матрица для матрицы .

Все абсолютные вероятности (105) определяются из формулы (106), если известны начальные вероятности и матрица переходных вероятностей

Введем в рассмотрение предельные абсолютные вероятности

Переходя в обоих частях равенства (106) к пределу при , получим:

Заметим, что существование матрицы предельных переходных вероятностей влечет существование предельных абсолютных вероятностей при любых начальных вероятностях и наоборот.

Из формулы (107) и из вида (102) матрицы вытекает, что предельные абсолютные вероятности, соответствующие несущественным состояниям, равны нулю.

Умножая обе части матричного равенства

справа на , мы в силу (107) получим:

т. е. столбец предельных абсолютных вероятностей является собственным вектором матрицы для характеристического числа .

Если данная цепь Маркова регулярна, то является простым корнем характеристического уравнения матрицы . В этом случае столбец предельных абсолютных вероятностей однозначно определяется из (108) (поскольку и ).

Пусть дана регулярная цепь Маркова. Тогда из (104) и из (107) следует:

(109)

В этом случае предельные абсолютные вероятности не зависят от начальных вероятностей .

Обратно, может не зависеть от при наличии формулы (107) тогда и только тогда, когда все строки матрицы одинаковы, т. е.

,

и потому (согласно теореме 11) - регулярная матрица.

Если - примитивная матрица, то , а отсюда в силу (109)

Наоборот, если все и не зависят от начальных вероятностен, то в каждом столбце матрицы все элементы одинаковы и согласно (109) , а это по теореме 11 означает, что - примитивная матрица, т. е. данная цепь ациклична.

Из изложенного вытекает, что теорему 11 можно сформулировать так:

Теорема 11". 1. Для того чтобы в однородной цепи Маркова существовали все предельные абсолютные вероятности при любых начальных вероятностях, необходимо и достаточно, чтобы цепь была правильной.

2. Для того чтобы в однородной цепи Маркова существовали предельные абсолютные вероятности при любых начальных вероятностях и не зависели от этих начальных вероятностей, необходимо и достаточно, чтобы цепь была регулярной.

3. Для того чтобы в однородной цепи Маркова при любых начальных вероятностях существовали положительные предельные абсолютные вероятности и эти предельные вероятности не зависели от начальных, необходимо и достаточно, чтобы цепь была ациклической.

5. Рассмотрим теперь однородную цепь Маркова общего типа с матрицей переходных вероятностей .

Возьмем нормальную форму (69) матрицы и обозначим через индексы импримитивности матриц в (69). Пусть - наименьшее общее кратное целых чисел . Тогда матрица не имеет характеристических чисел, равных по модулю единице, но отличных от единицы, т. е. - правильная матрица; при этом - наименьший показатель, при котором - правильная матрица. Число назовем периодом данной однородной цепи Маркова и.. Обратно, если и , определяемые формулами (110) и (110").

Средние предельные абсолютные вероятности, соответствующие несущественным состояниям, всегда равны нулю.

Если в нормальной форме матрицы число (и только в этом случае), средние предельные абсолютные вероятности не зависят от начальных вероятностей и однозначно определяются из уравнения (111).

Цепь Маркова – череда событий, в которой каждое последующее событие зависит от предыдущего. В статье мы подробнее разберём это понятие.

Цепь Маркова – это распространенный и довольно простой способ моделирования случайных событий. Используется в самых разных областях, начиная генерацией текста и заканчивая финансовым моделированием. Самым известным примером является SubredditSimulator . В данном случае Цепь Маркова используется для автоматизации создания контента во всем subreddit.

Цепь Маркова понятна и проста в использовании, т. к. она может быть реализована без использования каких-либо статистических или математических концепций. Цепь Маркова идеально подходит для изучения вероятностного моделирования и Data Science.

Сценарий

Представьте, что существует только два погодных условия: может быть либо солнечно, либо пасмурно. Всегда можно безошибочно определить погоду в текущий момент. Гарантированно будет ясно или облачно.

Теперь вам захотелось научиться предсказывать погоду на завтрашний день. Интуитивно вы понимаете, что погода не может кардинально поменяться за один день. На это влияет множество факторов. Завтрашняя погода напрямую зависит от текущей и т. д. Таким образом, для того чтобы предсказывать погоду, вы на протяжении нескольких лет собираете данные и приходите к выводу, что после пасмурного дня вероятность солнечного равна 0,25. Логично предположить, что вероятность двух пасмурных дней подряд равна 0,75, так как мы имеем всего два возможных погодных условия.

Теперь вы можете прогнозировать погоду на несколько дней вперед, основываясь на текущей погоде.

Этот пример показывает ключевые понятия цепи Маркова. Цепь Маркова состоит из набора переходов, которые определяются распределением вероятностей, которые в свою очередь удовлетворяют Марковскому свойству.

Обратите внимание, что в примере распределение вероятностей зависит только от переходов с текущего дня на следующий. Это уникальное свойство Марковского процесса – он делает это без использования памяти. Как правило, такой подход не способен создать последовательность, в которой бы наблюдалась какая-либо тенденция. Например, в то время как цепь Маркова способна сымитировать стиль письма, основанный на частоте использования какого-то слова, она не способна создать тексты с глубоким смыслом, так как она может работать только с большими текстами. Именно поэтому цепь Маркова не может производить контент, зависящий от контекста.

Модель

Формально, цепь Маркова – это вероятностный автомат. Распределение вероятностей переходов обычно представляется в виде матрицы. Если цепь Маркова имеет N возможных состояний, то матрица будет иметь вид N x N, в которой запись (I, J) будет являться вероятностью перехода из состояния I в состояние J. Кроме того, такая матрица должна быть стохастической, то есть строки или столбцы в сумме должны давать единицу. В такой матрице каждая строка будет иметь собственное распределение вероятностей.

Общий вид цепи Маркова с состояниями в виде окружностей и ребрами в виде переходов.

Примерная матрица перехода с тремя возможными состояниями.

Цепь Маркова имеет начальный вектор состояния, представленный в виде матрицы N x 1. Он описывает распределения вероятностей начала в каждом из N возможных состояний. Запись I описывает вероятность начала цепи в состоянии I.

Этих двух структур вполне хватит для представления цепи Маркова.

Мы уже обсудили, как получить вероятность перехода из одного состояния в другое, но что насчет получения этой вероятности за несколько шагов? Для этого нам необходимо определить вероятность перехода из состояния I в состояние J за M шагов. На самом деле это очень просто. Матрицу перехода P можно определить вычислением (I, J) с помощью возведения P в степень M. Для малых значений M это можно делать вручную, с помощью повторного умножения. Но для больших значений M, если вы знакомы с линейной алгеброй, более эффективным способом возведения матрицы в степень будет сначала диагонализировать эту матрицу.

Цепь Маркова: заключение

Теперь, зная, что из себя представляет цепь Маркова, вы можете легко реализовать её на одном из языков программирования. Простые цепи Маркова являются фундаментом для изучения более сложных методов моделирования.

Определение. Однородной называют цепь Маркова, если условная вероятность (переход из состояния в состоянии) не зависит от номера испытания. Поэтому вместо пишут просто.

Пример 1. Случайное блуждание. Пусть на прямой в точке с целочисленной координатой находится материальная частица. В определенные моменты времени частица испытывает толчки. Под действием толчка частица с вероятностью смещается на единицу вправо и с вероятностью - на единицу влево. Ясно, что положение (координата) частицы после толчка зависит от того, где находилась частица после непосредственно предшествующего толчка, и не зависит от того, как она двигалась под действием остальных предшествующих толчков.

Таким образом, случайное блуждание? пример однородной цепи Маркова с дискретным временем.

Переходной вероятностью называют условную вероятность того, что из состояния (в котором система оказалась в результате некоторого испытания, безразлично какого номера) в итоге следующего испытания система перейдет в состояние.

Таким образом, в обозначении первый индекс указывает номер предшествующего, а второй? номер последующего состояния. Например, - вероятность перехода из второго состояния в третье.

Пусть число состояний конечно и равно.

Матрицей перехода системы называют матрицу, которая содержит все переходные вероятности этой системы:

Так как в каждой строке матрицы помещены вероятности событий (перехода из одного и того же состояния в любое возможное состояние), которые образуют полную группу, то сумма вероятностей этих событий равна единице. Другими словами, сумма переходных вероятностей каждой строки матрицы перехода равна единице:

Приведем пример матрицы перехода системы, которая может находиться в трех состояниях; переход из состояния в состояние происходит по схеме однородной цепи Маркова; вероятности перехода задаются матрицей:

Здесь видим, что если система находилось в состоянии, то после изменения состояния за один шаг она с вероятностью 0,5 останется в этом же состоянии, с вероятностью 0,5 останется в этом же состоянии, с вероятностью 0,2 перейдет в состояние, то после перехода она может оказаться в состояниях; перейти же из состояния в она не может. Последняя строка матрицы показывает нам, что из состояния перейти в любое из возможных состояний с одной и той же вероятностью 0,1.

На основе матрицы перехода системы можно построить так называемый граф состояний системы, его еще называют размеченный граф состояний. Это удобно для наглядного представления цепи. Порядок построения граф рассмотрим на примере.

Пример 2. По заданной матрице перехода построить граф состояний.

Т.к. матрица четвертого порядка, то, соответственно, система имеет 4 возможных состояния.

На графе не отмечаются вероятности перехода системы из одного состояния в то же самое. При рассмотрении конкретных систем удобно сначала построить граф состояний, затем определить вероятность переходов системы из одного состояния в то же самое (исходя из требования равенства единице суммы элементов строк матрицы), а потом составить матрицу переходов системы.

Способы математических описаний марковских случайных процессов в системе с дискретными состояниями (ДС) зависят от того, в какие моменты времени (заранее известные или случайные) могут происходить переходы системы из состояния в состояние.
Если переход системы из состояния в состояние возможен в заранее фиксированные моменты времени, имеем дело со случайным марковским процессом с дискретным временем. Если переход возможен в любой случайный момент времени, то имеем дело со случайным марковским процессом с непрерывным временем.
Пусть имеется физическая система S , которая может находиться в n состояниях S 1 , S 2 , …, S n . Переходы из состояния в состояние возможны только в моменты времени t 1 , t 2 , …, t k , назовём эти моменты времени шагами. Будем рассматривать СП в системе S как функцию целочисленного аргумента 1, 2, …, k , где аргументом является номер шага.
Пример: S 1 → S 2 → S 3 → S 2 .
Условимся обозначать S i ( k ) – событие, состоящее в том, что после k шагов система находится в состоянии S i .
При любом k события S 1 ( k ) , S 2 ( k ) ,…, S n ( k ) образуют полную группу событий и являются несовместными.

Процесс в системе можно представить как цепочку событий.
Пример:S 1 (0) , S 2 (1) , S 3 (2) , S 5 (3) ,….
Такая последовательность называется марковской цепью , если для каждого шага вероятность перехода из любого состояния S i в любое состояние S j не зависит от того, когда и как система пришла в состояние S i .
Пусть в любой момент времени после любого k -го шага система S может находиться в одном из состояний S 1 , S 2 , …, S n , т. е. может произойти одно событие из полной группы событий: S 1 ( k ) , S 2 ( k ) , …, S n ( k ) . Обозначим вероятности этих событий:
P 1 (1) = P (S 1 (1)); P 2 (1) = P (S 2 (1)); …; P n (1) = P (S n ( k ));
P 1 (2) = P (S 1 (2)); P 2 (2) = P (S 2 (2)); …; P n (2) = P (S n (2));
P 1 (k ) = P (S 1 (k )); P 2 (k ) = P (S 2 (k )); …; P n (k ) = P (S n (k )).
Легко заметить, что для каждого номера шага выполняется условие
P 1 (k ) + P 2 (k ) +…+ P n (k ) = 1.
Назовём эти вероятности вероятностями состояний .следовательно, задача будет звучать следующим образом: найти вероятности состояний системы для любого k .
Пример. Пусть имеется какая-то система, которая может находиться в любом из шести состояний. тогда процессы, происходящие в ней, можно изобразить либо в виде графика изменения состояния системы (рис. 7.9, а ), либо в виде графа состояний системы (рис. 7.9, б ).

а)

Рис. 7.9
Также процессы в системе можно изобразить в виде последовательности состояний: S 1 , S 3 , S 2 , S 2 , S 3 , S 5 , S 6 , S 2 .
Вероятность состояния на (k + 1)-м шаге зависит только от состояния на k- м шаге.
Для любого шага k существуют какие-то вероятности перехода системы из любого состояния в любое другое состояние, назовем эти вероятности переходными вероятностями марковской цепи.
Некоторые из этих вероятностей будут равны 0, если переход из одного состояния в другое невозможен за один шаг.
Марковская цепь называется однородной , если переходные состояния не зависят от номера шага, в противном случае она называется неоднородной .
Пусть имеется однородная марковская цепь и пусть система S имеет n возможных состояний: S 1 , …, S n . Пусть для каждого состояния известна вероятность перехода в другое состояние за один шаг, т. е. P ij (из S i в S j за один шаг), тогда мы можем записать переходные вероятности в виде матрицы.

. (7.1)
По диагонали этой матрицы расположены вероятности того, что система переходит из состояния S i в то же состояние S i .
Пользуясь введенными ранее событиями , можно переходные вероятности записать как условные вероятности:
.
Очевидно, что сумма членов в каждой строке матрицы (1) равна единице, поскольку события образуют полную группу несовместных событий.

При рассмотрении марковских цепей, так же как и при анализе марковского случайного процесса, используются различные графы состояний (рис. 7.10).

Рис. 7.10

Данная система может находиться в любом из шести состояний, при этом P ij – вероятность перехода системы из состояния S i в состояние S j . Для данной системы запишем уравнения, что система находилась в каком-либо состоянии и из него за время t не вышла:

В общем случае марковская цепь является неоднородной, т. е. вероятность P ij меняется от шага к шагу. Предположим, что задана матрица вероятностей перехода на каждом шаге, тогда вероятность того, что система S на k -м шаге будет находиться в состоянии S i , можно найти по формуле

Зная матрицу переходных вероятностей и начальное состояние системы, можно найти вероятности состояний после любого k -го шага. Пусть в начальный момент времени система находится в состоянии S m . Тогда для t = 0
.
Найдем вероятности после первого шага. Из состояния S m система перейдет в состояния S 1 , S 2 и т. д. с вероятностями P m 1 , P m 2 , …, P mm , …, P mn . Тогда после первого шага вероятности будут равны

. (7.2)
Найдем вероятности состояния после второго шага: . Будем вычислять эти вероятности по формуле полной вероятности с гипотезами:
.
Гипотезами будут следующие утверждения:

  • после первого шага система была в состоянии S 1 -H 1 ;
  • после второго шага система была в состоянии S 2 -H 2 ;
  • после n -го шага система была в состоянии S n -H n .
Вероятности гипотез известны из выражения (7.2). Условные вероятности перехода в состояние А при каждой гипотезе тоже известны и записаны в матрицы переходных состояний. Тогда по формуле полной вероятности получим:

Вероятность любого состояния после второго шага:

(7.3)
В формуле (7.3) суммируются все переходные вероятности P ij , но учитываются только отличные от нуля. Вероятность любого состояния после k -го шага:

(7.4)
Таким образом, вероятность состояния после k -го шага определяется по рекуррентной формуле (7.4) через вероятности (k – 1)-го шага.

Задача 6. Задана матрица вероятностей перехода для цепи Маркова за один шаг. Найти матрицу перехода данной цепи за три шага.
Решение. Матрицей перехода системы называют матрицу, которая содержит все переходные вероятности этой системы:

В каждой строке матрицы помещены вероятности событий (перехода из состояния i в состояние j ), которые образуют полную группу, поэтому сумма вероятностей этих событий равна единице:

Обозначим через p ij (n) вероятность того, что в результате n шагов (испытаний) система перейдет из состояния i в состояние j . Например p 25 (10) - вероятность перехода из второго состояния в пятое за десять шагов. Отметим, что при n=1 получаем переходные вероятности p ij (1)=p ij .
Перед нами поставлена задача: зная переходные вероятности p ij , найти вероятности p ij (n) перехода системы из состояния i в состояние j заn шагов. Для этого введем промежуточное (между i и j ) состояние r . Другими словами, будем считать, что из первоначального состояния i за m шагов система перейдет в промежуточное состояние r с вероятностью p ij (n-m) , после чего, за оставшиеся n-m шагов из промежуточного состояния r она перейдет в конечное состояние j с вероятностью p ij (n-m) . По формуле полной вероятности получаем:
.
Эту формулу называют равенством Маркова. С помощью этой формулы можно найти все вероятности p ij (n) , а, следовательно, и саму матрицу P n . Так как матричное исчисление ведет к цели быстрее, запишем вытекающее из полученной формулы матричное соотношение в общем виде.
Вычислим матрицу перехода цепи Маркова за три шага, используя полученную формулу:

Ответ: .

Задача №1 . Матрица вероятностей перехода цепи Маркова имеет вид:
.
Распределение по состояниям в момент времени t=0 определяется вектором:
π 0 =(0.5; 0.2; 0.3)
Найти: а) распределение по состояниям в моменты t=1,2,3,4 .
в) стационарное распределение.



© dagexpo.ru, 2024
Стоматологический сайт