Цветовое зрение. Как мы видим и различаем цвета? Почему человек различает цвета

30.06.2020

1424 02.08.2019 5 мин.

Зрение – одно из важнейших чувств для восприятия окружающего мира. С помощью него мы видим объекты и предметы вокруг нас, можем оценить их размеры и форму. Если верить исследованиям, при помощи зрения мы получаем не менее 90% информации об окружающей реальности. За цветное зрение отвечает несколько зрительных компонентов, что позволяет более точно и правильно передавать изображение объектов в головной мозг для дальнейшей обработки информации. Существует несколько патологий нарушения передачи цветов, которые существенно ухудшают взаимодействие с миром и снижают качество жизни в целом.

Как устроен орган зрения?

Глаз представляет собой сложную оптическую систему, которая состоит из множества элементов, связанных между собой. Восприятие различных параметров окружающих объектов (величина, удалённость, форма и другие) обеспечивает периферическая часть зрительного анализатора, представленная глазным яблоком. Это орган шаровидной формы с тремя оболочками, который имеет два полюса – внутренний и внешний. Глазное яблоко размещено в защищенной с трех сторон костной впадине – глазнице или орбите, где окружено тонкой жировой прослойкой. Спереди находятся веки, необходимые для защиты слизистой оболочки органа и его очистки. Именно в их толще находятся железы, необходимые для постоянного увлажнения глаз и беспрепятственной работы смыкания и размыкания непосредственно век. Движение глазного яблока обеспечивают 6 разных по функциям мышц, что позволяет выполнять содружественные действия этого парного органа. Помимо этого глаз соединен с кровеносной системой разными по величине многочисленными кровеносными сосудами, а с нервной системой – несколькими нервными окончаниями. Принцип действия очков от дальтонизма описан в .

Особенность зрения в том, что мы не видим непосредственно объект, а лишь лучи, отражающиеся от него. Дальнейшая обработка информации происходит в головном мозге, точнее его затылочной части. Лучи света изначально поступают на роговицу, а затем переходят на хрусталик, стекловидное тело и сетчатку. За восприятие лучей света отвечает естественная линза человека – хрусталик, а за его восприятие ответственна светочувствительная оболочка – сетчатка. Она имеет сложное строение, в котором выделяют 10 различных слоев клеток. Среди них особенно важными являются колбочки и палочки, которые неравномерно распределены по всему слою. Именно колбочки являются необходимым элементом, который отвечает за цветовое зрение человека. Про дальтонизм у женщин можно узнать .

Наибольшая концентрация колбочек отмечается в центральной ямке – воспринимающей изображения области в желтом пятне. В ее пределах плотность колбочек достигает 147 тыс. на 1 мм 2 .

Цветовое восприятие

Человеческий глаз является самой сложной и совершенной зрительной системой среди всех млекопитающих. Он способен воспринимать более 150 тыс. различных цветов и их оттенков. Восприятие цвета возможно благодаря колбочкам – специализированным фоторецепторам, расположенным в желтом пятне. Вспомогательную роль выполняют палочки – клетки, отвечающие за сумеречное и ночное зрение. Воспринимать весь цветовой спектр возможно с помощью всего трех видов колбочек, каждый их которых восприимчив к определенному участку цветовой гаммы (зеленый, синий и красный) за счет содержания в них йодопсина. У человека с полноценным зрением имеется 6-7 млн. колбочек, а если их количество меньше или имеются патологии в их составе, возникают различные нарушения цветовосприятия.

Строение глаза

Зрение мужчины и женщин существенно отличается. Доказано, что женщины способы распознавать больше различных оттенков цветов, в то время как представители сильного пола обладают лучшей способностью распознавать движущиеся предметы и дольше удерживать концентрацию на конкретном объекте.

Отклонения цветового зрения

Аномалии цветового зрения – редкая группа офтальмологических нарушений, которая характеризуется искажением восприятия цветов. Практически всегда эти заболевания передаются по наследству по рецессивному типу. С физиологической точки зрения все люди являются трихроматами – для полного различения цвета используют три части спектра (синий, зеленый и красный), но при патологии нарушается пропорция цветов или какой-то из них полностью или частично выпадает. Дальтонизм является лишь частным случаем патологии, при котором наблюдается полная или частичная слепота к какому-либо цвету.

Выделяют три группы аномалий цветового зрения:

  • Дихроматизм или дихромазия. Патология заключается в том, что для получения любого цвета используются только два участка спектра. Существует , в зависимости от выпадающего участка цветовой палитры. Наиболее часто встречается дейтеранопия – невозможность воспринимать зеленый цвет;
  • Полная цветовая слепота. Встречается лишь у 0,01% всех людей. Существует две разновидности патологии: ахроматопсия (ахромазия), при которой полностью отсутствует пигмент в колбочках на сетчатке, а любые цвета воспринимаются как оттенки серого, и колбочковая монохромазия – разные цвета воспринимаются одинаково. Аномалия является генетической и связана с тем, что в составе цветовых фоторецепторов вместо йодопсина содержится родопсин;

Любые цветовые отклонения являются причиной множества ограничений, например, для вождения транспортных средств или службы в армии. В некоторых случаях аномалии цветовосприятия являются поводом получения инвалидности по зрению.

Определение и виды дальтонизма

Одна из самых частых патологий восприятия цвета, которая имеет генетическую природу или развивается на фоне . Существует полная (ахромазия) или частичная невозможность (дихромазия и монохромазия) воспринимать цвета, подробнее патологии описаны выше.

Традиционно выделяют несколько видов дальтонизма в форме дихромазии, в зависимости от выпадения участка цветового спектра.

  • Протанопия. Возникает цветовая слепота красного участка спектра, встречается у 1% мужчин и у менее 0,1% женщин;
  • Дейтеранопия. Из воспринимаемой гаммы цветов выпадает зеленый участок спектра, встречается чаще всего;
  • Тританопия. Невозможность различать оттенки цветов сине-фиолетовой гаммы, плюс к этому нередко наблюдается отсутствие сумеречного зрения из-за нарушений работы палочек.

Отдельно выделяют трихромазию. Это редкий вид дальтонизма, при котором человек различает все цвета, но из-за нарушения концентрации йодопсина происходит искажение цветовосприятия. Особенную сложность люди с этой аномалией испытывают при интерпретации оттенков. Кроме того, нередко наблюдается эффект гиперкомпенсации при этой патологии, например, при невозможности отличить зеленый и красный цвет возникает улучшенное различение оттенков цвета хаки. Узнайте также про сумеречное зрение по .

Виды дальтонизма

Аномалия носит имя Дж. Дальтона, который описал заболевание еще в 18 веке. Большой интерес к болезни связан с тем, что сам исследователь и его братья страдали от протанопии.

Тест на определение дальтонизма

В последние годы для определения аномалий цветовосприятия применяются , которые представляют собой изображения цифр и фигур, нанесенные на подобранный фон при помощи различных по диаметру кругов. Всего разработано 27 картинок, каждая из которых имеет определённую цель. Плюс к этому, в стимульном материале имеются специальные изображения для выявления симулирования заболевания, поскольку тест является важным при прохождении некоторых профессиональных медицинских комиссий и при постановке на воинский учет. Интерпретацию теста должен проводить только специалист, поскольку анализ результатов – довольно сложный и трудоемкий процесс. Тест на цветовую слепоту можно пройти в статье

Выводы

Зрение человека – сложный и многогранный процесс, за который отвечает множество элементов. Любые аномалии восприятия окружающего мира не только снижают качество жизни, но могут быть угрозой для жизни в некоторых ситуациях. Большинство зрительных патологий являются врожденными, поэтому при диагностировании у ребенка отклонения нужно не только пройти необходимое лечение и грамотно подобрать корректирующую оптику, но и научить его жить с этой проблемой.

Цвет - зрительное, субъективное восприятие человеком видимого света, различий в его спектральном составе, ощущаемых глазом. У людей цветовое зрение развито намного лучше, чем у других млекопитающих.

Свет действует на фоточувствительные рецепторы сетчатки глаза, и те, в свою очередь, вырабатывают сигнал, который передаётся в мозг. Ощущение цвета, как и всё многоступенчатое зрительное восприятие, сложным образом формируется в цепочке: глаз (экстерорецепторы и нейронные сети сетчатки) - зрительные области мозга.

При этом колбочки отвечают за восприятие цвета, палочки за сумеречное зрение.

Глаз реагирует на три первичных цвета: красный, зеленый и синий. Человеческий мозг, в свою очередь, воспринимает цвет как сочетание этих трех сигналов. Если в сетчатке глаза ослаблено или исчезает восприятие одного из трёх основных цветов, то человек не воспринимает какой-то цвет. Встречаются люди, которые, например, не могут отличить красный цвет от зелёного. Так, около семи процентов мужчин и около половины процента женщин страдают такими проблемами. Полная "цветовая слепота", при которой рецепторные клетки не работают вообще, встречается крайне редко. У некоторых людей проявляются трудности ночного видения, что объясняется слабой чувствительностью палочек - наиболее высокочувствительных рецепторов сумеречного зрения. Это может быть наследственным фактором или вследствие недостатка витамина А. Однако человек приспосабливается к "цветовым расстройствам", и их практически невозможно обнаружить без специального обследования. Человек с нормальным зрением различает до тысячи различных цветов.

Люди уверены, что их глазам доступны все краски окружающего мира. Но это большое заблуждение! Способность воспринимать цвета сильно различается как у животных, так и у человека. Даже самые привычные предметы могут оказаться небывалых расцветок в глазах других живых организмов. Мы собрали научные факты о цветовом зрении, которые вы наверняка не знали.

Цвет - лишь фантазия нашего мозга

С физической точки зрения, цвета не существует. Цветное зрение - это не что иное, как способность различать волновые спектры света. Все остальное - фантазия нашего мозга и особенности психологического восприятия. Глаз воспринимает цвет, а в мозге начинается процесс, отзывающийся в нервной системе. Зрительные рецепторы человека чувствительны к красному, зеленому и синему оттенкам. Если восприятие одного из трех основных спектров в сетчатке глаза будет ослаблено, то человек не сможет различать некоторые цвета. Встречаются люди, которые, например, не могут отличить красный цвет от зеленого.

Солнце - абсолютно черное тело

Человеческое зрение различает не только волновой спектр света, но и его температуру. Чем светлее объект, тем теплее его спектр излучения. При исследовании Солнца ученые выяснили, что оно является абсолютно черным космическим объектом, хотя и видится нам почти белым. Это явление объясняется тем, что наша звезда поглощает все окружающие световые лучи и ничего не отражает от своей поверхности.

По сравнению с птицами, люди - дальтоники

Солнце, небо и весь окружающий мир человека воспринимается другими живыми существами совсем иначе. Зрение кошек и собак ограничивается всего лишь двумя цветовыми спектрами - красным и синим. Морские обитатели смотрят на мир в красных тонах. Птицы же видят красно-зеленый и ультрафиолетово-зеленовато-красный оттенки, которые человеческий мозг не способен даже вообразить.

Мужчины и женщины видят мир в разных тонах

Человеческое восприятие цвета сильно различается даже внутри своего собственного вида. Так, мужчины и женщины серьезно расходятся во взглядах на мир. И это вовсе не фигура речи. По данным исследований, представители двух полов по-разному воспринимают одни и те же цвета. Мужчины более точны в деталях - они легче обнаруживают их, когда объект движется. Женщины же гораздо лучше различают оттенки. По словам специалистов, это свойство помогло нашим предкам стать хорошими охотниками и собирателями.

С возрастом окружающий мир желтеет

Видимый цветовой спектр человека не только уступает многим животным, но еще и сокращается с возрастом. С годами цветовосприятие нарушается - окружающий мир окрашивается в желтые тона. Это происходит из-за изменений оптических свойств склеры глаза, которая начинает хуже воспринимать синий цвет. Такое явление легко заметить, если посмотреть на картины художников, написанные в молодом и в пожилом возрасте. Первые будут наполнены светлыми тонами, а последние окажутся наполнены оттенками желтого и коричневого.

Цвет — одно из свойств объектов материального мира, воспринимаемое как зрительное ощущение. Зрительные ощущения возникают под действием на органы зрения света — электромагнитного излучения видимого диапазона спектра. Диапазон длины волны зрительных ощущений (цвета) находится в пределах 380-760 мкм. Физические свойства света тесно связаны со свойствами вызываемого ими ощущения: с изменением мощности света меняется яркость цвета излучателя или светлота цвета окрашенных поверхностей и сред. С изменением длины волны меняется цветность, которая идентична с понятием цвета, ее мы определяем словами «синий», «желтый», «красный», «оранжевый» и пр.

Характер ощущения цвета зависит как от суммарной реакции чувствительных к цвету рецепторов глаза человека, так и от соотношения реакций каждого из трех типов рецепторов. Суммарная реакция чувствительных к цвету рецепторов глаза определяет светлоту, а соотношение ее долей — цветность (цветовой тон и насыщенность). Характеристиками цвета являются цветовой тон, насыщенность и яркость или светлота.

А.С.Пушкин определил цвет как «очей очарованье», а ученый Шредингер — как «интервал излучений в световом диапазоне, который глаз воспринимает одинаково и определяет как цвет словами “красный”, “зеленый”, “синий” и т.д.».

Таким образом, глаз интегрирует (суммирует) определенный интервал световых излучений и воспринимает их как единое целое. Ширина этого интервала зависит от множества факторов, в первую очередь — от уровня адаптации глаза.

Цвет как феномен зрения и объект изучения

Цвет — деяние света,
деяние и страдательные состояния.

И.В.Гёте

Цвет сообщает вещам и явлениям форму, объем и эмоциональность при их восприятии. У большинства биологических видов световые рецепторы локализованы в области сетчатки глаза. Усложнение светового анализатора происходило по мере развития биологической линии. Высшее достижение природы — зрение человека.

С возникновением цивилизации роль цвета возросла. Искусственные источники света (излучатели с ограниченным спектром электромагнитного излучения энергии) и краски (чистый бесконечный цвет) можно рассматривать как искусственные средства синтеза цвета.

Человек всегда пытался овладеть способностью влиять на свое душевное состояние через цвет и использовать цвет для создания комфортной среды обитания, а также в различных изображениях. Первые способы применения цвета в ритуальной практике связаны с их символической функцией. Позже с помощью цветов стали отображать воспринимаемую реальность и визуализировать абстрактные понятия.

Наивысшим достижением в овладении цветом является изобразительное искусство, использующее экспрессивные, импрессивные и символические цвета.

Глаз и ухо человека воспринимают излучения по-разному

По гипотезе Юнга-Гельмгольца наши глаза обладают тремя независимыми светочувствительными рецепторами, реагирующими соответственно на красный, зеленый и синий цвета. Когда окрашенный свет попадает в глаз, эти рецепторы возбуждаются в соответствии с интенсивностью действующего на них цвета, содержащегося в наблюдаемом свете. Любая комбинация возбужденных рецепторов вызывает определенное цветовое ощущение. Области чувствительности трех этих рецепторов частично перекрываются. Поэтому одно и то же цветовое ощущение может быть вызвано различными комбинациями окрашенных световых излучений. Глаз человека постоянно суммирует раздражения, и конечным результатом восприятия оказывается суммарное действие. Необходимо также отметить, что человеку очень трудно, а иногда и невозможно определить, видит он источник света или объект, отражающий свет.

Если глаз можно считать совершенным сумматором, то ухо является совершенным анализатором и обладает фантастической способностью разлагать и анализировать колебания, образующие звук. Ухо музыканта без малейшего затруднения различает, на каком инструменте берется определенная нота, например на флейте или на фаготе. Каждый из этих инструментов имеет четко выраженный, свой тембр. Однако если звуки этих инструментов подвергнуть анализу с помощью соответствующего акустического устройства, то обнаружится, что комбинации обертонов, испускаемые этими инструментами, незначительно отличаются друг от друга. На основе только приборного анализа сложно безошибочно сказать, с каким инструментом мы имеем дело. На слух инструменты различаются безошибочно.

По своей чувствительности глаз и ухо значительно превосходят самые современные электронные устройства. При этом глаз сглаживает мозаичность структуры света, а ухо различает шорохи (вариации тона).

Если бы глаз был таким же анализатором, как и ухо, то, например, белая хризантема представлялась бы нам хаосом цветов, фантастической игрой всех цветов радуги. Объекты представали бы перед нами в различных оттенках (тембрах цвета). Зеленый бере т и зеленый лист, которые обычно кажутся нам одинакового зеленого цвета, были бы окрашенными в различные цвета. Дело в том, что глаз человека дает одно и то же ощущение зеленого цвета от различных комбинаций исходных окрашенных световых пучков. Гипотетический глаз, обладающий аналитической способностью, немедленно обнаружил бы эти различия. Но реальный глаз человека суммирует их, а одна и та же сумма может иметь множество различных слагаемых.

Известно, что белый свет состоит из целой гаммы цветов — спектров излучения. Мы называем его белым потому, что глаз человека не в состоянии разложить его на отдельные цвета.

Поэтому в первом приближении можно считать, что объект, например красная роза, имеет такую окраску потому, что отражает только красный цвет. Какой-то другой предмет, например зеленый лист, видится зеленым потому, что выделяет из белого света зеленый цвет и отражает только его. Однако на практике ощущение цвета связано не только с избирательным (селективным) отражением (пропусканием) объектом падающего или излучаемого света. Воспринимаемый цвет сильно зависит от цветового окружения объекта, а также от сущности и состояния воспринимающего.

Цвет можно только видеть

Когда человек не имеет отношения к видению, вещи выглядят в основном одними и теми же в то время, когда он смотрит на мир. С другой стороны, когда он научится видеть, ничто не будет выглядеть тем же самым все то время, что он видит эту вещь, хотя она остается той же самой.

Карлос Кастанеда

Цвета, являющиеся результатом действия физических световых стимулов, обычно видятся по-разному при различном составе стимула. Однако цвет зависит также от целого ряда других условий, таких как уровень адаптации глаза, структура и степень сложности поля зрения, состояние и индивидуальные особенности смотрящего. Количество возможных комбинаций из отдельных стимулов мозаичности излучений света значительно больше количества различных цветов, которое приблизительно оценивается в 10 млн.

Из этого следует, что любой воспринятый цвет может быть генерирован большим числом стимулов с различным спектральным составом. Это явление называется метамеризм цвета. Так, ощущение желтого цвета может быть получено под действием либо монохроматического излучения с длиной волны около 576 нм, либо сложного стимула. Сложный стимул может состоять из смеси излучения с длиной волны более 500 нм (цветная фотография, полиграфия) или из сочетания излучения с длиной волны, соответствующей зеленому либо красному цветам, при этом желтая часть спектра полностью отсутствует (телевидение, монитор компьютера).

Как человек видит цвет, или Гипотеза C (B+G) + Y (G+R)

Человечеством создано много гипотез и теорий о том, как человек видит свет и цвет, некоторые из которых были рассмотрены выше.

В этой статье сделана попытка на базе изложенных выше технологий цветоделения и печати, применяемых в полиграфии, дать объяснение цветовому зрению человека. В основе гипотезы лежит положение о том, что глаз человека не является источником излучения, а работает как окрашенная поверхность, освещаемая светом, и спектр света разделен на три зоны — синюю, зеленую и красную. Сделано допущение, что в глазу человека имеется множество приемников света одного типа, из которых состоит мозаичная поверхность глаза, воспринимающая свет. Принципиальная структура одного из приемников показана на рисунке.

Приемник состоит из двух частей, работающих как единое целое. Каждая из частей содержит пару рецепторов: синий и зеленый; зеленый и красный. Первая пара рецепторов (синий и зеленый) завернута в пленку голубого цвета, а вторая (зеленый и красный) — в пленку желтого цвета. Эти пленки работают как светофильтры.

Рецепторы связаны между собой проводниками световой энергии. На первом уровне синий рецептор связан с красным, синий — с зеленым, а зеленый — с красным. На втором уровне эти три пары рецепторов связаны в одной точке («соединение звездой», как при трехфазном токе).

Схема работает по следующим принципам:

Голубой светофильтр пропускает синие и зеленые лучи света и поглощает красные;

Желтый светофильтр пропускает зеленые и красные лучи и поглощает синие;

Рецепторы реагируют только на одну из трех зон спектра света — на синие, зеленые или красные лучи;

На зеленые лучи реагируют два рецептора, которые находятся за голубым и желтым светофильтрами, поэтому чувствительность глаза в зеленой зоне спектра выше, чем в синей и красной (это соответствует экспериментальным данным о чувствительности глаза;

В зависимости от интенсивности падающего света в каждой из трех связанных между собой пар рецепторов возникнет энергетический потенциал, который может быть положительным, отрицательным или нулевым. При положительном или отрицательном потенциале пара рецепторов передает информацию об оттенке цвета, в котором преобладает излучение одной из двух зон. Когда энергетический потенциал создан только за счет световой энергии одного из рецепторов, то должен воспроизводиться один из однозональных цветов — синий, зеленый или красный. Нулевой потенциал соответствует равным долям излучений каждой из двух зон, что дает на выходе один из двухзональных цветов: желтый, пурпурный или голубой. Если все три пары рецепторов имеют нулевой потенциал, то должен воспроизводиться один из уровней серого (от белого до черного) в зависимости от уровня адаптации;

Когда энергетические потенциалы в трех парах рецепторов разные, то в точке серого должен воспроизводиться цвет с преобладанием одного из шести цветов — синего, зеленого, красного, голубого, пурпурного или желтого. Но этот оттенок будет или разбеленным, или зачерненным, в зависимости от общего уровня световой энергии для всех трех рецепторов. Таким образом, воспроизведенный цвет будет всегда содержать ахроматическую составляющую (уровень серого). Этот уровень серого, усредненный для всех приемников глаза, и будет определять адаптацию (чувствительность) глаза к условиям восприятия;

Если в большинстве приемников глаза в течение долгого времени возникают небольшие энергетические потенциалы (соответствующие слабым оттенкам цвета или слабохроматическим цветам, близким к ахроматическим), то они будут выравниваться и дрейфовать к серому или к преобладающему памятному цвету. Исключением являются случаи, когда используется сравнительный эталон цвета или эти потенциалы соответствуют памятному цвету;

Нарушения в цвете фильтров, в чувствительности рецепторов или в проводимости цепей будут приводить к искажению восприятия световой энергии, а следовательно, к искажению воспринимаемого цвета;

Сильные энергетические потенциалы, возникающие при длительном воздействии световой энергии большой мощности, могут вызвать восприятие дополнительного цвета при переводе взгляда на серую поверхность. Дополнительные цвета: к желтому — синий, к пурпурному — зеленый, к голубому — красный и наоборот. Эти эффекты возникают вследствие того, что должно произойти быстрое выравнивание энергетического потенциала в одной из трех точек схемы.

Таким образом, при помощи простой энергетической схемы, включающей три разных рецептора, один из которых дублируется, и два пленочных светофильтра, можно моделировать восприятие любого оттенка окрашенного спектра света, который видит человек.

В данной модели восприятия цвета человеком учитывается только энергетическая составляющая спектра света и не принимаются в расчет индивидуальные особенности человека, его возраст, профессия, эмоциональное состояние и многие другие факторы, которые влияют на восприятие света.

Цвет без света

Открыла мне моя душа и научила прикасаться к тому, что не облеклось плотью и не кристаллизовалось. И позволила она уразуметь, что чувственное есть половина мысленного и то, что мы держим в руках, — часть вожделенного нами.

Дж. Х. Джебран

Цвет возникает в результате восприятия глазом светового электромагнитного излучения и преобразования информации об этом излучении человеческим мозгом. Хотя и считается, что электромагнитное световое излучение — единственный возбудитель ощущения цвета, но цвет можно увидеть и без непосредственного воздействия света — цветовые ощущения свободно могут возникать в мозге человека. Пример — цветные сны или галлюцинации, вызванные воздействием на организм химических веществ. В абсолютно темном помещении мы видим перед глазами разноцветное мерцание, словно наше зрение вырабатывает в отсутствие внешних стимулов какие-то случайные сигналы.

Следовательно, как уже было замечено, цветовой стимул определен как адекватный стимул восприятия цвета или света, но он — не единственно возможный.

Обычного человека различает около 150 основных цветов , профессионала - до 10-15 тысяч цветов , при определенных условиях глаз человека отличает действительно несколько миллионов цветовых валентностей, так составляют таблицы для американских астронавтов. Цифры могут меняться с учетом тренировки, состояния человека, условий освещенности и других факторов.
Если верить источнику - «Биология в вопросах и ответах» - Цветовое пространство» нормального человека содержит примерно 7 млн. различных валентностей, включая небольшую категорию ахроматических и весьма обширный класс хроматических. Хроматические валентности поверхностной окраски объекта характеризуются тремя феноменологическими качествами: тоном, насыщенностью и светлотой. В случае светящихся цветовых стимулов «светлота» заменяется «яркостью». В идеале цветовые тона - это «чистые» цвета. Тон может быть смешан с ахроматической валентностью, что дает различные оттенки цвета. Насыщенность оттенка - это мера относительного содержания в нем хроматических и ахроматических компонентов, а светлота определяется положением ахроматического компонента на шкале серого.

Исследования показали, что на видимом участке спектра глаз человека способен различать при благоприятных условиях около 100 оттенков по цветовому фону. По всему спектру, дополненному чистыми пурпурными цветами, в условиях достаточной для цветоразличения яркости, число различаемых оттенков по цветовому тону достигает 150.

Эмпирически установлено, что глаз воспринимает не только семь основных цветов, но и огромное множество промежуточных оттенков цвета и цветов, полученных от смешения света разных длин волн. Всего насчитывается до 15000 цветовых тонов и оттенков.

Наблюдатель с нормальным цветовым зрением при сопоставлении различно окрашенных предметов или разных источников света может различать большое количество цветов. Натренированный наблюдатель различает по цветовым тонам около 150 цветов, по насыщенности около 25, по светлоте от 64 при высокой освещенности до 20 при пониженной.

По-видимому, разночтение справочных данных связано с тем, что восприятие цвета может частично меняться в зависимости от психофизиологического состояния наблюдателя, степени его тренированности, условий освещения и т. п.

Информация

Видимое излучение - электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра с длиной волны приблизительно от 380 до 740 нм. Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими длинами волн также называется видимым светом , или просто светом . Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой.

Глаз - сенсорный орган человека и животных, обладающий способностью воспринимать электромагнитное излучение в световом диапазоне длин волн и обеспечивающий функцию зрения. У человека через глаз поступает около 90 % информации из окружающего мира. Даже простейшие беспозвоночные животные обладают способностью к фототропизму благодаря своему, пусть крайне несовершенному, зрению.



© dagexpo.ru, 2024
Стоматологический сайт