Давление крови в различных участках кровеносного русла. Давление крови в сосудистом русле Изменение давления в сосудистом русле

20.07.2019

Кровяное давление и факторы, влияющие на его величину. Давление крови в разных отделах сосудистого русла.

Кровяное давление - это давление крови на стенки сосудов.

Артериальное давление - это давление крови в артериях.

На величину кровяного давления влияют несколько факторов.

1. Количество крови, поступающее в единицу времени в сосудистую систему.

2. Интенсивность оттока крови на периферию.

3. Ёмкость артериального отрезка сосудистого русла.

4. Упругое сопротивление стенок сосудистого русла.

5. Скорость поступления крови в период сердечной систолы.

6. Вязкость крови

7. Соотношение времени систолы и диастолы.

8. Частота сердечных сокращений.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, величина кровяного давления, в основном, определяется работой сердца и тонусом сосудов (главным образом, артериальных).

В аорте , куда кровь с силой выбрасывается из сердца, создается самое высокое давление (от 115 до 140 мм рт. ст.).

По мере удаления от сердца давление падает , так как энергия, создающая давление, расходуется на преодоление сопротивления току крови.

Чем выше сосудистое сопротивление, тем большая сила затрачивается на продвижение крови и тем больше степень падения давления на протяжении данного сосуда.

Так, в крупных и средних артериях давление падает всœего на 10%, достигая 90 мм рт.ст.; в артериолах оно составляет 55 мм, а в капиллярах – падает уже на 85%, достигая 25 мм.

В венозном отделœе сосудистой системы давление самое низкое.

В венулах оно равно 12, в венах – 5 и в полой вене – 3 мм рт.ст.

В малом круге кровообращения общее сопротивление току крови в 5-6 раз меньше , чем в большом круге . По этой причине давление в легочном стволе в 5-6 раз ниже , чем в аорте и составляет 20-30 мм рт.ст. При этом и в малом круге кровообращения наибольшее сопротивление току крови оказывают мельчайшие артерии перед своим разветвлением на капилляры.

Давление в артериях не является постоянным: оно непрерывно колеблется от некоторого среднего уровня.

Период этих колебаний различный и зависит от нескольких факторов.

1. Сокращения сердца , которые определяют самые частые волны, или волны первого порядка. Во время систолы желудочков приток крови в аорту и легочную артерию больше оттока , и давлением в них повышается.

В аорте оно составляет 110-125, а в крупных артериях конечностей 105-120 мм рт.ст.

Подъем давления в артериях в результате систолы характеризует систолическое или максимальное давление и отражает сердечный компонент артериального давления.

Во время диастолы поступление крови из желудочков в артерии прекращается и происходит только отток крови на периферию, растяжение стенок уменьшается и давление снижается до 60-80 мм рт.ст.

Спад давления во время диастолы характеризует диастолическое или минимальное давление и отражает сосудистый компонент артериального давления.

Для комплексной оценки, как сердечного, так и сосудистого компонентов артериального давления используют показатель пульсового давления.

Пульсовое давление - ϶ᴛᴏ разность между систолическим и диастолическим давлением, ĸᴏᴛᴏᴩᴏᴇ в среднем составляет 35-50 мм рт.ст.

Более постоянную величину в одной и той же артерии представляет среднее давление , ĸᴏᴛᴏᴩᴏᴇ выражает энергию непрерывного движения крови.

Так как продолжительность диастолического понижения давления больше, чем его систолического повышения, то среднее давление ближе к величинœе диастолического давления и вычисляется по формуле: СГД = ДД + ПД/3.

У здоровых людей оно составляет 80-95 мм рт.ст. и его изменение является одним из ранних признаков нарушения кровообращения.

2. Фаз дыхательного цикла , которые определяют волны второго порядка. Эти колебания менее частые, они охватывают несколько сердечных циклов и совпадают с дыхательными движениями (дыхательные волны): вдох сопровождается понижением кровяного давления , выдох повышением.

3. Тонуса сосудодвигательных центров , определяющие волны третьего порядка.

Это еще более медленные повышения и понижения давления, каждое из которых охватывает несколько дыхательных волн.

Колебания вызываются периодическим изменением тонуса сосудодвигательных центров, что чаще наблюдается при недостаточном снабжении мозга кислородом (при пониженном атмосферном давлении, после кровопотери, при отравлениях некоторыми ядами).

Кровяное давление и факторы, влияющие на его величину. Давление крови в разных отделах сосудистого русла. - понятие и виды. Классификация и особенности категории "Кровяное давление и факторы, влияющие на его величину. Давление крови в разных отделах сосудистого русла." 2017, 2018.

Значительное
число методов исследования деятельности
сердца и системы кровообращения в целом
основано на определении систолического
и диастолического давлений крови с
одновременным учетом частоты сердечных
сокращений.

СИСТОЛИЧЕСКОЕ
ДАВЛЕНИЕ – или
максимальное (СД) крови в норме колеблется
от 105 до 120 мм рт.ст. При выполнении
физической работы оно увеличивается
на 20-80 мм рт.ст. и зависит от ее тяжести,
после прекращения работы восстанавливается
в течение 2-3 мин. Более медленное
восстановление исходных значений СД
рассматривается как свидетельство
недостаточности сердечно-сосудистой
системы.

СД
изменяется с возрастом.
У пожилых людей оно повышается, причем
здесь существует и половая разница –
у мужчин оно несколько ниже, чем у женщин
того же возраста.

СД
зависит и от конституциональных
особенностей
человека: рост и вес имеют прямую
коррелятивную положительную связь с
СД.

У
новорожденных
максимальное давление крови равно 50 мм
рт.ст., а к концу 1го месяца жизни оно
возрастает уже до 80 мм рт.ст.

Возраст,
лет

Артериальное
давление (мм рт.ст.)

Частота
сердечных сокращений (пульса)

женщины

мужчины

Систолическое
давление и пульс несколько меняются в
течение суток, достигая наибольших
значений в 18-20 часов и наименьших – в
2-4 часа ночи (суточный биоритм).

ДИАСТОЛИЧЕСКОЕ
ДАВЛЕНИЕ (ДД) – 60-80
мм рт.ст. После физической нагрузки и
различного рода воздействия (эмоции)
оно обычно не
меняется
или несколько понижается (на 10 мм рт.ст.).
Резкое снижение уровня диастолического
давления во время работы или его повышение
и медленный (в течение времени, большего
2-3 минут) возврат к исходным значениям
расценивается как неблагоприятный
симптом, говорящий о недостаточности
сердечно-сосудистой системы.

ПУЛЬСОВОЕ
ДАВЛЕНИЕ (ПД)
– является весьма важным показателем,
по изменению которого можно косвенно
судить о нагнетательной способности
сердца. Оно составляет в норме 40-50 мм
рт.ст.

Среднее
артериальное давление (СредД)
служит важным показателем гемодинамики.
Введено это понятие И.М. Сеченовым как
среднее арифметическое значение между
СД и ДД. Этот показатель артериального
давления является более постоянным,
чем СД и ДД, и является выражением энергии
движения крови по сосудам. Относится к
физиологическим константам организма.
Все изменения СредД можно условно
разделить на кратковременные (острые)
и долгосрочные (хронические).

Длительное
повышение СД
в какой-либо части сосудистой системы
обозначается как гипертензия,
а во всей системе кровообращения (свыше
140 мм рт.ст.) – гипертония.

Наука,
изучающая движение крови в сосудах,
получила название гемодинамики. Она
является частью гидродинамики, изучающей
движение жидкостей.

Кровяное
давлениеСопротивлениеСкорость
кровотока

кровотоку

артериальное
венозное капиллярное линейная
объемная

(время
кругооборота)

систолическое
центральное


диастолическое
периферическое методы исследования

пульсовое
*красочный реография*

среднее
динамическое *радиоизотопный
термодилюция*

*фармакологический реоплетизмография*

методы
исследования: *оксигемография
метод Фика*

а)
аускультативный; *ультразвуковой


б)
пальпаторный.

где
– длина сосуда;

–вязкость
протекающей в нем жидкости;

–радиус
сосуда.

Поэтому
R суммарное всегда меньше в капиллярном
русле, чем в артериальном или венозном.
С другой стороны, вязкость крови тоже
величина не постоянная. Например, если
кровь протекает через сосуды диаметром
меньше 1 мм, вязкость крови уменьшается.
Чем меньше диаметр сосуда, тем меньше
вязкость протекающей крови. Это связано
с тем, что в крови наряду с эритроцитами
и другими форменными элементами крови
есть плазма.

Пристеночный слой представляет
собой плазму, вязкость которой намного
меньше вязкости цельной крови. Чем
тоньше сосуд, тем большую часть его
поперечного сечения занимает слой с
минимальной вязкостью, что уменьшает
общую величину вязкости крови. Кроме
этого, в норме открыта только часть
капиллярного русла, остальные капилляры
являются резервными и открываются по
мере усиления обмена веществ в тканях.

Сфигмограмма


Периферического
пульса состоит из крутого восходящего
колена – анакроты (1), соответствующего
систоле сердца, и более пологого
нисходящего колена – катакроты (2),
совпадающего с диастолой сердца (левого
желудочка). На катакроте имеется
дикротический зубец (3).

Анакрота
– тем круче, чем больше ударный объем
и значительнее сопротивление кровотоку
в прекапиллярной системе, чем больше
скорость изгнания крови из левого
желудочка.

Катакрота
– ее крутизна определяется тонусом
артериальной стенки и количеством
крови, покидающим артериальную систему
в период диастолы желудочков.

Дикротический
зубец
– при низком диастолическом давлении,
обусловленном снижением тонуса
периферических артерий, наблюдается
дикротический
пульс,
при котором дикротическая волна не
располагается на катакроте, а следует
как самостоятельная на основной пульсовой
волне.

При
нормальных условиях пульсовые колебания
полностью исчезают в капиллярах. Но в
крупных венах, расположенных около
сердца (в полых, яремных венах), пульсовые
колебания появляются снова – венный
пульс.

Венный пульс


Скорость
распространения пульсовой волны венного
пульса колеблется от 1 до 3 м/с, а величина
менее выражена, чем у артериального
пульса, так как давление в венах и их
эластичность меньше, чем в артериях.

Венный
пульс обусловлен
затруднением оттока крови из вен к
сердцу во время систолы предсердий и
желудочков. При сокращении этих отделов
сердца давление крови внутри вен
повышается и происходят колебания их
стенок.

Записывают
венный пульс на яремной вене. Кривая
его регистрации называется флебограммой.

Флебограмма

На
флебограмме различают 3 зубца:

    Зубец
    А
    – его появление совпадает с систолой
    предсердий. Возникает он в результате
    того, что в момент систолы закрываются
    просветы устья полых вен кольцевой
    мускулатурой, расположенной в устье
    вен, и отток крови из полых вен в правое
    предсердие временно прекращается. Это
    ведет к повышению давления в венах.
    Кроме того, считают, что возникновение
    зубца А является следствием возврата
    некоторого количества крови из правого
    предсердия в полые вены во время систолы.

    Зубец
    С
    – обусловлен толчком пульсирующей
    артерии, лежащей вблизи вены. Например,
    пульсация сонной артерии передается
    на яремные вены (совпадает с систолой
    левого желудочка).

    Зубец
    V
    – обусловлен тем, что к концу систолы
    желудочков предсердия наполнены кровью
    и дальнейшее поступление в них крови
    невозможно, происходят застой крови в
    венах и растяжение их стенок. После
    зубца V наблюдается западение кривой,
    совпадающее с диастолой желудочков и
    поступлением в них крови их предсердий.

Основные законы гемодинамики

в
сосудах

б)
пальпаторный.

–радиус
сосуда.

Распределение периферического сопротивления

Сопротивление
в аорте, больших артериях и относительно
длинных артериальных ответвлениях
составляет лишь 19% от общего сосудистого
сопротивления. На долю же конечных
артерий и артериол приходится почти
50% этого сопротивления. Т.о., почти
половина периферического сопротивления
приходится на сосуды длиной порядка
всего несколько мм. Это колоссальное
сопротивление связано с тем, что диаметр
концевых артерий и артериол относительно
мал, и это уменьшение просвета полностью
не компенсируется ростом числа
параллельных сосудов. Сопротивление в
капиллярном русле – 25%, в венозном русле
в венулах – 4%, во всех остальных венозных
сосудах – 2%.

Итак:
артериолы играют двоякую роль: участвуют
в поддержании периферического
сопротивления и через него в формировании
необходимого системного артериального
давления. С другой – за счет изменения
сопротивления обеспечивают перераспределение
крови в организме: в работающем органе
сопротивление артериол снижается,
приток крови к органу увеличивается,
но величина общего периферического
сопротивления остается постоянной за
счет сужения артериол других сосудистых
областей. Это обеспечивает стабильный
уровень артериального давления.

2%
— вены

4%
— венулы

19%
— аорта и большие артерии

25%
— капилляры

50%
— артериолы

Линейная
скорость кровотока
выражается в см/сек. Ее можно рассчитать,
зная количество крови, изгнанное сердцем
в минуту (объемная скорость кровотока)
и площадь сечения кровеносного сосуда.

Линейная
скорость, вычисленная по этой формуле,
есть средняя скорость. В действительности
же линейная скорость величина непостоянная,
так как отражает движение частиц крови
в центре потока вдоль сосудистой оси и
у сосудистой стенки (ламинарное движение
– слоистое: в центре движутся частицы
– форменные элементы, а у стенки – слой
плазмы). В центре сосуда скорость
максимальная, а у стенки сосуда она
минимальная в связи с тем, что здесь
особенно велико трение частиц крови о
стенку.

Изменение
линейной скорости тока крови в разных
частях сосудистой системы.

Самое
узкое место в сосудистой системе (имеется
в виду суммарный просвет сосудов) –
аорта;
её диаметр = 4 см2,
здесь самое минимальное периферическое
сопротивление и самая большая линейная
скорость: в
аорте – 50 см/сек.

По
мере расширения русла скорость снижается.
В артериолах
самое «неблагополучное» соотношение
длины и диаметра, поэтому здесь самое
большое сопротивление и наибольшее
падение скорости. Но за счет этого при
входе в капиллярное
русло
кровь имеет наименьшую скорость,
необходимую для обменных процессов –
0,3-0,5
мм/сек.
Этому способствует и фактор расширения
(максимального) сосудистого русла на
уровне капилляров (общая площадь их
сечения – 3200 см2).
Суммарный
просвет сосудистого русла является
определяющим фактором в формировании
скорости системного кровообращения.

Кровь,
оттекающая от органов, поступает через
венулы в вены. Происходит укрупнение
сосудов, параллельно суммарный просвет
сосудов уменьшается. Поэтому линейная
скорость кровотока в венах
опять увеличивается (по сравнению с
капиллярами). Линейная скорость – 10-15
см/сек,
а площадь поперечного сечения этой
части сосудистого русла – 6-8 см2.
В полых
венах
скорость кровотока – 20
см/сек.

Таким
образом:
в аорте создается наибольшая линейная
скорость движения артериальной крови
к тканям, где при минимальной линейной
скорости в микроциркуляторном русле
происходят все обменные процессы, после
чего по венам с увеличивающейся линейной
скоростью уже венозная кровь поступает
через «правое сердце» в малый круг
кровообращения, где происходят процессы
газообмена и оксигенации крови.

Методики исследования линейной и объемной скорости кровотока

В
связи с тем, что кровь выбрасывается
сердцем отдельными порциями,

    кровоток
    в артериях

    имеет пульсирующий характер. Поэтому
    линейная и объемная скорости непрерывно
    меняются: они максимальны в аорте и
    легочной артерии в момент систолы
    желудочков и уменьшаются во время
    диастолы.

    В
    капиллярах и венах

    кровоток постоянен, т.е. линейная
    скорость его постоянна. В превращении
    пульсирующего тока крови в постоянный
    имеют значение свойства артериальной
    стенки: в сердечно-сосудистой системе
    часть кинетической энергии, развиваемой
    сердцем во время систолы, затрачивается
    на растяжение аорты и отходящих от нее
    крупных артерий. В результате в этих
    сосудах образуется эластическая, или
    компрессионная, камера, в которую
    поступает значительный объем крови,
    растягивающий ее; при этом кинетическая
    энергия, развитая сердцем, переходит
    в энергию эластического напряжения
    артериальных стенок. Когда систола
    заканчивается, растянутые стенкиартерий
    стремятся спадаться и проталкивают
    кровь в капилляры, поддерживая кровоток
    во время диастолы.

1.
Ультразвуковой метод исследования –
к артерии на небольшом расстоянии друг
от друга прикладывают две маленькие
пьезоэлектрические пластинки, которые
способны преобразовывать механические
колебания в электрические и обратно.
На первую пластинку подают электрическое
напряжение высокой частоты. Оно
преобразуется в ультразвуковые колебания,
которые передаются с кровью на вторую
пластинку, воспринимаются ею и
преобразуются в высокочастотные
электрические колебания.

2.
Окклюзионная плетизмография (окклюзия
– закупорка, зажатие) – метод, позволяющий
определить объемную скорость регионарного
кровотока. Методика состоит в регистрации
изменений объема органа или части тела,
зависящих от их кровенаполнения, т.е.
от разности между притоком крови по
артериям и оттоком ее по венам. Во время
плетизмографии конечность или ее часть
помещают в герметически закрывающийся
сосуд, соединенный с манометром для
измерения малых колебаний давления.

При измерении кровенаполнения конечности
изменяется ее объем, что вызывает
увеличение или уменьшение давления
воздуха или воды в сосуде, в который
помещена конечность: давление
регистрируется манометром и записывается
в виде кривой – плетизмограммы. Для
определения объемной скорости кровотока
в конечности на несколько секунд сжимают
вены и прерывают венозный отток. Поскольку
приток крови по артериям продолжается,
а венозного оттока нет, увеличение
объема конечности соответствует
количеству притекающей крови.

Факторы, обеспечивающие величину кровяного давления

    Кровяное
    давление как основной показатель
    гемодинамики. Факторы, обусловливающие
    величину артериального и венозного
    давления. Методы исследования.

    Артериальный
    и венный пульс, их происхождение. Анализ
    сфигмограммы и флебограммы.

Кровяное
давление
– это давление, производимое кровью на
стенки кровеносных сосудов и полости
сердца – является основным показателем
гемодинамики.

Центральным
органом всей кровеносной системы
является сердце.


сосудам:
благодаря насосной деятельности сердца
создается давление крови, которое
способствует ее продвижению по сосудам:
во время систолы желудочков сердца
порции крови выбрасываются в аорту и
легочные артерии под определенным
давлением. Это приводит к увеличению
давления и растяжению эластических
стенок сосудистого бассейна.


фактор продвижения крови по артериальным
сосудам:
уровень КД от аорты к периферии постепенно
уменьшается: разность давлений, имеющаяся
в начале и в конце сосудистой системы,
Р1-Р2,
обеспечивает продвижение крови по
артериальным сосудам и способствует
непрерывному кровотоку.


Изменению
уровня КД вдоль сосудистой системы
способствует трение крови о стенки
кровеносных сосудов – периферическое
сопротивление R,
которое препятствует движению крови.

Таким
образом: артериальное давление Р зависит
от количества крови, которое нагнетается
сердцем в единицу времени – Q и
сопротивления, которое кровоток встречает
в сосудах – R. Эти факторы взаимосвязаны
и могут быть выражены уравнением: Р
= Q*R

Формула,
вытекающая из основного уравнения
гидродинамики: Q
=


фактор
– работа
сердца.
Сердечная деятельность обеспечивает
количество крови, поступающее в течение
минуты в сосудистую систему, т.е. минутный
объем кровообращения. Он составляет у
человека 4-5 л. Этого количества крови
вполне достаточно, чтобы в состоянии
покоя обеспечить все потребности
организма: транспорт к тканям кислорода
и удаление из них углекислоты, обмен
веществ в тканях, определенный уровень
деятельности органов выделения, благодаря
которому поддерживается постоянство
минерального состава внутренней среды,
терморегуляция.

Величина минутного
объема кровообращения в покое
поддерживается с большим постоянством
и является одной из биологических
констант организма. Изменение минутного
объема кровообращения может наблюдаться
при переливании больших количеств
крови, вследствие чего кровяное давление
повышается. При кровопотере, кровопускании
происходит уменьшение объема циркулирующей
крови, в результате чего артериальное
давление падает.

С другой стороны, при
выполнении большой физической нагрузки
минутный объем кровообращения достигает
30-40 л, так как мышечная работа ведет к
опорожнению кровяных депо и сосудов
лимфатической системы (В.В. Петровский,
1960), что значительно увеличивает массу
циркулирующей крови, ударный объем
сердца и частоту сердечных сокращений.
В результате минутный объем кровообращения
возрастает в 8-10 раз. Однако у здорового
организма артериальное давление при
этом повышается незначительно, всего
на 20-40 мм рт. ст.

Отсутствие
выраженного повышения артериального
давления при значительном росте минутного
объема объясняется снижением
периферического сопротивления кровеносных
сосудов и деятельностью депо крови.


фактор
– вязкость
крови. Согласно
основным законам гидродинамики
сопротивление току жидкости тем больше,
чем больше ее вязкость (вязкость крови
в 5 раз выше, чем воды, вязкость которой
принято считать 1), чем длиннее трубка,
по которой течет жидкость, и чем меньше
ее просвет. Известно, что кровь движется
в кровеносных сосудах благодаря энергии,
которую ей сообщает сердце при своем
сокращении.

Во время систолы желудочков
приток крови в аорту и легочную артерию
становится больше, чем ее отток из них,
и давление крови в этих сосудах повышается.
Часть этого давления затрачивается на
преодоление трения. Различают внешнее
трение – это трение элементов крови,
например, эритроцитов, о стенки кровеносных
сосудов (особенно оно велико в прекапиллярах
и капиллярах) и внутреннее трение частиц
крови друг о друга.


фактор
– периферическое
сопротивление сосудов.
Так как вязкость крови не подвержена
быстрым изменениям, то основное значение
в регуляции кровообращения принадлежит
показателю периферического сопротивления,
обусловленному трением крови о стенки
сосудов. Трение крови будет тем больше,
чем больше общая площадь соприкосновения
ее со стенками сосудов.

Наибольшая
площадь соприкосновения между кровью
и сосудами приходится на тонкие
кровеносные сосуды (артериолы и
капилляры). Наибольшим периферическим
сопротивлением обладают артериолы, что
связано с наличием в них гладкомышечных
жомов, поэтому артериальное давление
при переходе крови из артерий в артериолы
падает со 120 мм рт.ст. до 70 мм рт.ст. В
капиллярах давление снижается до 30-40
мм рт.ст., что объясняется значительным
увеличением их суммарного просвета

У маленького ребёнка сердце бьётся очень быстро, со скоростью не менее 140 ударов в минуту. С годами пульс урежается практически в два раза. Но в пожилом возрасте сердце снова начинает стучать быстрее. Поэтому чтобы определить, работает ли сердце правильно, необходимо знать возрастные нормы, причины, по которым с годами частота сердечных сокращений (ЧСС) изменяется.

  1. Чтобы пульс был в норме

Почему пульс изменяется с возрастом

В спокойном состоянии желудочек за одну минуту должен выталкивать в аорту большой объём крови. У новорожденных сердце маленькое, весит всего 20-24 г и способно протолкнуть не более 2,5 мл крови. У взрослого сердце весит 200-300 г, за одно сокращение способно проталкивать 70 мл крови. Поэтому у детей оно должно биться чаще.

С увеличением сердечной массы пульс становится реже. Кроме того, у детей до 7 лет нервный центр, регулирующий работу сердца, только развивается, а это способствует усиленному сердцебиению.

Пока ребёнок растёт, развивается, ЧСС тоже изменяется. В норме:

Если в детстве усиленное сердцебиение связано с ростом и развитием ребёнка, то в пожилом возрасте это происходит из-за необратимого физиологического процесса – старения. Поэтому после 60 лет нормальным считается ЧСС 90–95 ударов в минуту. Ведь из-за старения в организме происходят необратимые изменения в сердечной мышце, сосудистом русле:

  1. Снижается способность миокарда сокращаться из-за того, что клетки растягиваются.
  2. Сердце уже не может выбрасывать в аорту необходимый минимальный объём крови.
  3. Снижается количество функционирующих капилляров. Они растягиваются, становятся извилистыми, длина сосудистого русла изрядно увеличивается.
  4. Сосуды становятся менее эластичными, через них в клетки передаётся меньше необходимых веществ.
  5. Повышается чувствительность рецепторов к адреналину, незначительное его количество усиливает ЧСС и артериальное давление.

Недостаток кровообращения, вызванный всеми этими изменениями, компенсируется учащением пульса, а это приводит к ускорению изнашивания сердца. В пожилом возрасте желудочки растянуты, иногда мышечные клетки замещаются жировыми, что приводит к сердечным заболеваниям. Учащённое сердцебиение только усугубляет состояние здоровья.

Важно знать! Все болезни сердечно-сосудистой системы сильно помолодели. Если 20 лет тому назад инфаркт миокарда в 50 лет считался чем-то необычным, то сейчас 30-летние кардиологические пациенты с таким диагнозом уже никого не удивляют. Чтобы избежать болезней сердца, нужно следить за своим пульсом, при малейших отклонениях от нормы следует обратиться к врачу.

Какой пульс считается нормальным

У взрослого ЧСС в спокойном состоянии составляет 60–80 ударов в минуту. При физических нагрузках у нетренированного человека она возрастает до 100. Происходит это потому, что для обеспечения организма необходимыми веществами должен увеличиться минутный объём циркулирующей крови. У тренированного человека сердце способно протолкнуть за одно сокращение нужное количество крови в аорту, поэтому ЧСС не увеличивается.

Также сердцебиение усиливается из-за нервного напряжения. Когда человек волнуется, переживает, происходит возбуждение симпатической нервной системы, у него учащается дыхание, увеличивается ЧСС.

На работу сердца помимо нагрузок и стрессов влияет множество факторов:

  1. У женщин ЧСС может учащаться из-за гормональных изменений, связанных с менструальным циклом, беременностью.
  2. У мужчин после 40, при нарушениях выработки тестостерона происходят необратимые изменения в сердечной мышце.
  3. Лишний вес приводит к тому, что не только бицепсы, трицепсы становятся дряхлыми. Гладкая мускулатура сердца тоже замещается жировыми клетками.
  4. У подростков нормальной считается дыхательная аритмия, когда на вдохе пульс учащается, а на выдохе – замедляется.
  5. Увеличивается ЧСС при различных болезнях. Пульс учащается при повышенной температуре тела. Особенно негативно влияет на работу сердца патологии нервной и эндокринной систем.
  6. В душных помещениях, на высоте, где мало кислорода, его нехватка компенсируется увеличением ЧСС.
  7. Чрезмерное употребление кофеинсодержащих напитков, приём препаратов, стимулирующих сердечную активность.
  8. Токсины, соли тяжёлых металлов негативно влияют на работу сердца.

Хоть при нагрузках пульс до 100 ударов в минуту считается нормальным, но такая ЧСС неблагоприятно сказывается на сердце, приводит к развитию:

  • гипертрофии желудочка;
  • аритмии;
  • кардиомиопатии;
  • инфаркту миокарда;
  • сердечной недостаточности.

ЧСС менее 60 ударов в минуту также негативно влияет на здоровье. Ведь в таком случае сердце не перегоняет необходимый объём крови, и все органы начинают страдать от нехватки питательных веществ и кислорода. А это приводит к самым разным болезням, начиная от нарушения функций эндокринных желёз и заканчивая энцефалопатией.

Чтобы прожить долго и не болеть, следует следить за собой, обращать внимание, если пульс отклоняется от нормы. А чтобы сердце билось с необходимой частотой, нужно следовать определённым правилам.

Чтобы пульс был в норме

Дабы сердце не износилось ранее положенного срока, чтобы работало ритмично и правильно, лет эдак до 100 минимум, не нужно ничего особенного. Достаточно следовать простым правилам:

  1. Гулять на свежем воздухе. Это и физическая нагрузка, и организм получает необходимое количество кислорода.
  2. Следить за своим весом. К ожирению приводит не только неправильное питание, масса тела увеличивается при болезнях эндокринной системы. Вес у взрослого, здорового человека изменяться может в пределах нескольких сотен грамм. Понижение веса также свидетельствует о различных патологиях.
  3. Делать зарядку. Физические нагрузки тренируют не только бицепсы, но и сердечную мышцу.
  4. Не курить, не злоупотреблять алкоголем.
  5. Кофе пить можно, но только в первой половине дня и в небольших количествах. Специальные, маленькие кофейные чашки придуманы не только для того, чтобы покрываться пылью в серванте.

Ну и самое главное правило:

Держите руку на пульсе, при отклонении ЧСС от нормы обращайтесь к врачу.

Как уже отмечалось, по величине давления кровеносную систему принято подразделять на два отдела - систему высокого и систему низкого давления. К первому из них относят прекапиллярный отдел сердечно-сосудистой системы, а ко второму - посткапиллярный. Такое деление определяется не только различиями давления, но и неодинаковыми механизмами, которые его определяют. Так, если уровень артериального давления зависит от тонуса резистивных сосудов, с одной стороны, и сердечного выброса, с другой, то венозное давление в конечном счете может определяться четырьмя группами факторов: 1) силами подпора - оттоком из капилляров; 2) фронтальным сопротивлением, зависящим от работы правого сердца; 3) тонусом вен и 4) экстравазальными факторами (сдавлением вен). Снижение давления по направлению тока крови в различных областях далеко не одинаково и зависит от особенностей строения русла. Так, если в большинстве сосудистых областей давление в артериолах диаметром 30-40 мкм составляет 70-80% от системного артериального давления (Richardson, Zweifach, 1970), то эти соотношения для сосудов мозга несколько отличны. По данным Shapiro с соавт. (1971), уже в ветвях средней мозговой артерии кошек диаметром более 455 мкм давление составляет 61% от аортального, а в пиальных артериолах диаметром 40-25 мкм оно уменьшается еще на 10%.

Величина среднединамического давления в сосудистой системе колеблется в широком диапазоне (таблица 4), что необходимо учитывать при выборе соответствующих манометров.

В настоящее время в практике физиологических исследований для регистрации давления в различных участках сосудистого русла используют жидкостные, пружинные и электрические манометры.

По данным Wiggers (1957), манометры для регистрации давления крови должны обладать следующими свойствами:
1. Высокой чувствительностью и способностью регистрировать давление в достаточно широком диапазоне (1 мм вод. ст.- 300 мм рт. ст.).
2. Малой инерционностью, т. е. достаточно высокой частотой собственных колебаний, которая должна превышать в 5-10 раз частоту колебаний исследуемого процесса.
3. Линейностью характеристики.
4. Малым смещением (объемом его) в системе соединительных трубок между манометром и кровеносным сосудом (0,1-0,5 мм 3).
5. Возможностью синхронно с записью артериального давления регистрировать на одной и той же ленте другие физиологические процессы.

Следует отметить, что не все применяемые в исследованиях манометры отвечают указанным выше требованиям.

В жидкостных манометрах, как известно, исследуемое давление уравновешивается столбом манометрической жидкости (обычно ртути или воды). Они)могут быть приспособлены для регистрации стационарных и переменных давлений в диапазоне от 200-300 мм рт. ст. до 1·10 -4 мм рт. ст., что соответствует величине давления в различных участках сосудистого русла. Конструктивно эти приборы могут быть выполнены в виде одноколенного чашечного манометра (аппарат Рива - Роччи), манометра с наклонной трубкой либо двухколенного U-образного манометра, предложенного Пуазейлем еще в 1828 г.

При работе с жидкостными, в частности ртутными, манометрами следует иметь в виду, что для детальной регистрации быстрых колебаний они совершенно непригодны (А. Б. Коган, С. И. Щитов, 1967). Это определяется собственной периодичностью жидкостного манометра, которая зависит от длины столба жидкости и подчиняется закону колебаний маятника:
(3.1)
где Т - период колебаний; l - длина столба жидкости; g - ускорение силы тяжести.

Из формулы следует, что практически период колебаний столба жидкости в обычном ртутном манометре и соединительной трубке составляет около 2 с. Отсюда частота собственных колебаний f = 1/T составит около 0,5 Гц. Очевидно, что эта частота может быть резонансной для регистрируемых колебаний, вследствие чего амплитуда их будет преувеличена, а при увеличении или снижении частоты вынужденных колебаний она будет уменьшенной. При этом правильный характер записи будет при частоте, превышающей резонансную (А. Б. Коган, С. И. Щитов, 1967).

Необходимо отметить, что жидкостные манометры могут быть использованы не только для регистрации абсолютной величины давления, но и какой-либо относительной переменной величины (разности двух давлений, амплитуды и быстроты давления). Такие манометры, как известно, носят название дифференциальных.

В качестве наиболее простых дифференциальных манометров могут быть использованы U-образные ртутные манометры. Для получения разности давления в 2 сосудах (например, в сонной артерии и яремной вене, в центральном и периферическом концах сонной артерии) сосуды подсоединяют к обоим коленам манометра. Явное удобство этого способа дифференцирования состоит в том, что он не требует раздельного измерения давлений и специальных приспособлений для синхронности наблюдений.

В практике физиологических экспериментов весьма часто возникает необходимость в определении так называемого среднединамического давления, величина которого используется, в частности, для расчета общего периферического сопротивления сосудов. Для его регистрации может быть использован апериодизированный манометр, предложенный еще И. М. Сеченовым в 1861 году. Его отличительной чертой является «переуспокоенный» режим работы, который достигается введением в соединительную часть (между коленами) крана или резиновой трубки с винтовыми зажимами. За счет сужения соединительной части достигается увеличение внешнего трения ртути и демпфируются все быстрые колебания, обусловленные деятельностью сердца. Результирующим в этом случае будет уровень эффективного (среднединамического) давления.

В дополнение к характеристике жидкостных манометров укажем, что они применимы для регистрации абсолютных величин давления как в артериальных и венозных сосудах, так и в капиллярах. При измерении венозного давления следует иметь в виду, что гидростатическое давление крови в венах может оказывать существенное влияние на измеряемые величины гемодинамического давления. С этой целью манометр нужно устанавливать в таком положении, чтобы уровень его нулевого деления, место пункции вены и положение правого предсердия совпадали.

В пружинных манометрах в отличие от жидкостных измеряемое давление уравновешивается силами так называемого упругого элемента, которые возникают при его деформации. В зависимости от элемента (его геометрической формы) пружинные манометры могут быть трубчатыми, мембранными, сильфонными и т. д.

Достоинством этого класса манометров является высокая чувствительность и возможность создания оптимальной частотной характеристики. Пружинные манометры обладают собственной частотной характеристикой от 17 (модель Фика) до 450 Гц (модель Уиггерса), что позволяет регистрировать как максимальное, так и минимальное артериальное давление.

В электрических манометрах, большинство которых предназначено для регистрации переменных величин (за исключением манометров сопротивления), давление передается на устройства, изменяющие свои электрические параметры (ЭДС, индуктивность, сопротивление). Эти изменения регистрируются с помощью соответствующих электроизмерительных и осциллографических приборов. Достоинством электроманометров является их большая чувствительность и малая инерционность, что позволяет регистрировать малые и быстроизменяющиеся величины давления.

В качестве датчиков в электроманометрах используются пьезокристаллы, тензодатчики, угольнопорошковые и проволочные датчики сопротивления и др. Последний тип использован в отечественном манометре ЭМ2-01.

Кровяное давление - давление крови на стенки кровеносных сосудов и камер сердца; важнейший энергетический параметр системы кровообращения, обеспечивающий непрерывность кровотока в кровеносных сосудах, диффузию газов и фильтрацию растворов ингредиентов плазмы крови через мембраны капилляров в ткани (обмен веществ), а также в почечных клубочках (образование мочи).

В соответствии с анатомо-физиологическим разделением сердечно-сосудистой системы (Сердечно-сосудистая система)различают внутрисердечное, артериальное, капиллярное и венозное К. д., измеряемое либо в миллиметрах водяного столба (в венах), либо миллиметрах ртутного столба (в других сосудах и в сердце). Рекомендуемое, согласно Международной системе единиц (СИ), выражение величин К. д. в паскалях (1 мм рт. ст . = 133,3 Па ) в медицинской практике не используется. В артериальных сосудах, где К. д., как и в сердце, значительно колеблется в зависимости от фазы сердечного цикла, различают систолическое и диастолическое (в конце диастолы) артериальное давление, а также пульсовую амплитуду колебаний (разница между величинами систолического и диастолического АД), или пульсовое АД. Среднюю от изменений за весь сердечный цикл величину К. д., определяющую среднюю скорость кровотока в сосудах, называют средним гемодинамическим давлением.

Внутрисердечное давление в полостях предсердий и желудочков сердца значительно различается в фазах систолы и диастолы, а в тонкостенных предсердиях оно также существенно зависит от колебаний внутригрудного давления по фазам дыхания, принимая иногда в фазе вдоха отрицательные значения. В начале диастолы, когда миокард расслаблен, заполнение камер сердца кровью происходит при минимальном давлении в них, близком к нулю. В период систолы предсердий отмечается небольшой прирост давления в них и в желудочках сердца. Давление в правом предсердии, в норме не превышающее обычно 2-3 мм рт. ст ., принимают за так называемый флебостатический уровень, по отношению к которому оценивают величину К. д. в венах и других сосудах большого круга кровообращения.

В период систолы желудочков, когда клапаны сердца закрыты, практически вся энергия сокращения мускулатуры желудочков расходуется на объемное сжатие содержащейся в них крови, порождающее в ней реактивное напряжение в форме давления. Внутрижелудочковое давление нарастает до тех пор, пока в левом желудочке оно не превысит давления в аорте, а в правом - давления в легочном стволе, в связи с чем клапаны этих сосудов открываются и происходит изгнание крови из желудочков, по окончании которого начинается диастола, и К. д. в желудочках резко падает.

Артериальное давление формируется за счет энергии систолы желудочков в период изгнания из них крови, когда каждый желудочек и артерии соответствующего ему круга кровообращения становятся единой камерой, и сжатие крови стенками желудочков распространяется на кровь в артериальных стволах, а изгоняемая в артерии порция крови приобретает кинетическую энергию, равную половине произведения массы этой порции на квадрат скорости изгнания. Соответственно энергия, сообщаемая артериальной крови в период изгнания, имеет тем большие значения, чем больше ударный объем сердца и чем выше скорость изгнания, зависимая от величины и скорости нарастания внутрижелудочкового давления, т.е. от мощности сокращения желудочков. Толчкообразное, в виде удара, поступление крови из желудочков сердца вызывает локальное растяжение стенок аорты и легочного ствола и порождает ударную волну давления, распространение которой с перемещением локального растяжения стенки по длине артерии обусловливает формирование артериального пульса (Пульсация); графическое отображение последнего в форме сфигмограммы или плетизмограммы соответствует и отображению динамики К. д. в сосуде по фазам сердечного цикла.

Основной причиной трансформации большей части энергии сердечного выброса в артериальное давление, а не в кинетическую энергию потока является сопротивление кровотоку в сосудах (тем большее, чем меньше их просвет, больше их длина и выше вязкость крови), формируемое в основном на периферии артериального русла, в мелких артериях и артериолах, называемых сосудами сопротивления, или резистивными сосудами. Затруднение току крови на уровне этих сосудов создает в расположенных проксимально от них артериях торможение потока и условия для сжатия крови в период изгнания ее систолического объема из желудочков. Чем выше периферическое сопротивление, тем большая часть энергии сердечного выброса трансформируется в систолический прирост АД, определяя величину пульсового давления (частично энергия трансформируется в тепло от трения крови о стенки сосудов). Роль периферического сопротивления кровотоку в формировании К. д. наглядно иллюстрируется различиями АД в большом и малом кругах кровообращения. В последнем, имеющем более короткое и широкое сосудистое русло, сопротивление кровотоку значительно меньшее, чем в большом круге кровообращения, поэтому при равных скоростях изгнания одинаковых систолических объемов крови из левого и правого желудочков давление в легочном стволе примерно в 6 раз меньше, чем в аорте.

Систолическое АД складывается из величин пульсового и диастолического давления. Истинная его величина, называемая боковым систолическим АД, может быть измерена с помощью манометрической трубки, введенной в просвет артерии перпендикулярно оси тока крови. Если внезапно прекратить кровоток в артерии путем полного пережатия ее дистальнее манометрической трубки (или расположить просвет трубки против тока крови), то систолическое АД сразу возрастает за счет кинетической энергии потока крови. Эту более высокую величину К. д. называют конечным, или максимальным, или полным, систолическим АД, т.к. она эквивалентна практически полной энергии крови в период систолы. И боковое, и максимальное систолическое К. д. в артериях конечностей человека может быть измерено бескровно с помощью артериальной тахоосциллографии по Савицкому. При измерении АД по Короткову определяют значения максимального систолического АД. Величина его в норме в покое составляет 100-140 мм рт. ст ., боковое систолическое АД обычно на 5-15 мм ниже максимального. Истинная величина пульсового АД определяется как разница между боковым систолическим и диастолическим давлением.

Диастолическое АД формируется благодаря эластичности стенок артериальных стволов и их крупных ветвей, образующих в совокупности растяжимые артериальные камеры, называемые компрессионными (аортоартериальная камера в большом круге кровообращения и легочный ствол с крупными его ветвями - в малом). В системе жестких трубок прекращение нагнетания в них крови, как это происходит в диастоле после закрытия клапанов аорты и легочного ствола, привело бы к быстрому исчезновению давления, появившегося в период систолы. В реальной сосудистой системе энергия систолического прироста АД в значительной своей части кумулируется в форме упругого напряжения растягиваемых эластических стенок артериальных камер. Чем выше периферическое сопротивление кровотоку, тем дольше эти упругие силы обеспечивают объемное сжатие крови в артериальных камерах, поддерживая К. д., величина которого по мере оттока крови в капилляры и спадения стенок аорты и легочного ствола постепенно снижается к концу диастолы (тем больше, чем длительнее диастола). В норме диастолическое К. д. в артериях большого круга кровообращения составляет 60-90 мм рт. ст . При нормальном или увеличенном сердечном выбросе (минутном объеме кровообращения) учащение сердечных сокращений (короткая диастола) или значительное повышение периферического сопротивления кровотоку обусловливает повышение диастолического АД, поскольку равенство оттока крови из артерий и поступления в них крови из сердца достигается при большем растяжении и, следовательно, большем упругом напряжении стенок артериальных камер в конце диастолы. Если эластичность артериальных стволов и крупных артерий утрачивается (например, приАтеросклерозе), то диастолическое АД снижается, т.к. часть энергии сердечного выброса, кумулируемая в норме растянутыми стенками артериальных камер, расходуется на дополнительный прирост систолического АД (с повышением пульсового) и ускорение кровотока в артериях в период изгнания.

Среднее гемодинамическое, или среднее, К. д. представляет собой среднюю величину от всех его переменных значений за сердечный цикл, определяемую как отношение площади под кривой изменений давления к длительности цикла. В артериях конечностей среднее К. д. может быть достаточно точно определено с помощью тахоосциллографии, В норме оно составляет 85-100 мм рт. ст ., приближаясь к величине диастолического АД тем больше, чем длительнее диастола. Среднее АД не имеет пульсовых колебаний и может изменяться лишь в интервале нескольких сердечных циклов, являясь поэтому наиболее стабильным показателем энергии крови, значения которого определяются практически только величинами минутною объема кровоснабжения и общего периферического сопротивления кровотоку.

В артериолах, оказывающих наибольшее сопротивление кровотоку, на его преодоление расходуется значительная часть общей энергии артериальной крови; пульсовые колебания К. д. в них сглаживаются, среднее К. д. по сравнению с внутриаортальным снижается примерно в 2 раза.

Капиллярное давление зависит от давления в артериолах. Стенки капилляров не обладают тонусом; общий просвет капиллярного русла определяется числом открытых капилляров, что зависит от функции прекапиллярных сфинктеров и величины К. д. в прекапиллярах. Капилляры открываются и остаются открытыми только при положительном трансмуральном давлении - разнице между К. д. внутри капилляра и тканевым давлением, сжимающим капилляр извне. Зависимость числа открытых капилляров от К. д. в прекапиллярах обеспечивает своеобразную саморегуляцию постоянства капиллярного К. д. Чем выше К. д. в прекапиллярах, тем многочисленнее открытые капилляры, больше их просвет и вместимость, а следовательно, и в большей степени падает К. д. на артериальном отрезке капиллярного русла. Благодаря этому механизму среднее К. д. в капиллярах отличается относительной стабильностью; на артериальных отрезках капилляров большого круга кровообращения оно составляет 30-50 мм рт. ст ., а на венозных отрезках в связи с расходом энергии на преодоление сопротивления по длине капилляра и фильтрацию оно снижается до 25-15 мм рт. ст . Существенное влияние на капиллярное К. д. и его динамику на протяжении капилляра оказывает величина венозного давления.

Венозное давление на посткапиллярном отрезке мало отличается от К. д. в венозной части капилляров, но значительно падает на протяжении венозного русла, достигая в центральных венах величины, близкой к давлению в предсердии. В периферических венах, расположенных на уровне правого предсердия. К. д. в норме редко превышает 120 мм вод. ст ., что соизмеримо с величиной давления кровяного столба в венах нижних конечностей при вертикальном положении тела. Участие гравитационного фактора в формировании венозного давления наименьшее при горизонтальном положении тела. В этих условиях К. д. в периферических венах формируется в основном за счет энергии притока в них крови из капилляров и зависит от сопротивления оттоку крови из вен (в норме преимущественно от внутригрудного и внутрипредсердного давления) и в меньшей степени - от тонуса вен, определяющего их вместимость для крови при данном давлении и соответственно скорость венозного возврата крови к сердцу. Патологический рост венозного К. д. в большинстве случаев обусловлен нарушением оттока из них крови.

Относительно тонкая стенка и большая поверхность вен создают предпосылки для выраженного влияния на венозное К. д. изменений внешнего давления, связанных с сокращением скелетных мышц, а также атмосферного (в кожных венах), внутригрудного (особенно в центральных венах) и внутрибрюшного (в системе воротной вены) давления. Во всех венах К. д. колеблется в зависимости от фаз дыхательного цикла, понижаясь в большинстве из них на вдохе и возрастая на выдохе. У больных с бронхиальной обструкцией эти колебания обнаруживаются визуально при осмотре шейных вен, резко набухающих в фазе выдоха и полностью спадающихся на вдохе. Пульсовые колебания К. д. в большинстве отделов венозного русла выражены слабо, являясь с основном передаточными от пульсации расположенных рядом с венами артерий (на центральные и близкие к ним вены могут передаваться пульсовые колебания К. д. в правом предсердии, что находит отражение в венном Пульсе). Исключение представляет воротная вена, в которой К. д. может иметь пульсовые колебания, объясняемые возникновением в период систолы сердца так называемого гидравлического затвора для прохождения по ней крови в печень (в связи с систолическим приростом К. д. в бассейне печеночной артерии) и последующим (в период диастолы сердца) изгнанием крови из воротной вены в печень.

Значение кровяного давления для жизнедеятельности организма определяется особой ролью механической энергии для функций крови как универсального посредника в обмене веществ и энергии в организме, а также между организмом и средой обитания. Дискретные порции механической энергии, генерируемой сердцем только в период систолы, преобразованы в кровяном давлении в стабильный, действующий и в период диастолы сердца, источник энергетического снабжения транспортной функции крови, диффузии газов и процессов фильтрации в капиллярном русле, обеспечивающих непрерывность обмена веществ и энергии в организме и взаиморегуляцию функции различных органов и систем гуморальными факторами, переносимыми циркулирующей кровью.

Кинетическая энергия составляет лишь малую часть всей энергии, сообщенной крови работой сердца. Основным энергетическим источником движения крови является перепад давления между начальным и конечным отрезками сосудистого русла. В большом круге кровообращения такой перепад, или полный градиент, давления соответствует разнице величин среднего К. д. в аорте и в полых венах, которая в норме практически равна величине среднего АД. Средняя объемная скорость кровотока, выраженная, например, минутным объемом кровообращения, прямо пропорциональна полному градиенту давления, т.е. практически величине среднего АД, и обратно пропорциональна величине общего периферического сопротивления кровотоку. Эта зависимость лежит в основе расчета величины общего периферического сопротивления как отношения среднего АД к минутному объему кровообращения. Другими словами, чем выше среднее АД при неизменном сопротивлении, тем выше и кровоток в сосудах и тем большая масса обменивающихся в тканях веществ (массообмен) транспортируется в единицу времени кровью через капиллярное русло. Однако в физиологических условиях увеличение минутного объема кровообращения, необходимое для интенсификации тканевого дыхания и обмена веществ, например при физической нагрузке, как и его рациональное уменьшение для условий покоя, достигается в основном динамикой периферического сопротивления кровотоку, причем таким образом, чтобы величина среднего АД не подвергалась существенным колебаниям. Относительная стабилизация среднего АД в аортоартериальной камере с помощью специальных механизмов его регуляции создает возможность динамичных вариаций распределения кровотока между органами по их потребностям путем только локальных изменений сопротивления кровотоку.

Увеличение или уменьшение массообмена веществ на мембранах капилляров достигается зависимыми от К. д. изменениями объема капиллярного кровотока и площади мембран в основном за счет изменений числа открытых капилляров. При этом благодаря механизму саморегуляции капиллярного К. д. в каждом отдельном капилляре оно поддерживается на уровне, необходимом для оптимального режима массообмена по всей длине капилляра с учетом важности обеспечения строго определенной степени снижения К. д. в направлении к венозному отрезку.

В каждой части капилляра массообмен на мембране непосредственно зависит от величины К. д. именно в этой части. Для диффузии газов, например кислорода, значение К. д. определяется тем, что диффузия происходит благодаря разнице парциального давления (напряжения) данного газа по обе стороны мембраны, а оно есть часть общего давления в системе (в крови - часть К. д.), пропорциональная объемной концентрации данного газа. Фильтрация растворов различных веществ через мембрану обеспечивается фильтрационным давлением - разницей между величинами трансмурального давления в капилляре и онкотического давления плазмы крови, составляющего на артериальном отрезке капилляра около 30 мм рт. ст . Поскольку на этом отрезке трансмуральное давление выше онкотического, водные растворы веществ фильтруются через мембрану из плазмы в межклеточное пространство. В связи с фильтрацией воды концентрация белков в плазме капиллярной крови повышается, и онкотическое давление возрастает, достигая в средней части капилляра величины трансмурального давления (фильтрационное давление уменьшается до нуля). На венозном отрезке из-за падения К. д. по длине капилляра трансмуральное давление становится ниже онкотического (фильтрационное давление становится отрицательным), поэтому водные растворы фильтруются из межклеточного пространства в плазму, снижая ее онкотическое давление до исходных значений. Т.о., степень падения К. д. по длине капилляра определяет соотношение площадей фильтрации растворов через мембрану из плазмы в межклеточное пространство и обратно, влияя тем самым на баланс водного обмена между кровью и тканями. В случае патологического повышения венозного К. д. фильтрация жидкости из крови в артериальной части капилляра превышает возврат жидкости в кровь на венозном отрезке, что приводит к задержке жидкости в межклеточном пространстве, развитию отека (Отёки).

Особенности структуры капилляров клубочков почек (Почки) обеспечивают высокий уровень К. д. и положительное фильтрационное давление на всем протяжении капиллярных петель клубочка, что способствует большой скорости образования экстракапиллярного ультрафильтрата - первичной мочи. Выраженная зависимость мочеобразовательной функции почек от К. д. в артериолах и капиллярах клубочков объясняет особую физиологическую роль почечных факторов в регуляции величины К. д. в артериях больше о круга кровообращения.

Три основных фактора определяют уровень артериального давления в организме: фактор сердца (частота и сила сокращений), фактор сосудов (просвет сосудов), фактор крови (объем циркулирующей крови, ее реологические свойства. Значение каждого из указанных факторов мы рассматривали на лекциях, посвященных кровообращению. Следует добавить, что при недостаточности одного из факторов его утраченные функции выполняют те, что остались неповрежденными. Например, при уменьшении сосудистого тонуса, необходимый уровень артериального давления может обеспечиваться повышением частоты сердечных сокращений, и увеличению ударного объема. Кроме внутренних, организменных механизмов регуляции уровня артериального давления необходимо отметить и значение поведенческих механизмов. Например, повышение двигательной активности сопровождается повышением уровня артериального давления, а снижение двигательной активности приводит к снижению артериального давления.



© dagexpo.ru, 2024
Стоматологический сайт