Что такое атомный радиус элемента. Понятие о радиусе атома и электроотрицательность элементов

24.09.2019

Определение атомных радиусов также связано с некоторыми проблемами. Во-первых, атом не является сферой со строго определенными поверхностью и радиусом. Напомним, что атом представляет собой ядро, окруженное облаком электронов. Вероятность обнаружения электрона по мере удаления от ядра постепенно возрастает до некоторого максимума, а затем постепенно уменьшается, но становится равной нулю только на бесконечно большом расстоянии. Во-вторых, если мы все же выберем некоторое условие для определения радиуса, такой радиус все равно нельзя будет измерить экспериментально.

Эксперимент позволяет определять только межъядерные расстояния, другими словами-длины связей (и то с определенными оговорками, приведенными в подписи к рис. 2.21). Для их определения используется рентгеноструктурный анализ или метод электронографии (основанный на дифракции электронов). Радиус атома полагают равным половине наименьшего межъядерного расстояния между одинаковыми атомами.

Вандерваальсовы радиусы . Для несвязанных между собой атомов половина наименьшего межъядерного расстояния называется вандерваальсовым радиусом. Это определение поясняет рис. 2.22.

Рис. 2.21. Длина связи. Вследствие того что молекулы непрерывно колеблются, межъядерное расстояние, или длина связи, не имеет фиксированного значения. Этот рисунок схематически изображает линейное колебание простой двухатомной молекулы. Колебания не позволяют определить длину связи просто как расстояние между центрами двух связанных атомов. Более точное определение выглядит так: длина связи это расстояние между связанными атомами, измеренное между центрами масс двух атомов и соответствующее минимуму энергии связи. Минимум энергии показан на кривой Морзе (см. рис. 2.1).


Таблица 2.6. Плотности аллотропов углерода и серы Таблица 2.7. Длина связей углерод - углерод

Ковалентные радиусы. Ковалентный радиус определяется как половина межъядерного расстояния (длины связи) между двумя одинаковыми атомами, связанными друг с другом ковалентной связью (рис. 2.22, б). В качестве примера возьмем молекулу хлора Cl2, длина связи в которой составляет 0,1988 нм. Ковалентный радиус хлора полагается равным 0,0944 нм.

Зная ковалентный радиус атома одного элемента, можно вычислить ковалентный радиус атома другого элемента. Например, экспериментально установленное значение длины связи С-Cl в CH3Cl равно 0,1767 нм. Вычитая из этого значения ковалентный радиус хлора (0,0994 нм), находим, что ковалентный радиус углерода равен 0,0773 нм. Такой метод вычисления основан на принципе аддитивности, согласно которому атомные радиусы подчиняются простому закону сложения. Таким образом, длина связи С-Cl представляет собой сумму ковалентных радиусов углерода и хлора. Принцип аддитивности применим только к простым ковалентным связям. Двойные и тройные ковалентные связи имеют меньшую длину (табл. 2.7).

Длина простой ковалентной связи зависит еще от ее окружения в молекуле. Например, длина связи С-H изменяется от 0,1070 нм у тризамещенного атома углерода до 0,115 нм в соединении CH3CN.

Металлические радиусы. Металлический радиус полагается равным половине межъядерного расстояния между соседними ионами в кристаллической решетке металла (рис. 2.22, в). Термин атомный радиус обычно относится к ковалентному радиусу атомов неметаллических элементов, а термин металлический радиус~к атомам металлических элементов.

Ионные радиусы. Ионный радиус-это одна из двух частей межъядерного расстояния между соседними одноатомными (простыми) ионами в кристаллическом ионном соединении (соли). Определение ионного радиуса тоже сопряжено с немалыми проблемами, поскольку экспериментально измеряют межионные расстояния, а не сами ионные радиусы. Межионные расстояния зависят от упаковки ионов в кристаллической решетке. На рис. 2.23 показаны три возможных способа упаковки ионов в кристаллической решетке. К сожалению, экспериментально измеренные межионные расстояния

Рис. 2.23. Ионные радиусы, с-анионы соприкасаются друг с другом, но катионы не соприкасаются с анионами; б-катионы соприкасаются с анионами, но анионы не соприкасаются друг с другом; в условно принятое расположение ионов, при котором катионы соприкасаются с анионами и анионы соприкасаются друг с другом. Расстояние а определяется экспериментально. Оно принимается за удвоенный радиус аниона. Это позволяет вычислить межионное расстояние b, представляющее собой сумму радиусов аниона и катиона. Зная межионное расстояние Ь, можно вычислить радиус катиона.

не позволяют судить о том, какой из этих трех способов упаковки действительно осуществляется в каждом конкретном случае. Проблема заключается в том, чтобы найти пропорцию, в которой следует разделить межионное расстояние на две части, соответствующие радиусам двух ионов, другими словами, решить, где же на самом деле кончается один ион и где начинается другой. Как показывает, например, рис. 2.12, этот вопрос не позволяют решить и карты электронной плотности солей. Для преодоления указанной трудности обычно предполагают, что: 1) межионное расстояние представляет собой сумму двух ионных радиусов, 2) ионы имеют сферическую форму и 3) соседние сферы соприкасаются друг с другом. Последнее предположение соответствует способу упаковки ионов, изображенному на рис. 2.23, е. Если известен один ионный радиус, другие ионные радиусы можно вычислить на основании принципа аддитивности.

Сопоставление радиусов различных типов. В табл. 2.8 указаны значения радиусов различных типов для трех элементов 3-го периода. Нетрудно видеть, что самые большие значения принадлежат анионным и вандерваальсовым радиусам. На рис. 11.9 сопоставлены размеры ионов и атомов для всех элементов 3-го периода, за исключением аргона. Размеры атомов определяются их ковалентными радиусами. Следует обратить внимание на то, что катионы имеют меньшие размеры, чем атомы, а анионы - большие размеры, чем атомы этих же элементов. Для каждого элемента из всех типов радиусов наименьшее значение всегда принадлежит катионному радиусу.

Таблица 2.8. Сопоставление атомных радиусов различных типов



Экспериментальное определение. Для определения формы простых молекул и многоатомных ионов, а точнее - длин связей и валентных углов (углов между связями), используются разнообразные экспериментальные методы. К ним относятся микроволновая спектроскопия, а также методы изучения дифракции рентгеновских лучей (рентгеноструктурный анализ), нейтронов (нейтронография) или электронов (электронография). В следующей главе подробно рассказывается о том, каким образом с помощью дифракции рентгеновских лучей можно определять кристаллическую структуру. Однако для определения формы простых молекул в газовой фазе обычно используется электронография (метод изучения дифракции электронов). Этот метод основан на использовании волновых свойств электронов. Пучок электронов пропускают сквозь образец исследуемого газа. Молекулы газа рассеивают электроны, и в результате возникает дифракционная картина. Анализируя ее, можно определить длины связей и валентные углы в молекулах. Этот метод аналогичен используемому при анализе дифракционной картины, образуемой при рассеянии рентгеновских лучей.

У s- и p-элементов изменение радиусов как в периодах, так и в подгруппах более ярко, чем у d- и f-элементов, поскольку d- и f-электроны внутренние. Размеры атомов и ионов (радиусы атомов и ионов). Под ковалентными радиусами элементов с ковалентной связью понимают половину межатомного расстояния между ближайшими атомами, соединенными единичной ковалентной связью.


Поэтому атому приписывают некоторый определённый радиус, полагая, что в сфере этого радиуса заключена подавляющая часть электронной плотности (порядка 90 процентов). Радиус атома — границы электронного облака. Изменение атомных радиусов в периодической системе носит периодический характер, так как определяется свойствами электронных оболочек. Радиусы атомов, связанных между собой, называют эффективными. Эффективные радиусы определяют при изучении строения молекул и кристаллов.

Под радиусоматома понимается расстояние между ядром данного атома и его самой дальней электронной орбитой. На сегодняшний день общепринятой единицей измерения атомного радиуса является пикометр(пм).

В строении планеты Земля выделяют ядро, мантию и кору. Ядро – центральная часть, расположенная наиболее далеко от поверхности. Кроме того, в строении ядра Земли выделяют твердое внутреннее ядро, имеющее радиус около 1300 километров, и жидкое внешнее радиусом около 2200 километров. Чтобы оценить радиус планеты, используют косвенные геохимические и геофизические методы.

Зависимость массы ядра от радиуса не является линейной. Связано это с тем, что электроны, подобно планетам Солнечной системы, движутся вокруг Солнца — ядра атома. Орбиты движения электронов постоянны.

Это создавало трудности в строительстве колеи и создавало неимоверный шум. Далее… АТОМНЫЙ РАДИУС — характеристика атома, позволяющая приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. T. к. атомы не имеют чётких границ, при введении понятия «А. р.» подразумевают, что 90-98% электронной плотности атома заключено в сфере этого радиуса.

Ионные радиусы используют для приближённых оценок межъядерных расстояний в ионных кристаллах. При этом считают, что расстояние между ближайшими катионом и анионом равно сумме их ионных радиусов. А. р. катионов и к заниженным значениям А. р. анионов. При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, возникает сильное межатомное отталкивание.

6.6. Особенности электронного строения атомов хрома, меди и некоторых других элементов

Знание ван-дер-ваальсовых А. р. позволяет определять форму молекул, конформации молекул и их упаковку в молекулярных кристаллах. Пользуясь этим принципом, можно интерпретировать имеющиеся кристаллографические данные, а в ряде случаев и предсказывать структуру молекулярных кристаллов.

2.6. Периодичность атомных характеристик

Мы знаем (стр. 31, 150), что даже при температуре абсолютного нуля происходят колебания ядер в молекулах и кристаллах. Молибден и вольфрам вследствие лантаноидного сжатия имеют близкие радиусы атомов и ионов Э +. Это объясняет большее сходство в свойствах Мо и Ш между собой, чем между каждым из них и хромом.

Изменение свойств элементов по диагонали

Как показано в табл. 14, радиусы атомов и ионов РЗЭ закономерно уменьшаются от La к Lu. Это явление известно под названием лантаноидного сжатия. Причина сжатия - экранирование одного электрона другим в той же оболочке.

До сих пор вторичную периодичность отмечали главным образом для элементов главных подгрупп рис. 62 свидетельствует о том, что она существует для s-электронов и в дополнительных подгруппах. Понятие о координационном чнсле применяют не только ири рассмотрении окружения атомов в кристаллах, но и в свободных молекулах (в газах) и в многоатомных ионах, существующих в растворах.

Последовательность элементов в Периодической системе Менделеева соответствует последовательности заполнения электронных оболочек. Эффективный радиус иона зависит от заполненности электронных оболочек, но он не равен радиусу наружной орбиты.

Принцип тождественности частиц

Атомные и ионные радиусы определены экспериментально по рентгеновским измерениям межатомных расстояний и вычислены теоретически на основе квантово-механических представлений. 2. Для одного и того же элемента ионный радиус возрастает с увеличением отрицательного заряда и уменьшается с увеличением положительного заряда. Атомный радиус химического элемента зависит от координационного числа. Увеличение координационного числа всегда сопровождается увеличением межатомных расстояний.

В случае твердых растворов металлические атомные радиусы меняются сложным образом. Особенностью ковалентных радиусов является их постоянство в разных ковалентных структурах с одинаковыми координационными числами. Ионные радиусы в веществах с ионной связью не могут быть определены как полусумма расстояний между ближайшими ионами.

Сродство к электрону известно не для всех атомов. Во многих случаях кратчайшее расстояние между двумя атомами действительно примерно равно сумме соответствующих атомных радиусов. За радиус свободного атома принимают положение главного максимума плотности внешних электронных оболочек. Радиусы атомов и ионов зависят от к. ч. Значение радиуса Га или ri при другом к.ч. можно найти умножением г при данном к.ч. на определенный коэффициент.

Атомы не имеют четких границ, но вероятность найти электрон , связанный с ядром данного атома , на определенном расстоянии от этого ядра быстро убывает с увеличением расстояния. Поэтому атому приписывают некоторый определённый радиус, полагая, что в сфере этого радиуса заключена подавляющая часть электронной плотности (порядка 90 процентов).

Характерной оценкой радиуса атома является 1 ангстрем (1 Å), равный 10 -10 м.

Радиус атома и межъядерные расстояния

Во многих случаях кратчайшее расстояние между двумя атомами действительно примерно равно сумме соответствующих атомных радиусов. В зависимости от типа связи между атомами различают металлические , ионные , ковалентные и некоторые другие атомные радиусы.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Радиус атома" в других словарях:

    радиус атома

    Раздел физики, изучающий внутреннее устройство атомов. Атомы, первоначально считавшиеся неделимыми, представляют собой сложные системы. Они имеют массивное ядро, состоящее из протонов и нейтронов, вокруг которого в пустом пространстве движутся… … Энциклопедия Кольера

    Боровский радиус (Радиус Бора) , радиус ближайшей к ядру орбиты электрона атома водорода в модели атома, предложенной Нильсом Бором в 1913 г. и явившейся предвестницей квантовой механики. В модели электроны движутся по круговым орбитам… … Википедия

    Ван дер ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Кроме того, ван дер ваальсовыми радиусами считают половину межъядерного расстояния между ближайшими одноимёнными атомами, не связанными между собой химической… … Википедия

    атомный радиус - atomo spindulys statusas T sritis fizika atitikmenys: angl. atomic radius vok. Atomradius, m rus. атомный радиус, m; радиус атома, m pranc. rayon atomique, m; rayon de l’atome, m … Fizikos terminų žodynas

    Радиус а 0 первой (ближайшей к ядру) орбиты электрона в атоме водорода, согласно теории атома Н. Бора (1913); а 0= 5,2917706(44)*10 11 м. В квантовомех. теории атома Б. р. соответствует расстояние от ядра, на к ром с Наиб. вероятностью можно… … Химическая энциклопедия

    Радиус первой (ближайшей к ядру) орбиты электрона в атоме водорода, согласно теории атома Н. Бора; обозначается символом a0 или a. Б. р. равен (5,29167±0,00007)×10 9см = 0,529 Å; выражается через универсальные постоянные: а0 = ћ2/me2, где … Большая советская энциклопедия

    Радиус ао первой (ближайшей к ядру) орбиты электрона в атоме водорода, согласно теории строения атома Н. Бора (1913); а0 = 0,529 х 10 10 м = 0,529 А … Естествознание. Энциклопедический словарь

    Боровская модель водородоподобного атома (Z заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро … Википедия

Книги

  • Квантовая механика в общей теории относительности , А. К. Горбацевич. В монографии показано, что общековариантное уравнение Дирака можно рассматривать как специальное координатное представление (с неортонормированными базисными векторами в гильбертовом…

Атомным ионам; имеют смысл радиусов сфер, представляющих эти атомы или ионы в молекулах или кристаллах. Атомные радиусы позволяют приближённо оценивать межъядерные (межатомные) расстояния в молекулах и кристаллах.

Электронная плотность изолированного атома быстро убывает по мере увеличения расстояния до ядра, так что радиус атома можно было бы определить как радиус той сферы, в которой сосредоточена основная часть (например, 99%) электронной плотности. Однако для оценки межъядерных расстояний оказалось удобнее интерпретировать атомные радиусы иначе. Это привело к появлению различных определений и систем атомных радиусов.

Ковалентный радиус атома Х определяют как половину длины простой химической связи Х—Х. Так, для галогенов ковалентные радиусы вычисляются из равновесного межъядерного расстояния в молекуле Х 2 , для серы и селена - в молекулах S 8 и Se 8 , для углерода - в кристалле алмаза. Исключение составляет атом водорода, для которого ковалентный атомный радиус принимается равным 30 пм, тогда как половина межъядерного расстояния в молекуле Н 2 равна 37 пм. Для соединений с ковалентным характером связи, как правило, выполняется принцип аддитивности (длина связи Х—Y примерно равна сумме атомных радиусов атомов Х и Y), что позволяет предсказывать длины связей в многоатомных молекулах.

Ионные радиусы определяют как величины, сумма которых для пары ионов (например, Х + и Y -) равна кратчайшему межъядерному расстоянию в соответствующих ионных кристаллах. Существует несколько систем ионных радиусов; системы различаются численными значениями для отдельных ионов в зависимости от того, какой радиус и какого иона принят за основу при вычислении радиусов других ионов. Например, по Полингу - это радиус иона О 2- , принятый равным 140 пм; по Шеннону - радиус того же иона, принятый равным 121 пм. Несмотря на эти различия, разные системы при вычислении межъядерных расстояний в ионных кристаллах приводят к примерно одинаковым результатам.

Металлические радиусы определяют как половину кратчайшего расстояния между атомами в кристаллической решётке металла. Для структур металла, различающихся типом упаковки, эти радиусы различны. Близость значений атомных радиусов различных металлов часто служит указанием на возможность образования этими металлами твёрдых растворов. Аддитивность радиусов позволяет предсказывать параметры кристаллических решёток интерметаллических соединений.

Ван-дер-ваальсовы радиусы определяют как величины, сумма которых равна расстоянию, на которое могут сблизиться два химически не связанных атома разных молекул или разных групп атомов одной и той же молекулы. В среднем ван-дер-ваальсовы радиусы примерно на 80 пм больше, чем ковалентные радиусы. Ван-дер-ваальсовы радиусы используют для интерпретации и предсказания стабильности конформаций молекул и структурного упорядочения молекул в кристаллах.

Лит.: Хаускрофт К., Констебл Э. Современный курс общей химии. М., 2002. Т. 1.

АТОМНЫЙ РАДИУС - характеристика атома, позволяющая приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. T. к. атомы не имеют чётких границ, при введении понятия "А. р." подразумевают, что 90-98% электронной атома заключено в сфере этого радиуса. А. р. имеют порядок 0,1 HM, однако даже небольшие различия в их значениях могут определять структуру построенных из них кристаллов, сказываются на равновесной геометрии молекул и т. д. Для мн. задач кратчайшие расстояния между атомами в молекулах и конденсированных средах можно считать суммой их А. р., однако такая аддитивность весьма приближённа и выполняется не во всех случаях. В зависимости от того, какие силы действуют между атомами (см. Межатомное взаимодействие) , различают металлические, ионные, ковалентные и ван-дер-ваальсовы А. р.

Металлич. радиусы считаются равными половине кратчайшего расстояния между атомами в кристаллич. структуре элемента-металла, они зависят от координац. числа К . Если принять А. р. при К=12 за единицу, то при К=8 , 6 и 4 А. р. того же элемента соотв. равны 0,98; 0,96; 0,88. Близость значений А. р. разных металлов - необходимое (хотя и недостаточное) условие взаимной растворимости металлов по типу замещения. Так, жидкие К и Li обычно не смешиваются и образуют два жидких слоя, а К с Rb и Cs образуют непрерывный ряд твёрдых растворов (А. р. Li, К, Pb и Cs равны соотв. 0,155; 0,236; 0,248; 0,268 HM). Аддитивность А. р. позволяет приближённо предсказывать параметры кристаллич. решёток интерметаллич. соединений.

Ионные радиусы используют для приближённых оценок межъядерных расстояний в ионных кристаллах. При этом считают, что расстояние между ближайшими катионом и анионом равно сумме их ионных радиусов. О точности, с к-рой выполняется указанная аддитивность А. р., можно судить на основании кратчайших межъядерных расстояний в кристаллах галогенидов щелочных металлов, приведённых ниже:

Разность А. р. ионов , полученная сравнением межъядерных расстояний в KF и NaF, составляет 0,035 нм (А. р. иона в кристаллах KF в NaF предполагаются одинаковыми), а для соединений KCl и NaCl она равна 0,033 HM, из соединений KBr и NaBr - 0,031 HM и из соединений KI и NaI - 0,030 HM. T. о., типичная погрешность определения межъядерных расстояний в ионных кристаллах по А. р.~ 0,001 нм.

Существует неск. систем ионных А. р., отличающихся значениями А. р. индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям. Впервые работа по определению ионных А. р. была проделана в 20-х гг. 20 в. В. M. Гольдшмидтом (V. M. Goldschmidt), опиравшимся, с одной стороны, на межъядерные расстояния в кристаллах, измеренные методами рентгеновского структурного анализа, а с другой - на значения А. р. и , определённые методом рефрактометрии (соотв. 0,133 и 0,132 HM). Большинство др. систем также опирается на определённые . методами межъядерные расстояния в кристаллах и на нек-рое "реперное" значение А. р. определ. иона. В наиб. широко известной системе По-линга этим реперным значением является А. р. (0,140 HM). В системе Белова и Бокия, считающейся одной из наиб. надёжных, А. р. 0 2- принимается равным 0,136 HM. Ниже приведены значения радиусов нек-рых ионов:

в системе Гольдшмидта

в системе Полинга

в системе Гольдшмидта

в системе Полинга

Для ионных кристаллов, имеющих одинаковые координац. числа, ср. отклонение суммы А. р., вычисленной по приведённым выше А. р., от опытных значений кратчайших межъядерных расстояний в ионных кристаллах составляет 0,001-0,002 HM.

В 70-80-х гг. были сделаны попытки прямого определения А. р. ионов путём измерения электронной плотности методами рентгеновского структурного анализа при условии, что минимум электронной плотности на линии, соединяющей ядра, принимается за границу ионов. Дифракц. измерения для кристаллов галогенидов щелочных металлов позволили получить А. р. катионов Li + , Na + , К + , Rb + и Cs + , равные соотв. 0,094; 0,117; 0,149; 0,163; 0,186 нм, а А. р. анионов F - , Cl - , Br - , I - - равные соотв. 0,116; 0,164; 0,180; 0,205 HM. T. о. дифракц. измерения приводят к завышенным (по сравнению с традиционными, приведёнными выше) значениям А. р. катионов и к заниженным значениям А. р. анионов. А. р., найденные путём измерения распределения электронной плотности в кристалле, нельзя переносить от одного соединения к другому, а отклонения от их аддитивности слишком велики, поэтому такие А. р. не могут быть использованы для предсказания межъядерных расстояний.

Ковалентный радиус определяется как половина длины одинарной хим. связи X - X (где X - элемент-неметалл). Для галогенов ковалентный А. р.- это половина межъядерного расстояния X - X в молекуле X 2 , для S и Se - половина расстояния X - X в X 8 , для углерода - половина кратчайшего расстояния С - С в кристалле алмаза. Ковалентные А. р. F, Cl, Br, I, S, Se и С соотв. равны 0,064; 0,099; 0,114; 0,133; 0,104; 0,117 и 0,077 нм. Для атома H А. р. принимают равным 0,030 HM (хотя половина длины связи H - H в молекуле H 2 равна 0,037 HM). Аддитивность ковалентных А. р. позволяет предсказывать кратчайшие межъядерные расстояния (длины связей) в многоатомных молекулах. Так, согласно этому правилу длина связи C-Cl должна быть равной 0,176 HM, а экспериментально полученное для этой величины значение в молекуле CCl 4 равно 0,177 HM. Ниже приведены ковалентные А. р. для атомов нек-рых элементов, вычисленные на основании длин одинарных связей:

В молекулах, имеющих двойные или тройные хим. связи, используют уменьшенные значения ковалентных А. р., ибо кратные связи короче одинарных. Ниже приведены ковалентные радиусы атомов при образовании кратных связей:

Ван-дер-ваальсовы радиусы определяют эфф. размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми А. р. считают половину межъядерного расстояния между ближайшими одноимёнными атомами, не связанными между собой хим. связью и принадлежащими разным молекулам (напр., в молекулярных кристаллах). При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, возникает сильное межатомное отталкивание. Поэтому ван-дер-ваальсовы А. р. характеризуют минимальные допустимые контакты атомов, принадлежащих разным молекулам. Ниже приведены значения ван-дер-ваальсовых атомных радиусов для нек-рых атомов:

Ван-дер-ваальсовы А. р. в ср. на 0,08 нм больше ковалентных А. р. Ионный А. р. для отрицательно заряженного иона (напр., Cl -) практически совпадает с ван-дер-ваальсовым радиусом атома в нейтральном состоянии.

Знание ван-дер-ваальсовых А. р. позволяет определять форму молекул, конформации молекул и их упаковку в молекулярных кристаллах. Согласно принципу плотной упаковки, молекулы, образуя кристалл, располагаются таким образом, что "выступы" одной молекулы входят во "впадины" другой. Пользуясь этим принципом, можно интерпретировать имеющиеся кристаллографические данные, а в ряде случаев и предсказывать структуру молекулярных кристаллов.

Лит.: Бокий Г. Б., Кристаллохимия, 3 изд., M., 1971; Полинг Л., Общая химия, пер. с англ., M., 1974; Кемпбел Д ж., Современная общая химия, пер. с англ., т. 1, M., 1975; Картмелл Э., Фоулз Г. В. А., Валентность и строение молекул, пер. с англ., M., 1979. В. Г. Дашевский .



© dagexpo.ru, 2024
Стоматологический сайт