Что такое эдс индукции. Что такое электромагнитная индукция

21.09.2019

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

где - поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).

41. Индуктивность, ее единица СИ. Индуктивность длинного соленоида.

Индукти́вность (или коэффициент самоиндукции ) - коэффициент пропорциональности между электрическим током , текущим в каком-либо замкнутом контуре, и магнитным потоком , создаваемым этим током через поверхность , краем которой является этот контур. .

В формуле

Магнитный поток, - ток в контуре, - индуктивность.

    Нередко говорят об индуктивности прямого длинного провода(см. ). В этом случае и других (особенно - в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.

Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока :

.

Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции , возникающей в контуре при изменении силы тока на 1 А за 1 с.

При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током :

Обозначение и единицы измерения

В системе единиц СИ индуктивность измеряется в генри , сокращенно Гн, в системе СГС - в сантиметрах (1 Гн = 10 9 см) . Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт. Реальный, не сверхпроводящий, контур обладает омическим сопротивлением R, поэтому на нём будет дополнительно возникать напряжение U=I*R, где I - сила тока, протекающего по контуру в данное мгновение времени.

Символ , используемый для обозначения индуктивности, был взят в честь Ленца Эмилия Христиановича (Heinrich Friedrich Emil Lenz) [ источник не указан 1017 дней ] . Единица измерения индуктивности названа в честь Джозефа Генри (Joseph Henry) . Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года [ источник не указан 1017 дней ] .

Электрический ток, который течет в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, согласно закону Био-Савара-Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому прямо пропорционален току I в контуре: (1) где коэффициент пропорциональности L называетсяиндуктивностью контура . При изменении в контуре силы тока будет также изменяться и сцепленный с ним магнитный поток; значит, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называетсясамоиндукцией . Из выражения (1) задается единица индуктивности генри (Гн): 1 Гн - индуктивность контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: 1 Гн = 1 Вб/с = 1 В

Вычислим индуктивность бесконечно длинного соленоида. Полный магнитный поток сквозь соленоид (потокосцепление) равен μ 0 μ(N 2 I/l )S . Подставив в (1), найдем (2) т. е. индуктивность соленоида зависит от длиныl солениода, числа его витков N, его, площади S и магнитной проницаемости μ вещества, из которого изготовлен сердечник соленоида. Доказано, что индуктивность контура зависит в общем случае только от геометрической формы контура, его размеров и магнитной проницаемости среды, в которой он расположен, и можно провести аналог индуктивности контура с электрической емкостью уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды. Найдем, применяя к явлению самоиндукции закон Фарадея, что э.д.с. самоиндукции равна Если контур не претерпевает деформаций и магнитная проницаемость среды остается неизменной (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L = const и(3) где знак минус, определяемый правилом Ленца, говорит о том, чтоналичие индуктивности в контуре приводит к замедлению изменения тока в нем . Если ток со временем увеличивается, то (dI/dt<0) и ξ s >0 т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его увеличение. Если ток со временем уменьшается, то (dI/dt>0) и ξ s <0 т. е. индукционный ток имеет такое же направление, как и уменьшающийся ток в контуре, и замедляет его уменьшение. Значит, контур, обладая определенной индуктивностью, имеет электрическую инертность, заключающуюся в том, что любое изменение тока уменьшается тем сильнее, чем больше индуктивность контура.

42. Ток при размыкании и замыкании цепи.

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции . Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностью L . Под действием внешней э. д. с. в цепи течет постоянный ток

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t =0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент време­ни ток в цепи определяется закономОмаI = s / R , или

Разделив в выражении (127.1) переменные, получим Интегрируя это уравнение по I (от I 0 до I ) и t (от 0 до t ), находим ln (I /I 0) = Rt / L , или

где =L / R - постоянная, называемаявременем релаксации. Из (127.2) следует, что  есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше  и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, или

Введя новую переменную преобразуем это уравнение к виду

где  - время релаксации.

В момент замыкания (t =0) сила тока I = 0 и u = –. Следовательно, интегрируя по и (от – до IR ) и t (от 0 до t ), находим ln[(IR )]/–= - t / , или

где - установившийся ток (при t ).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I = 0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации = L / R , что и убывание тока. Установление тока происходит тем быстрее, чем меньше индук­тивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R 0 до R . Предположим, что мы размыкаем контур, когда в нем течет установившийся ток . При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение дляI 0 и , получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопротивления цепи (R / R 0 >>1), обладающей боль­шой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникнове­ние значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

43. Явление взаимной индукции. Трансформатор.

Рассмотрим два неподвижных контура (1 и 2), которые расположены достаточно близко друг от друга (рис. 1). Если в контуре 1 протекает ток I 1 , то магнитный поток, который создавается этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), прямо пропорционален I 1 . Обозначим через Ф 21 часть потока,пронизывающая контур 2. Тогда (1) где L 21 - коэффициент пропорциональности.

Рис.1

Если ток I 1 меняет свое значение, то в контуре 2 индуцируется э.д.с. ξ i2 , которая по закону Фарадея будет равна и противоположна по знаку скорости изменения магнитного потока Ф 21 , который создается током в первом контуре и пронизыващет второй: Аналогичным образом, при протекании в контуре 2 тока I 2 магнитный поток (его поле изображено на рис. 1 штрихами) пронизывает первый контур. Если Ф 12 - часть этого потока, который пронизывает контур 1, то Если ток I 2 меняет свое значение, то в контуре 1 индуцируется э.д.с. ξ i1 , которая равна и противоположна по знаку скорости изменения магнитного потока Ф 12 , который создается током во втором контуре и пронизывает первый: Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией . Коэффициенты пропорциональности L 21 и L 12 называются взаимной индуктивностью контуров . Расчеты, которые подтверждены опытом, показывают, что L 21 и L 12 равны друг другу, т. е. (2) Коэффициенты пропорциональности L 12 и L 21 зависят от размеров, геометрической формы, взаимного расположения контуров и от магнитной проницаемости среды, окружающей контуры. Единица взаимной индуктивности та же, что и для индуктивности, - генри (Гн). Найдем взаимную индуктивность двух катушек, которые намотаны на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 2). Магнитная индукция поля, которое создавается первой катушкой с числом витков N 1 , током I 1 и магнитной проницаемостью μ сердечника, B = μμ 0 (N 1 I 1 /l ) где l - длина сердечника по средней линии. Магнитный поток сквозь один виток второй катушки Ф 2 = BS = μμ 0 (N 1 I 1 /l )S

Значит, полный магнитный поток (потокосцепление) сквозь вторичную обмотку, которая содержит N 2 витков, Поток Ψ создается током I 1 , поэтому, используя (1), найдем (3) Если рассчитать магнитный поток, который создавается катушкой 2 сквозь катушку 1, то для L 12 получим выражение в соответствии с формулой (3). Значит, взаимная индуктивность двух катушек, которые намотаны на общий тороидальный сердечник,

Трансформа́тор (от лат. transformo - преобразовывать) - это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредствомэлектромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока

Применим теперь к рассмотренной системе закон сохранения энергии. Пусть - изменение магнитного потока при небольшом перемещении проводника за время . Совершенная работа равна . За счет какого источника совершается эта работа? В окружающем пространстве ничего не изменилось. Единственная доступная энергия черпается из источника тока. Если его ЭДС равна то за время источник израсходует энергию . Эта энергия тратится на выделение тепла на сопротивлении R и на работу по перемещению проводника

Разделив обе части на и перенося слагаемое с потоком в левую часть равенства, получаем

В этом уравнении нетрудно узнать закон Ома: в правой части стоит падение напряжения на сопротивлении, а в левой должна стоять сумма всех действующих в цепи ЭДС. Поэтому уравнение можно переписать в виде

Это соотношение есть математическая запись закона электромагнитной индукции Фарадея (рис. 8.7).

Рис. 8.7. Магнитный поток через замкнутый контур

В чем же физическая причина возникновения ЭДС индукции в данном случае? Рассмотрим почти такую же систему, но без источника тока и без замкнутой цепи. Пусть отрезок проводника длиной l движется со скоростью v перпендикулярно вектору магнитной индукции В (рис. 8.8).

Рис. 8.8. Возникновение на концах проводника, движущегося в магнитном поле,
разности потенциалов, равной ЭДС электромагнитной индукции

Магнитное поле однородно и линии магнитной индукции перпендикулярны чертежу и направлены от нас. На свободные электроны в проводнике действует сила Лоренца (направление которой определяется правилом буравчика)

где е - заряд электрона. Под влиянием силы Лоренца произойдет перемещение зарядов и на концах проводника возникнет некоторая разность потенциалов . Возникшее электрическое поле Е будет препятствовать передвижению зарядов, и их дальнейшее движение прекратится, когда сила со стороны индуцированного электрического поля будет равна по величине, но противоположна по направлению силе Лоренца.

Таким образом, получаем

Так как , то

Скорость проводника равна , а произведение есть площадь поверхности, заметаемая проводником за время . Получаем, следовательно,

Мы пришли к тому же результату, так как разность потенциалов на концах разомкнутого проводника равняется ЭДС индукции. (Напомним, что и для обычного источника тока разность потенциалов на его клеммах при разомкнутой цепи равна ЭДС.) Поскольку сила Лоренца, действующая на отрицательно заряженные электроны, направлена на рис. 8.3 вниз, на нижнем конце проводника скапливается избыток отрицательного заряда, а на верхнем - положительного. Следовательно, потенциал верхнего конца выше потенциала нижнего. Впрочем, о знаке ЭДС индукции мы поговорим особо.

Напомним, что ранее мы рассмотрели пример (п. 6.7), в котором речь шла о самолете, летящем в вертикальном магнитном поле. Нетрудно заметить, что проблема в том примере идентична только что рассмотренной задаче о движении проводника. И из преобразований Лоренца мы получили тогда в точности те же результаты, что и сейчас: сравните формулы (8.10) и (6.43). Таким образом, и закон сохранения энергии, и уравнение динамики заряда в магнитном поле, и даже релятивистские преобразования Лоренца для электромагнитного поля приводят к тому же закону Фарадея - в физике (как и вообще в мире) все взаимосвязано.

Выражение (8.8) для ЭДС электромагнитной индукции имеет очень общий вид: в него не вошли никакие конкретные характеристики движения: скорость проводника, его длина и т. п. Все определяется только скоростью изменения потока вектора магнитной индукции. При этом совершенно неважно, каким путем мы изменяем этот поток. Можно деформировать виток, перемещать его или просто увеличивать магнитную индукцию (рис 8.9, 8.10, 8.11, 8.12, 8.13). Именно последний вариант реализовался в опытах, которые мы обсуждали в начале этой главы. Механизм возникновения ЭДС индукции может бытьразным, но конечный результат будет описываться тем же уравнением (8.8), которое носит название закона Фарадея.

Рис. 8.9. Закон Фарадея

Рис. 8.10. Возникновение тока в контуре при перемещении провода в постоянном магнитном поле

Рис. 8.11. Возникновение тока в контуре при подключении батареи

Рис. 8.12. Яркое вспыхивание лампочки при размыкании ключа

Рис. 8.13. Возникновение переменного тока при вращении контура

Пример 1. В однородном магнитном поле с индукцией 0,4 Тл в плоскости, перпендикулярной линиям индукции поля, вращается стержень длиной 10 см. Ось вращения проходит через один из концов стержня. Определить разность потенциалов U на концах стержня при частоте вращения 16 .

Решение. За время стержень повернется на угол и заметет сектор площадью

Разность потенциалов равна скорости изменения потока магнитной индукции

Закон Фарадея применим не только к отдельному контуру или витку, но и к катушке, которую можно рассматривать как N витков, соединенных последовательно. В этом случае суммарная ЭДС будет в N раз больше, чем ЭДС отдельного витка, то есть

где величина

называется потокосцеплением или полным магнитным потоком ( измеряется в тех же единицах, что и , то есть в веберах ).

Пример 2. Магнитная индукция поля между полюсами магнита генератора равна 0,8 Тл. Ротор имеет 100 витков площадью 400 см 2 . Определить частоту вращения якоря, если максимальная ЭДС индукции равна = 200 В (рис. 8.14).

Рис. 8.14. Вращение контура в постоянном магнитном поле

Решение. Угол между магнитным полем и нормалью к плоскости витков изменяется по закону . Полный магнитный поток через обмотку ротора в момент времени t равен . Дифференцируямагнитный поток по времени, получаем

Максимальное значение синуса равно единице, следовательно, максимальное значение ЭДС индукции равно

ЭДС индукции возникает не только при перемещении замкнутого контура в магнитном поле или перемещении магнита относительно неподвижного контура. Пусть имеются две катушки с общим железным сердечником, служащим в качестве магнитопровода (рис. 8.15).

Рис. 8.15. Железный сердечник как магнитопровод между двумя катушками

При разомкнутой цепи магнитный поток в системе равен нулю. При замыкании ключа К через катушку 1 пойдет ток, который создаст магнитное поле, так что катушка 2 будет пронизываться магнитным потоком . Поэтому при замыкании ключа за время нарастания тока до стационарного значения поток через катушку 2, меняется на величину . Соответственно, в ней возникает ЭДС

где N - число витков в катушке 2, и идет индукционный ток, который зарегистрирует гальванометр G .

Когда возрастание тока в катушке 1 прекратится, поток магнитной индукции станет постоянным и ЭДС будет равна нулю. Ток в катушке 2 также перестанет идти, и стрелка гальванометра вернется в исходное положение. Такая же картина будет наблюдаться и при размыкании цепи катушки 1, только стрелка гальванометра отклонится в другую сторону, что свидетельствует об изменении направления тока в катушке 2.

Если через катушку 1 пропустить переменный ток, то по цепи катушки 2 пойдет переменный ток той же частоты. Этот принцип широко используется в трансформаторной технике.

Пусть контур имеет сопротивление R и пусть магнитный поток через него меняется по какому-то закону. Возникающая в контуре ЭДС электромагнитной индукции

вызывает в контуре ток

Заряд , протекший в контуре за время , связан с током

Интегрируя, получаем для заряда Q , протекшего по контуру при изменении потока следующее выражение

(мы используем модуль изменения потока, так как направление перетекания заряда нам сейчас не важно). Отсюда, кстати, вытекает связь единицы измерения магнитного потока с зарядом и сопротивлением

Пример 3. Проволочное кольцо радиусом 10 см лежит на столе. Какой заряд протечет по кольцу, если его повернуть с одной стороны на другую. Сопротивление кольца 3 Ом. Вертикальная составляющая индукции магнитного поля Земли равна 50 мкТл.

Решение. Начальный поток магнитной индукции через кольцо равен . После переворачивания кольца величина потока будет той же, но силовые линии входят теперь с другой стороны кольца: . Искомый заряд равен

В 1833 г. Э.X. Ленц (рис. 8.16) сформулировал правило (правило Ленца ):

Рис. 8.16. Э.Х. Ленц (1804–1865) - русский физик

Приведем пример использования правила Ленца (рис. 8.17, 8.18).

Рис. 8.17. Иллюстрация правила Ленца

Рис. 8.18. Иллюстрация правила Ленца

Рассматривая рис. 8.8, мы видели, что избыточный положительный заряд накапливался на верхнем конце проводника. Следовательно, в то короткое время, пока движение зарядов в проводнике не прекратилось, индукционный ток тек снизу вверх. По правилу буравчика (поворот ручки от направления тока к направлению поля), сила Ампера была направлена налево, препятствуя движению проводника направо. В опыте, когда постоянный магнит приближается к витку, индуцированный ток также создает противодействующее магнитное поле (рис. 8.19).

Рис. 8.19. При перемещении постоянного магнита в катушке возникает индукционный ток,
поле которого препятствует перемещению магнита

На рис. 8.20 показан опыт, иллюстрирующий правило Ленца. На концах коромысла, которое может вращаться вокруг вертикальной оси, укреплены два алюминиевых кольца: одно сплошное, а другое - с разрезом. при приближении к первому кольцу постоянного магнита оно отталкивается от него. а при удалении - притягивается, поскольку индукционные токи в соответствии с правилом Ленца препятствуют изменению магнитного потока, охватываемого кольцом. С разрезанным кольцом магнит не взаимодействует.

Рис. 8.20. Взаимодействие постоянного магнита с проводящим кольцом

На рис. 8.21 представлен опыт, в котором демонстрируется взаимодействие проводящего кольца и электромагнита. Кольцо, надетое на выступающий из обмотки конец вертикального сердечника, при включении тока в обмотке взлетает вверх. При горизонтальном расположении сердечника в соответствии с правилом Ленца при включении поля перемещается по сердечнику в сторону от обмотки, а при выключении - обратно к обмотке.

Рис. 8.21. Взаимодействие электромагнита с проводящим кольцом

Математически правило Ленца отображается знаком минус в уравнении (8.8) закона Фарадея. Обсудим подробнее эту связь. Здесь могут возникнуть трудности с определением знака потока вектора магнитной индукции. Когда мы имели дело с замкнутыми поверхностями в электростатике, положительное направление задавалось внешней нормалью. Когда незамкнутая поверхность «натянута» на контур с уже текущим током, направление тока задает положительное направление нормали по правилу буравчика. С этим мы познакомились уже при решении задач онахождении работы по деформированию контура. Но как быть в случае использования закона Фарадея, когда поверхность не замкнута, а направление тока нам не известно и мы только хотим его определить?

Рассмотрим рис. 8.22. На нем показан контур, пронизываемый силовыми линиями внешнего магнитного поля В .

Рис. 8.22. Иллюстрация применения правила Ленца:
изменение направления обхода контура не меняет знака ЭДС индукции в законе Фарадея

Выберем положительное направление обхода контура против часовой стрелки (верхний ряд). На рис. 8.22-1 магнитное поле постоянно. При данном выборе положительного направления обхода контура и остром угле между нормалью n к контуру и вектором магнитной индукции В магнитный поток через контур положителен . На рис. 8.22-2 магнитное поле увеличивается. Положительный поток через контур также растет, и потому Из закона Фарадея следует тогда, что ЭДС индукции и, следовательно, индукционный ток отрицательны. Это значит, что ток течет в обратном направлении по отношению к выбранному пути обхода контура, то есть по часовой стрелке.

Выберем теперь иное положительное направление обхода контура - по часовой стреле (рис. 8.22-3). Поток постоянного магнитного поля здесь отрицателен (угол между n и В тупой, и его косинус отрицателен). При увеличении поля абсолютная величина потока растет, но так как он отрицателен, то (, как показано на рис. 8.22-4). Из закона Фарадея следует тогда, что ЭДС и индукционный ток положительны. Это значит, что направление тока совпадаетс выбранным направлением обхода контура, то есть ток течет по часовой стрелке.

Мы показали, что направление индукционного тока не зависит от выбора положительного направления обхода контура. Так и должно быть, поскольку выбор направления обхода контура делаем мы и притом произвольно, а направление тока - физическая реальность, которая не может зависеть от нашего произвола. С аналогичной ситуацией мы сталкивались при изучении правил Кирхгофа.

Индукционные токи возникают не только в проволочных витках, но и в толще массивных проводников. В этом случае их называют вихревыми токами или токами Фуко . Из–за малого сопротивления проводников они могут достигать большой силы. По правилу Ленца вихревые токи также действуют против причины, их вызывающей. На этом основана идея электромагнитных демпферов, успокаивающих колеблющиеся части приборов (стрелки гальванометров и т. п.). На подвижной части прибора укрепляется металлическая полоска, находящаяся в поле сильного магнита. При движении системы токи Ж. Фуко (рис. 8.23) тормозят ее, но они отсутствуют при покоящейся стрелке и не препятствуют её остановке в нужном месте, согласно значению измеряемой величины (в отличие от сил трения).

Рис. 8.23. Леон Фуко (1819–1868) - французский физик и астроном

Итогом проведенных рассуждений может быть такая формулировка правила Ленца: индукционный ток всегда направлен так, чтобы препятствовать той причине, которая его породила. Вне зависимости от того, что это за причина.

Например, если проволочное кольцо падает в неоднородном магнитном поле под действием силы тяжести, то в нем течет индукционный ток. Соответственно на кольцо действует сила Ампера. Ничего не вычисляя, можно быть уверенным в том, что эта сила Ампера будет направлена вверх, чтобы - согласно правилу Ленца - мешать силе тяжести, которая является причиной падения кольца, что влечет за собой изменение магнитного потока, а это приводит к появлению индукционного тока, на который действует сила Ампера, тормозящая падение…

Ниже рассматриваются опыты, в которых изучаются свойства токов Фуко.

На рис. 8.24 показан опыт, демонстрирующий падение тел в неоднородном магнитном поле. Неоднородное магнитное поле тормозит движение проводящих предметов из-за токов Фуко, возникающих в проводниках при изменении магнитного потока через них. Демонстрируется беспрепятственное падение диэлектрического деревянного диска между полюсами сильного электромагнита и медленное падение медного и алюминиевого дисков в магнитном поле, напоминающее движение тел в среде с большой вязкостью.

Рис. 8.24. Падение тел в неоднородном магнитном поле

При падении сильного постоянного магнита внутри вертикальной проводящей трубки в ее стенках возникают токи Фуко, тормозящие это падение. В опыте (рис. 8.25) демонстрируется свободное падение немагнитного алюминиевого цилиндра в разных трубках, а также маленького магнита в стеклянной трубке. Затем показывают замедление падения этого магнита в алюминиевой трубке и его очень медленное падение в толстостенной медной трубке.

Рис. 8.25. Падение магнита в трубках

На рис. 8.26 показано демпфирование колебаний маятника. Толстая сплошная медная пластина, прикрепленная на конце физического маятника, движется при его колебаниях между полюсами сильного электромагнита. Слабо затухающие колебания маятника после включения магнитного поля начинают быстро затухать, превращаясь практически в апериодические колебания. Если на конце маятника закрепить медную пластинку, разрезанную в виде гребенки, то сильное затухание колебаний маятника исчезает, поскольку токи Фуко уже не могут замыкаться в объеме проводника.

Рис. 8.26. Демпфирование колебаний маятника

В опыте на рис. 8.27 показана левитация сплошного проводящего кольца. Токи Фуко могут возникать не только в проводниках при их перемещении в неоднородном магнитном поле, но и при быстром изменении этого поля. сплошное кольцо из алюминия, надетое на вертикальный сердечник электромагнита, питаемого переменным током частотой 50 Гц, висит в воздухе. в то время как такое же, но разрезанное кольцо свободно падает на обмотку.

Рис. 8.27. Левитация сплошного проводящего кольца

На рис. 8.28 показано взаимодействие проводника и электромагнита. Толстый медный диск укреплен в подшипниках на оси с ручкой. Вблизи него на такой же оси закреплен электромагнит. Если вращать за ручку включенный электромагнит, то диск начинает вращаться в ту же сторону. Если же, наоборот, вращать за ручку диск вблизи электромагнита, то последний также начинает вращаться. Силы взаимодействия диска и электромагнита, похожие по характеру на силы вязкого трения, обусловлены возникновением токов Фуко в диске.

Рис. 8.28. Взаимодействие проводника и электромагнита

При перемещении сверхпроводника в магнитном поле возникающие в нем незатухающие токи Фуко не позволяют проникать вешнему полю внутрь него. Получается как бы зеркальное отражение магнита, отталкивающее его от сверхпроводника. На рис. 8.29 демонстрируется левитация маленького магнита над большой шайбой из высокотемпературного сверхпроводника (ВТСП-керамики), охлажденной до температуры жидкого азота (77 К), то есть ниже критической температуры перехода ВТСП-керамики в сверхпроводящее состояние.

Рис. 8.29. Левитация маленького магнита над большой шайбой из высокотемпературного сверхпроводника (ВТСП-керамики)

Тепловое действие токов Фуко используется в индукционных печах при плавке металла или приготовлении пищи. Такая печь, в сущности, является большой катушкой, питаемой высокочастотным током большой силы. Катушка создает переменный магнитный поток через помещенный в печь образец, а возникающие токи Фуко разогревают последний.

На рис. 8.30 демонстрируется тепловое действие токов Фуко. Алюминиевое кольцо надевают на сердечник электромагнита, питаемого переменным током частотой 50 Гц, и некоторое время удерживают плоскогубцами в переменном магнитном поле. Затем кольцо опускают в воду, и она закипает, показывая, что кольцо разогрелось индукционными токами до высокой температуры.

Рис. 8.30. Тепловое действие токов Фуко

Рассмотрим, также как и при выводе выражения для работы перемещения контура, плоский контур, содержащий источник ЭДС, одна сторона у которого подвижна (см. рис. 2).

Источник с ЭДС равной создает в контуре ток , развивая при этом мощность, равную . Эта мощность переходит в тепло, согласно закону Джоуля-Ленца ‑ . На основании закона сохранения энергии запишем:

Возбудим теперь однородное магнитное поле, направленное от нас за чертеж. Вектор совпадает с положительной нормалью к контуру , поэтому магнитный поток положителен. Согласно закону Ампера, каждый элемент контура будет испытывать силу со стороны магнитного поля. Подвижная сторона контура будет испытывать результирующую силу . Позволим теперь подвижной стороне перемещаться под действием этой силы вправо с постоянной скоростью .

При этом, поскольку существует явление электромагнитной индукции (ведь у нас меняется магнитный поток через замкнутый контур), ток в контуре изменится, и станет . Соответственно изменится и результирующая сила, действующая на подвижную сторону. Она станет .

Эта сила за время совершит работу , равную:

Но согласно закону Ампера, эта сила равна:

Следовательно, выражение для работы примет вид:

т.е. ранее полученный результат.

Как и в случае неподвижных элементов контура, источником работы является источник тока, источник ЭДС.

В случае неподвижных элементов контура, вся работа, совершаемая источником ЭДС, превращается в тепло.

В случае движущейся стороны, ленц-джоулево тепло будет также выделяться, но другое, поскольку . И, кроме того, будет совершена еще и механическая работа , выражение для которой мы определили выше.

Согласно закону сохранения энергии, теперь мы должны записать:

Отсюда получим:

Сравнивая получившееся выражение с законом Ома для полной цепи ‑ , приходим к выводу, что результирующая ЭДС, действующая в контуре, равна:

Таким образом, мы получаем, что ЭДС индукции равна:

где знак «‑» отражает правило Ленца.

Электронный механизм возникновения ЭДС индукции

Опять рассмотрим вышеприведенный контур, изображенный на рис. 3. Но теперь будем полагать, что источника нет. Т.е. существует контур с подвижной стороной в магнитном поле (см. рис. 3).

В отличие от предыдущего случая, будем перемещать подвижную сторону с некоторой скоростью . При этом на заряды внутри подвижной стороны (ведь это проводник и в нем существуют подвижные заряды), будет действовать сила Лоренца, направленная вдоль проводника:

Сравнивая это выражение с выражением для силы, действующей на заряд, помещенный в электрическое поле напряженностью ‑ , приходим к выводу, что действие этой силы Лоренца эквивалентно действию электрического поля с напряженностью



Это поле не электростатического происхождения, поэтому его циркуляция по замкнутому контуру отлична от нуля и даст величину ЭДС индукции:

Т.е., с точностью до знака получили тот же самый результат.

Остановимся на некоторых моментах.

1. Выше мы говорили, что действие силы Лоренца эквивалентно действию электрического поля.

Это не просто поверхностная аналогия. Это заключение имеет глубокий физический смысл.

В самом деле, перейдем в систему отсчета, связанную с движущимся проводником. Тогда мы скажем, что силы Лоренца нет, поскольку заряды в этой системе отсчета покоятся. Но в то же время существует электрическое поле, под действием которого заряды движутся.

При этом мы должны будем признать, что это электрическое поле обусловлено движущимся магнитным полем (ведь в этой системе отсчета магнитное поле движется).

Таким образом, уже сейчас мы приходим к выводу, что изменяющееся магнитное поле порождает электрическое поле. Т.е приходим к представлению о взаимосвязи полей и и о их неразрывном единстве.

2. Ранее мы подчеркивали и говорили о том, что сила Лоренца работы не производит.

В то же время здесь мы считаем ЭДС индукции, которая является мерой работы, исходя из выражения для силы Лоренца. В чем же дело?

Дело в том, что в расчетах мы брали не всю силу Лоренца, а только продольную (вдоль движущейся стороны) составляющую силы: . В действительности, поскольку заряды движутся вдоль проводника со скоростью упорядоченного движения (электрический ток), существует еще поперечная составляющая силы Лоренца (которая не сказывается на ЭДС, см. рис. 4). Следовательно, полная сила Лоренца будет равна:

Выражение для работы этой силы можно представить как:

Второе слагаемое взято со знаком минус, поскольку сила направлена против скорости, против перемещения. Подставив выражения для сил и в выражение для работы , получим.

В материале разберемся в понятии ЭДС индукции в ситуациях ее возникновения. Также рассмотрим индуктивность в качестве ключевого параметра возникновения магнитного потока при появлении электрического поля в проводнике.

Электромагнитная индукция представляет собой генерирование электрического тока магнитными полями, которые изменяются во времени. Благодаря открытиям Фарадея и Ленца закономерности были сформулированы в законы, что ввело симметрию в понимание электромагнитных потоков. Теория Максвелла собрала воедино знания об электрическом токе и магнитных потоках. Благодаря открытия Герца человечество узнало о телекоммуникациях.

Магнитный поток

Вокруг проводника с электротоком появляется электромагнитное поле, однако параллельно возникает также обратное явление – электромагнитная индукция. Рассмотрим магнитный поток на примере: если рамку из проводника поместить в электрическое поле с индукцией и перемещать ее сверху вниз по магнитным силовым линиям или вправо-влево перпендикулярно им, тогда магнитный поток, проходящий через рамку, будет постоянной величиной.

При вращении рамки вокруг своей оси, тогда через некоторое время магнитный поток изменится на определенную величину. В результате в рамке возникает ЭДС индукции и появится электрический ток, который называется индукционным.

ЭДС индукции

Разберемся детально, что такое понятие ЭДС индукции. При помещении в магнитное поле проводника и его движении с пересечением силовых линий поля, в проводнике появляется электродвижущая сила под названием ЭДС индукции. Также она возникает, если проводник остается в неподвижном состоянии, а магнитное поле перемещается и пересекается с проводником силовыми линиями.

Когда проводник, где происходит возникновение ЭДС, замыкается на вешнюю цепь, благодаря наличию данной ЭДС по цепи начинает протекать индукционный ток. Электромагнитная индукция предполагает явление индуктирования ЭДС в проводнике в момент его пересечения силовыми линиями магнитного поля.

Электромагнитная индукция являет собой обратный процесс трансформации механической энергии в электроток. Данное понятие и его закономерности широко используются в электротехнике, большинство электромашин основывается на данном явлении.

Законы Фарадея и Ленца

Законы Фарадея и Ленца отображают закономерности возникновения электромагнитной индукции.

Фарадей выявил, что магнитные эффекты появляются в результате изменения магнитного потока во времени. В момент пересечения проводника переменным магнитным током, в нем возникает электродвижущая сила, которая приводит к возникновению электрического тока. Генерировать ток может как постоянный магнит, так и электромагнит.

Ученый определил, что интенсивность тока возрастает при быстром изменении количества силовых линий, которые пересекают контур. То есть ЭДС электромагнитной индукции пребывает в прямой зависимости от скорости магнитного потока.

Согласно закону Фарадея, формулы ЭДС индукции определяются следующим образом:

Знак «минус» указывает на взаимосвязь между полярностью индуцированной ЭДС, направлением потока и изменяющейся скоростью.

Согласно закону Ленца, можно охарактеризовать электродвижущую силу в зависимости от ее направленности. Любое изменение магнитного потока в катушке приводит к появлению ЭДС индукции, причем при быстром изменении наблюдается возрастающая ЭДС.

Если катушка, где есть ЭДС индукции, имеет замыкание на внешнюю цепь, тогда по ней течет индукционный ток, вследствие чего вокруг проводника появляется магнитное поле и катушка приобретает свойства соленоида. В результате вокруг катушки формируется свое магнитное поле.

Э.Х. Ленц установил закономерность, согласно которой определяется направление индукционного тока в катушке и ЭДС индукции. Закон гласит, что ЭДС индукции в катушке при изменении магнитного потока формирует в катушке ток направления, при котором данный магнитный поток катушки дает возможность избежать изменения постороннего магнитного потока.

Закон Ленца применяется для всех ситуаций индуктирования электротока в проводниках, вне зависимости от их конфигурации и метода изменения внешнего магнитного поля.

Движение провода в магнитном поле

Значение индуктированной ЭДС определяется в зависимости от длины проводника, пересекаемого силовыми линиями поля. При большем количестве силовых линий возрастает величина индуктируемой ЭДС. При увеличении магнитного поля и индукции, большее значение ЭДС возникает в проводнике. Таким образом, значение ЭДС индукции в движущемся в магнитном поле проводнике находится в прямой зависимости от индукции магнитного поля, длины проводника и скорости его движения.

Данная зависимость отражена в формуле Е = Blv, где Е - ЭДС индукции; В - значение магнитной индукции; I - длина проводника; v -скорость его перемещения.

Отметим, что в проводнике, который движется в магнитном поле, ЭДС индукции появляется, только когда он пересекает силовые линии магнитного поля. Если проводник движется по силовым линиям, тогда ЭДС не индуктируется. По этой причине формула применяется только в случаях, когда движением проводника направлено перпендикулярно силовым линиям.

Направление индуктированной ЭДС и электротока в проводнике определяется направлением движения самого проводника. Для выявления направления разработано правило правой руки. Если держать ладонь правой руки таким образом, чтобы в ее направлении входили силовые линии поля, а большой палец указывает направление движения проводника, тогда остальные четыре пальца показывают направление индуктированной ЭДС и направление электротока в проводнике.

Вращающаяся катушка

Функционирование генератора электротока основывается на вращении катушки в магнитном потоке, где имеется определенное количество витков. ЭДС индуцируется в электрической цепи всегда при пересечении ее магнитным потоком, на основании формулы магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на площадь поверхности, через которую проходит магнитный поток, и косинус угла, сформированный вектором направления и перпендикулярной плоскости линии).

Согласно формуле, на Ф воздействуют изменения в ситуациях:

  • при изменении магнитного потока меняется вектор направления;
  • изменяется площадь, заключенная в контур;
  • меняется угол.

Допускается индуцирование ЭДС при неподвижном магните или неизменном токе, а просто при вращении катушки вокруг своей оси в пределах магнитного поля. В данном случае магнитный поток изменяется при смене значения угла. Катушка в процессе вращения пересекает силовые линии магнитного потока, в итоге появляется ЭДС. При равномерном вращении возникает периодическое изменение магнитного потока. Также число силовых линий, которые пересекаются ежесекундно, становится равным значениям через равные временные промежутки.

На практике в генераторах переменного электротока катушка остается в неподвижном состоянии, а электромагнит выполняет вращения вокруг нее.

ЭДС самоиндукции

При прохождении через катушку переменного электротока генерируется переменное магнитное поле, которое характеризуется меняющимся магнитным потоком, индуцирующим ЭДС. Данное явление называется самоиндукцией.

В силу того, что магнитный поток пропорционален интенсивности электротока, тогда формула ЭДС самоиндукции выглядит таким образом:

Ф = L x I, где L – индуктивность, которая измеряется в Гн. Ее величина определяется числом витков на единицу длины и величиной их поперечного сечения.

Взаимоиндукция

При расположении двух катушек рядом в них наблюдается ЭДС взаимоиндукции, которая определяется конфигурацией двух схем и их взаимной ориентацией. При возрастании разделения цепей значение взаимоиндуктивности уменьшается, поскольку наблюдается уменьшение общего для двух катушек магнитного потока.

Рассмотрим детально процесс возникновения взаимоиндукции. Есть две катушки, по проводу одной с N1 витков течет ток I1, которым создается магнитный поток и идет через вторую катушку с N2 числом витков.

Значение взаимоиндуктивности второй катушки в отношении первой:

М21 = (N2 x F21)/I1.

Значение магнитного потока:

Ф21 = (М21/N2) x I1.

Индуцированная ЭДС вычисляется по формуле:

Е2 = - N2 x dФ21/dt = - M21x dI1/dt.

В первой катушке значение индуцируемой ЭДС:

Е1 = - M12 x dI2/dt.

Важно отметить, что электродвижущая сила, спровоцированная взаимоиндукцией в одной из катушек, в любом случае прямо пропорциональна изменению электрического тока в другой катушке.

Тогда взаимоиндуктивность считается равной:

М12 = М21 = М.

Вследствие этого, E1 = - M x dI2/dt и E2 = M x dI1/dt. М = К √ (L1 x L2), где К является коэффициентом связи между двумя значениями инжуктивности.

Взаимоиндукция широко используется в трансформаторах, которые дают возможность менять значения переменного электротока. Прибор представляет собой пару катушек, которые намотаны на общий сердечник. Ток в первой катушке формирует изменяющийся магнитный поток в магнитопроводе и ток во второй катушке. При меньшем числе витков в первой катушке, чем во второй, возрастает напряжение, и соответственно при большем количестве витков в первой обмотке напряжение снижается.

Помимо генерирования и трансформации электрической энергии, явление магнитной индукции используется в прочих приборах. К примеру, в магнитных левитационных поездах, движущихся без непосредственного контакта с током в рельсах, а на пару сантиметров выше по причине электромагнитного отталкивания.

Возникновение в проводнике ЭДС индукции

Если поместить в проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет , называемая ЭДС индукции .

ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями.

Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет ток, называемый индукционным током.

Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией .

Электромагнитная индукция - это обратный процесс, т. е. превращение механической энергии в электрическую.

Явление электромагнитной индукции нашло широчайшее применение в . На использовании его основано устройство различных электрических машин.

Величина и направление ЭДС индукции

Рассмотрим теперь, каковы будут величина и направление индуктированной в проводнике ЭДС.

Величина ЭДС индукции зависит от количества силовых линий поля, пересекающих проводник в единицу времени, т. е. от скорости движения проводника в поле.

Величина индуктированной ЭДС находится в прямой зависимости от скорости движения проводника в магнитном поле.

Величина индуктированной ЭДС зависит также и от длины той части проводника, которая пересекается силовыми линиями поля. Чем большая часть проводника пересекается силовыми линиями поля, тем большая ЭДС индуктируется в проводнике. И, наконец, чем сильнее магнитное поле, т. е. чем больше его индукция, тем большая ЭДС возникает в проводнике, пересекающем это поле.

Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.

Зависимость эта выражается формулой Е = Blv,

где Е - ЭДС индукции; В - магнитная индукция; I - длина проводника; v - скорость движения проводника.

Следует твердо помнить, что в проводнике, перемещающемся в магнитном поле, ЭДС индукции возникает только в том случае, если этот проводник пересекается магнитными силовыми линиями поля. Если же проводник перемещается вдоль силовых линий поля, т. е. не пересекает, а как бы скользит по ним, то никакой ЭДС в нем не индуктируется. Поэтому приведенная выше формула справедлива только в том случае, когда проводник перемещается перпендикулярно магнитным силовым линиям поля.

Направление индуктированной ЭДС (а также и тока в проводнике) зависит от того, в какую сторону движется проводник. Для определения направления индуктированной ЭДС существует правило правой руки.

Если держать ладонь правой руки так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец указывал бы направление движения проводника, то вытянутые четыре пальца укажут направление действия индуктированной ЭДС и направление тока в проводнике.

Правило правой руки

ЭДС индукции в катушке

Мы уже говорили, что для создания в проводнике ЭДС индукции необходимо перемещать в магнитном поле или сам проводник, или магнитное поле. В том и другом случае проводник должен пересекаться магнитными силовыми линиями поля, иначе ЭДС индуктироваться не будет. Индуктированную ЭДС, а следовательно, и индукционный ток можно получить не только в прямолинейном проводнике, но и в проводнике, свитом в катушку.

При движении внутри постоянного магнита в ней индуктируется ЭДС за счет того, что магнитный поток магнита пересекает витки катушки, т. е. точно так же, как это было при движении прямолинейного проводника в поле магнита.

Если магнит опускать в катушку медленно, то возникающая в ней ЭДС будет настолько мала, что стрелка прибора может даже не отклониться. Если же, наоборот, магнит быстро ввести в катушку, то отклонение стрелки будет большим. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от скорости движения магнита, т. е. от того, насколько быстро силовые линии поля пересекают витки катушки. Если теперь поочередно вводить в катушку с одинаковой скоростью сначала сильный магнит, а затем слабый, то можно заметить, что при сильном магните стрелка прибора будет отклоняться на больший угол. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от величины магнитного потока магнита.

И, наконец, если вводить с одинаковой скоростью один и тот же магнит сначала в катушку с большим числом витков, а затем со значительно меньшим, то в первом случае стрелка прибора отклонится на больший угол, чем во втором. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от числа ее витков. Те же результаты можно получить, если вместо постоянного магнита применять электромагнит.

Направление ЭДС индукции в катушке зависит от направления перемещения магнита. О том, как определять направление ЭДС индукции, говорит закон, установленный Э. X. Ленцем.

Закон Ленца для электромагнитной индукции

Всякое изменение магнитного потока внутри катушки сопровождается возникновением в ней ЭДС индукции, причем чем быстрее изменяется магнитный поток, пронизывающий катушку, тем большая ЭДС в ней индуктируется.

Если катушка, в которой создана ЭДС индукции, замкнута на внешнюю цепь, то по виткам ее идет индукционный ток, создающий вокруг проводника магнитное поле, в силу чего катушка превращается в соленоид. Получается таким образом, что изменяющееся внешнее магнитное поле вызывает в катушке индукционный ток, которой, в свою очередь, создает вокруг катушки свое магнитное поле - поле тока.

Изучая это явление, Э. X. Ленц установил закон, определяющий направление индукционного тока в катушке, а следовательно, и направление ЭДС индукции. ЭДС индукции, возникающая в катушке при изменении в ней магнитного потока, создает в катушке ток такого направления, при котором магнитный поток катушки, созданный этим током, препятствует изменению постороннего магнитного потока.

Закон Ленца справедлив для всех случаев индуктирования тока в проводниках, независимо от формы проводников и от того, каким способом достигается изменение внешнего магнитного поля.


При движении постоянного магнита относительно проволочной катушки, присоединенной к клеммам гальванометра, или при движении катушки относительно магнита возникает индукционный ток.

Индукционные токи в массивных проводниках

Изменяющийся магнитный поток способен индуктировать ЭДС не только в витках катушки, но и в массивных металлических проводниках. Пронизывая толщу массивного проводника, магнитный поток индуктирует в нем ЭДС, создающую индукционные токи. Эти так называемые распространяются по массивному проводнику и накоротко замыкаются в нем.

Сердечники трансформаторов, магнитопроводы различных электрических машин и аппаратов представляют собой как раз те массивные проводники, которые нагреваются возникающими в них индукционными токами. Явление это нежелательно, поэтому для уменьшения величины индукционных токов части электрических машин и сердечники трансформаторов делают не массивными, а состоящими из тонких листов, изолированных один от другого бумагой или слоем изоляционного лака. Благодаря этому преграждается путь распространения вихревых токов по массе проводника.

Но иногда на практике вихревые токи используются и как токи полезные. На использовании этих токов основана, например, работа , и так называемых магнитных успокоителей подвижных частей электроизмерительных приборов.



© dagexpo.ru, 2024
Стоматологический сайт