Дифференциал функции определение и свойства. Дифференциал функции

21.09.2019

Можно доказать, что если функция имеет при некоторой базе предел, равный конечному числу, то ее можно представить в виде суммы этого числа и бесконечно малой величины при той же базе (и наоборот): .

Применим это теорему к дифференцируемой функции: .

Таким образом, приращение функции у состоит из двух слагаемых: 1) линейного относительнох, т.е.f`(x)х; 2) нелинейного относительнох, т.е.(x)х. При этом, так как
, это второе слагаемое представляет собой бесконечно малую более высокого порядка, чемх (при стремлениих к нулю оно стремится к нулю еще быстрее).

Дифференциалом функции называется главная, линейная относительнох часть приращения функции, равная произведению производной на приращение независимой переменнойdy=f`(x)х.

Найдем дифференциал функции у = х.

Так как dy=f`(x)х =x`х =х, тоdx=х, т.е. дифференциал независимой переменной равен приращению этой переменной.

Поэтому формулу для дифференциала функции можно записать в виде dy=f`(x)dх. Именно поэтому одно из обозначений производной представляет собой дробьdy/dх.

Геометрический смысл дифференциала проиллюстрирован рисунком 3.11. Возьмем на графике функции y = f(x) произвольную точку М(х, у). Дадим аргументу х приращение х. Тогда функция y = f(x) получит приращениеy = f(x +х) - f(x). Проведем касательную к графику функции в точке М, которая образует уголс положительным направлением оси абсцисс, т.е.f`(x) = tg. Из прямоугольного треугольника MKNKN=MN*tg=х*tg=f`(x)х =dy.

Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции в данной точке, когда х получает приращение х.

Свойства дифференциала в основном аналогичны свойствам производной:

3. d(u ± v) = du ± dv.

4. d(uv) = v du + u dv.

5. d(u/v) = (v du - u dv)/v 2 .

Однако, существует важное свойство дифференциала функции, которым не обладает ее производная – это инвариантность формы дифференциала .

Из определения дифференциала для функции y= f(x) дифференциалdy=f`(x)dх. Если эта функцияyявляется сложной, т.е.y= f(u), гдеu=(х), тоy= f[(х)] иf`(x) = f `(u)*u`. Тогдаdy= f `(u)*u`dх. Но для функцииu=(х) дифференциалdu=u`dх. Отсюдаdy= f `(u)*du.

Сравнивая между собой равенства dy=f`(x)dх иdy= f `(u)*du, убедимся, что формула дифференциала не изменяется, если вместо функции от независимой переменной х рассматривать функцию от зависимой переменнойu. Это свойство дифференциала и получило название инвариантности (т.е. неизменности) формы (или формулы) дифференциала.

Однако в этих двух формулах все же есть различие: в первой из них дифференциал независимой переменной равен приращению этой переменной, т.е. dx = x, а во в торой дифференциал функции du есть лишь линейная часть приращения этой функцииuи только при малыхх duu.

Применение дифференциала в приближенных вычислениях

Выше было показано, что , т.е. приращение функцииу отличается от ее дифференциала dy на бесконечно малую величину более высокого порядка, чемх.

Поэтому при достаточно малых значениях хуdy или f(x +х) - f(x)f`(x)х, откуда f(x +х)f(x) +f`(x)х. Полученная формула будет тем точнее, чем меньшех.

Например, найдем

Итак, y=f(x) =x 1/3 . Возьмемx= 125,х = 0,27.

f`(x) = (x 1/3)`= 1/(3x 2/3)

f(125,27) =f(125 + 0,27)f(125) +f`(125)*(0,27) =
= 5 + 0,27/(3*25) = 5,0036

Например, найдем tg 46 о.

Итак, y=f(x) =tgx. Возьмемx= 45 o =/4,х = 1 o =/180.

f`(x) = (tgx)`= 1/cos 2 x

f(46 o) = f(/4 + /180)  f(/4) + f `(/4)*(/180) = tg(/4) + + (1/ cos 2 (/4))*(/180) = 1 + (1/(2/2) 2)*(/180) = 1 + /90 ( 1,035)

Кроме того, с помощью дифференциала может быть решена задача определения абсолютной и относительной погрешностей функции по заданной погрешности нахождения (измерения) аргумента.

Пусть необходимо вычислить значение данной функции у = f(x) при некотором значении аргумента х 1 , истинная величина которого неизвестна, а известно лишь его приближенное значение х с абсолютной погрешностью |х| = |х - х 1 |. Если вместо истинного значенияf(x 1) взять величинуf(x), то абсолютная ошибка функции будет равна |f(x 1) -f(x)| = |y|dy=f`(x)х.

При этом относительная погрешность функции  y = |y/y| при достаточно малыхх будет равна, где Е х (y) – эластичность функции, а х = |x/x| - относительная погрешность аргумента.

Переобзовем приращение независимой переменной х дифференциалом этой переменной, обозначив его как dx, то есть для независимой переменной по определению будем считать

Назовём дифференциалом функции у=f(х) выражение

Обозначив его символом dy или df (х) по определению будем иметь

Последняя формула называется «формой» «первого» дифференциала. Забегая вперед приведём и объясним «архиважнейшее» свойство дифференциала - так называемую инвариантность (неизменность) его формы. Итак

Форма дифференциала не зависит(инвариантна) от того, является лих независимой переменной, или же этах - зависимая переменная - функция.

Действительно, пусть
, то есть у - сложная функция «от t» По определению дифференциала имеем
. Но

,

то есть опять имеет ту же форму.

Однако «суть» (а не форма) дифференциала в этих двух случаях разная. Чтобы это объяснить выясним сначала геометрический смысл дифференциала и некоторые другие его свойства. Из приведенного ниже рисунка видно, что дифференциал является частью приращения ∆у. Можно показать, что dy, есть главная и линейная часть ∆у. Главная в том смысле, что разность ∆у – dy есть величина бесконечно малая высшего, что ∆х порядка малости, а линейная в смысле линейности своей зависимости от ∆х.

Можно сказать также, что дифференциал есть (смотри рисунок) соответствующее приращение ординаты касательной. Теперь объяснима и разница в сути и значении дифференциальной формы при независимом и зависимом аргументе. В первом случае dx есть все приращение ∆х. С помощью определения легко доказываются и

Арифметические свойства дифференциала


Определим теперь

Производные и дифференциалы высших порядков.

По определению
- вторая производная;
- третья производная и вообще
- n – ая производна функции
.

Точно также по определению

; - второй дифференциал;
- третий дифференциал и вообще - n – ый дифференциал функции
. Можно

показать, что

Приложения производных к исследованию функций.

В

ажнейшей теоремой, на которой базируется почти все методы исследования функций, являетсятеорема Лангранжа: Если функция f (ч) непрерывна на отрезке (а, b) и дифференцируема во всех внутренних его точках, то найдется такая точка, что

Геометрически (рис. 6) теорема утверждает, что на соответствующем интервала
найдется точкатакая, что угловой коэффициент касательной к графику в точке
равен угловому коэффициенту секущей, проходящей через точки
и
.

Другими словами, для «куска» графика описанной в теореме функции, найдется касательная, параллельная секущей, которая проходит через граничные точки этого куска. Из этой теоремы в частности следует замечательное правило раскрытия неопределенностей типа -так называемой правило маркиза Лопиталя : Если функции f(x ) и g(x) дифференцируемы в точке а и некоторой её окрестности f(а) = g(а) = 0, а f"(а) и g"(а) не равны нулю одновременно то
.

Замечания: Можно показать, что 1. Правило применимо и для раскрытия неопределенности типа ; 2. Еслиf"(а) = g"(а) = 0 или ∞, а f""(а) и g""(а) существует и не равны нулю одновременно, то
.

Спомощью теоремы Лангранжа можно доказать и достачныц признак монотонности функции:

Если
на интервале (а, b) то
f(x ) возрастает (убывает) на этом интервале.

Следует отметить, что знако постоянство производной является и необходимым признаком монотонности. А уже из этих признаков можно вывести:

а) необходимый признак существования экстремума

Для того чтобы точка х 0 была точкой максимума (минимума), необходимо, чтобы f"(x 0 ) либо была равна нулю, либо не существовала. Такие точки х 0 , в которых f"(x 0 ) = 0 или не существуют называют критическими.

б) достаточный признак существования экстремума:

Если (см. рис.) при переходе через критическую точку х 0 производная f"(x ) функции меняет знак, то эта точка - точка экстремума. Если, при этом, f"(x ) меняет знак с «+» на «- « , то х 0 - точка максимума, а если с «-« на «+», то точка х 0 - точка минимума.

И наконец, приведем еще один признак, использующий понятие производной. Это

Достаточный признак выпуклости (вогнутости) графику функции «над» интервалом (а, b).

Если на интервале (а, b) производная f""(x )>0 то график f(x ) вогнут, а если f""(x )< 0, то график является выпуклым «над» этим интервалом.

Полная схема исследования функции может теперь выглядеть следующим образом:

Схема полного исследования функции

    Область определения интервала знакопостоянства.

    Дифференциал… Для одних это прекрасное далёкое, а для других – непонятное слово, связанное с математикой. Но если это ваше суровое настоящее, наша статья поможет узнать, как правильно “приготовить” дифференциал и с чем его “подавать”.

    Под дифференциалом в математике понимают линейную часть приращения функции. Понятие дифференциала неразрывно связано с записью производной согласно Лейбница f′(x 0) = df/dx·x 0 . Исходя из этого, дифференциал первого порядка для функции f, заданной на множестве X, имеет такой вид: d x0 f = f′(x 0)·d x0 x. Как видите, для получения дифференциала нужно уметь свободно находить производные. Поэтому нелишним будет повторить правила вычисления производных, дабы понимать, что будет происходить в дальнейшем. Итак, рассмотрим дифференцирование поближе на примерах. Нужно найти дифференциал функции, заданной в таком виде: y = x 3 -x 4 . Сначала найдём производную от функции: y′= (x 3 -x 4)′ = (x 3)′-(x 4)′ = 3x 2 -4x 3 . Ну, а теперь получить дифференциал проще простого: df = (3x 3 -4x 3)·dx. Сейчас мы получили дифференциал в виде формулы, на практике зачастую также интересует цифровое значение дифференциала при заданных конкретных параметрах х и ∆х. Бывают случаи, когда функция выражена неявно через х. Например, y = x²-y x . Производная функции имеет такой вид: 2x-(y x)′. Но как получить (y x)′? Такая функция называется сложной и дифференцируется согласно соответствующего правила: df/dx = df/dy·dy/dx. В данном случае: df/dy = x·y x-1 , а dy/dx = y′. Теперь собираем всё воедино: y′ = 2x-(x·y x-1 ·y′). Группируем все игреки в одной стороне: (1+x·y x-1)·y′ = 2x, и в итоге получаем: y′ = 2x/(1+x·y x-1) = dy/dx. Исходя из этого, dy = 2x·dx/(1+x·y x-1). Конечно, хорошо, что такие задания встречаются нечасто. Но теперь вы готовы и к ним. Кроме рассмотренных дифференциалов первого порядка, ещё существуют дифференциалы высшего порядка. Попробуем найти дифференциал для функции d/d (x 3 (x 3 2 x 6 x 9 ), который и будет дифференциалом второго порядка для f(x) . Исходя из формулы f′(u) = d/du·f(u), где u = f(x), примем u = x 3 . Получаем: d/d(u)·(u-2u 2 -u 3) = (u-2u 2 -u 3)′ = 1-4u-3u 2 . Возвращаем замену и получаем ответ – 1x 3 x 6 , x≠0. Помощником в нахождении дифференциала также может стать онлайн-сервис . Естественно, что на контрольной или экзамене им не воспользуешься. Но при самостоятельной проверке правильности решения его роль сложно переоценить. Кроме самого результата, он также показывает промежуточные решения, графики и неопределённый интеграл дифференциальной функции, а также корни дифференциального уравнения. Единственный недостаток – это запись в одну строку функции при вводе, но со временем можно привыкнуть и к этому. Ну, и естественно, такой сервис не справляется со сложными функциями, но всё, что попроще, ему по зубам. Практическое применение дифференциал находит в первую очередь в физике и экономике. Так, в физике зачастую дифференцированием решаются задачи, связанные с определением скорости и её производной – ускорения. А в экономике дифференциал является неотъемлемой частью расчёта эффективности деятельности предприятия и фискальной политики государства, например, эффекта финансового рычага.

    В этой статье рассмотрены типовые задачи дифференцирования. Курс высшей математики учащихся ВУЗов зачастую содержит ещё задания на использование дифференциала в приближенных вычислениях, а также поиск решений дифференциальных уравнений. Но главное – при чётком понимании азов вы с лёгкостью расправитесь со всеми новыми задачами.



© dagexpo.ru, 2024
Стоматологический сайт