Эйнтховен, Виллем: биография. Кардиограмма сердца (ЭКГ) расшифровка Поле диполя - сердца

22.06.2020

ЛЕКЦИЯ 13 ДИПОЛЬ. ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОГРАФИИ

ЛЕКЦИЯ 13 ДИПОЛЬ. ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОГРАФИИ

1. Электрический диполь и его электрическое поле.

2. Диполь во внешнем электрическом поле.

3. Токовый диполь.

4. Физические основы электрографии.

5. Теория отведений Эйнтховена, три стандартных отведения. Поле диполя сердца, анализ электрокардиограмм.

6. Векторкардиография.

7. Физические факторы, определяющие ЭКГ.

8. Основные понятия и формулы.

9. Задачи.

13.1. Электрический диполь и его электрическое поле

Электрический диполь - система из двух равных по величине, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга.

Расстояние между зарядами называется плечом диполя.

Основной характеристикой диполя является векторная величина, называемая электрическим моментом диполя (P).

Электрическое поле диполя

Диполь является источником электрического поля, силовые линии и эквипотенциальные поверхности которого изображены на рис. 13.1.

Рис. 13.1. Диполь и его электрическое поле

Центральная эквипотенциальная поверхность представляет собой плоскость, проходящую перпендикулярно плечу диполя через его середину. Все ее точки имеют нулевой потенциал = 0). Она делит электрическое поле диполя на две половины, точки которых имеют соответственно положительные > 0) и отрицательные < 0) потенциалы.

Абсолютная величина потенциала зависит от дипольного момента Р, диэлектрической проницаемости среды ε и от положения данной точки поля относительно диполя. Пусть диполь находится в непроводящей бесконечной среде и некоторая точка А удалена от его центра на расстояние r >> λ (рис. 13.2). Обозначим через α угол между вектором Р и направлением на эту точку. Тогда потенциал, создаваемый диполем в точке А, определяется следующей формулой:

Рис. 13.2. Потенциал электрического поля, созданного диполем

Диполь в равностороннем треугольнике

Если диполь поместить в центр равностороннего треугольника, то он будет равноудален ото всех его вершин (на рис. 13.3 диполь изображен вектором дипольного момента - Р).

Рис. 13.3. Диполь в равностороннем треугольнике

Можно показать, что в этом случае разность потенциалов (напряжение) между двумя любыми вершинами прямо пропорциональна проекции дипольного момента на соответствующую сторону (U AB ~ P AB). Поэтому отношение напряжений между вершинами треугольника равно отношению проекций дипольного момента на соответствующие стороны:

Сопоставляя величины проекций, можно судить о величине самого вектора и его расположении внутри треугольника.

13.2. Диполь во внешнем электрическом поле

Диполь не только сам является источником электрического поля, но и взаимодействует с внешним электрическим полем, созданным другими источниками.

Диполь в однородном электрическом поле

В однородном электрическом поле напряженностью E на полюса диполя действуют равные по величине и противоположные по направлению силы (рис. 13.4). Поскольку сумма таких сил равна нулю, поступательного движения они не вызывают. Однако они

Рис. 13.4. Диполь в однородном электрическом поле

создают вращательный момент, величина которого определяется следующей формулой:

Этот момент «стремится» расположить диполь параллельно линиям поля, т.е. перевести его из некоторого положения (а) в положение (б).

Диполь в неоднородном электрическом поле

В неоднородном электрическом поле величины сил, действующих на полюсы диполя (силы F + и F - на рис. 13.5), неодинаковы, и их сумма не равна нулю Поэтому возникает равнодействующая сила, втягивающая диполь в область более сильного поля.

Величина втягивающей силы, действующей на диполь, ориентированный вдоль силовой линии, зависит от градиента напряженности и вычисляется по формуле:

Здесь ось Х - направление силовой линии в том месте, где находится диполь.

Рис. 13.5. Диполь в неоднородном электрическом поле. Р - дипольный момент

13.3. Токовый диполь

Рис. 13.6. Экранирование диполя в проводящей среде

В непроводящей среде электрический диполь может сохраняться сколь угодно долго. Но в проводящей среде под действием электрического поля диполя возникает смещение свободных зарядов, диполь экранируется и перестает существовать (рис. 13.6).

Для сохранения диполя в проводящей среде необходима электродвижущая сила. Пусть в проводящую среду (например, в сосуд с раствором электролита) введены два электрода, подключенные к источнику постоянного напряжения. Тогда на электродах будут поддерживаться постоянные заряды противоположных знаков, а в среде между электродами возникнет электрический ток. Положительный электрод называют истоком тока, а отрицательный - стоком тока.

Двухполюсная система в проводящей среде, состоящая из истока и стока тока, называется дипольным электрическим генератором или токовым диполем.

Расстояние между истоком и стоком тока (L) называется плечом токового диполя.

На рис. 13.7,а сплошными линиями со стрелками изображены линии тока, создаваемого дипольным электрическим генерато-

Рис. 13.7. Токовый диполь и его эквивалентная электрическая схема

ром, а пунктирными линиями - эквипотенциальные поверхности. Рядом (рис. 13.7, б) показана эквивалентная электрическая схема: R - сопротивление проводящей среды, в которой находятся электроды; r - внутреннее сопротивление источника, ε - его э.д.с.; положительный электрод (1) - исток тока; отрицательный электрод (2) - сток тока.

Обозначим сопротивление среды между электродами через R. Тогда сила тока определяется законом Ома:

Если сопротивление среды между электродами значительно меньше, чем внутреннее сопротивление источника, то I = ε/r.

Для того чтобы сделать картину более наглядной, представим себе, что в сосуд с электролитом опущены не два электрода, а обычный элемент питания. Линии электрического тока, возникшего в сосуде в этом случае, показаны на рис. 13.8.

Рис. 13.8. Токовый диполь и созданные им линии тока

Электрической характеристикой токового диполя является векторная величина, называемая дипольным моментом (Р T).

Дипольный момент токового диполя - вектор, направленный от стока (-) к истоку (+) и численно равный произведению силы тока на плечо диполя:

Здесь ρ - удельное сопротивление среды. Геометрические характеристики такие же, как на рис. 13.2.

Таким образом, между токовым диполем и электрическим диполем существует полная аналогия.

Теория токового диполя применяется для модельного объяснения возникновения потенциалов, регистрируемых при снятии электрокардиограмм.

13.4. Физические основы электрографии

Живые ткани являются источником электрических потенциалов. Регистрация биопотенциалов тканей и органов называется электрографией.

В медицинской практике используют следующие диагностические методы:

ЭКГ - электрокардиография - регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении;

ЭРГ - электроретинография - регистрация биопотенциалов сетчатки глаза, возникающих в результате воздействия на глаз;

ЭЭГ - электроэнцефалография - регистрация биоэлектрической активности головного мозга;

ЭМГ - электромиография - регистрация биоэлектрической активности мышц.

Примерная характеристика регистрируемых при этом биопотенциалов указана в табл. 13.1.

Таблица 13.1 Характеристики биопотенциалов

При изучении электрограмм решаются две задачи: 1) прямая - выяснение механизма возникновения электрограммы или расчет потенциала в области измерения по заданным характеристикам электрической модели органа;

2) обратная (диагностическая) - выявление состояния органа по характеру его электрограммы.

Почти во всех существующих моделях электрическую активность органов и тканей сводят к действию определенной совокупности токовых электрических генераторов, находящихся в объемной электропроводящей среде. Для токовых генераторов выполняется правило суперпозиции электрических полей:

Потенциал поля генераторов равен алгебраической сумме потенциалов полей, создаваемых генераторами.

Дальнейшее рассмотрение физических вопросов электрографии показано на примере электрокардиографии.

13.5. Теория отведений Эйнтховена, три стандартных отведения. Поле диполя сердца, анализ электрокардиограмм

Сердце человека - мощная мышца. При синхронном возбуждении множества волокон сердечной мышцы в среде, окружающей сердце, течет ток, который даже на поверхности тела создает разности потенциалов порядка нескольких мВ. Эта разность потенциалов регистрируется при записи электрокардиограммы.

Моделировать электрическую активность сердца можно с использованием дипольного эквивалентного электрического генератора.

Дипольное представление о сердце лежит в основе теории отведений Эйнтховена, согласно которой:

сердце есть токовый диполь с дипольным моментом Р с, который поворачивается, изменяет свое положение и точку приложения за время сердечного цикла.

(В биологической литературе вместо термина «дипольный момент сердца» обычно используются термины «вектор электродвижущей силы сердца», «электрический вектор сердца».)

По Эйнтховену, сердце располагается в центре равностороннего треугольника, вершинами которого являются: правая рука - левая рука - левая нога. (Вершины треугольника равноудалены как друг

от друга, так и от центра треугольника.) Поэтому разности потенциалов, снятые между этими точками, суть проекции дипольного момента сердца на стороны этого треугольника. Пары точек, между которыми измеряются разности биопотенциалов, со времен Эйнтховена в физиологии принято называть «отведениями».

Таким образом, теория Эйнтховена устанавливает связь между разностью биопотенциалов сердца и разностями потенциалов, регистрируемых в соответствующих отведениях.

Три стандартных отведения

На рисунке 13.9 представлены три стандартных отведения.

Отведение I (правая рука - левая рука), отведение II (правая рука - левая нога), отведение III (левая рука - левая нога). Им соответствуют разности потенциалов U I , U II , U lII . Направление вектора Р с определяет электрическую ось сердца. Линия электрической оси сердца при пересечении с направлением I-го отведения образует угол α. Величина этого угла определяет направление электрической оси сердца.

Соотношения между разностью потенциалов на сторонах треугольника (отведениях) могут быть получены в соответствии с формулой (13.3) как соотношения проекций вектора Р с на стороны треугольника:

Так как электрический момент диполя - сердца - изменяется со временем, то в отведениях будут получены временные зависимости напряжения, которые и называют электрокардиограммами.

Рис. 13.9. Схематическое изображение трех стандартных отведений ЭКГ

Допущения теории Эйнтховена

Электрическое поле сердца на больших расстояниях от него подобно полю токового диполя; дипольный момент - интегральный электрический вектор сердца (суммарный электрический вектор возбужденных в данный момент клеток).

Все ткани и органы, весь организм - однородная проводящая среда (с одинаковым удельным сопротивлением).

Электрический вектор сердца изменяется по величине и направлению за время сердечного цикла, однако начало вектора остается неподвижным.

Точки стандартных отведений образуют равносторонний треугольник (треугольник Эйнтховена), в центре которого находится сердце - токовый диполь. Проекции дипольного момента сердца - отведения Эйнтховена.

Поле диполя - сердца

В каждый данный момент деятельности сердца его дипольный электрический генератор создает вокруг электрическое поле, которое распространяется по проводящим тканям тела и создает потенциалы в его различных точках. Если представить, что основание сердца заряжено отрицательно (имеет отрицательный потенциал), а верхушка положительно, то распределение эквипотенциальных линий вокруг сердца (и силовых линий поля) при максимальном значении дипольного момента Р с будет таким, как на рис. 13.10.

Потенциалы указаны в некоторых относительных единицах. Вследствие асимметричного положения сердца в грудной клетке его электрическое поле распространяется преимущественно в сторону правой руки и левой ноги, и наиболее высокая разность потенциалов может быть зафиксирована в том случае, если электроды разместить на правой руке и левой ноге.

Рис. 13.10. Распределение силовых (сплошные) и эквипотенциальных (прерывистые) линий на поверхности тела

В таблице 13.2 приведены значения максимального дипольного момента сердца в сопоставлении с массой сердца и тела.

Таблица 13.2. Значения дипольного момента Р с

Анализ электрокардиограмм

Теоретический анализ электрокардиограмм сложен. Развитие кардиографии шло в основном эмпирическим путем. Катц указывал, что расшифровка электрокардиограмм производится на основе опыта, опирающегося лишь на самое элементарное понимание теории возникновения биопотенциалов.

Данные ЭКГ обычно дополняют клиническую картину заболевания.

На рисунке 13.11 представлена нормальная электрокардиограмма человека (обозначения зубцов были даны Эйнтховеном и представляют взятые подряд буквы латинского алфавита).

Она представляет собой график изменения во времени разности потенциалов, снимаемой двумя электродами соответствующего отведения за цикл работы сердца. Горизонтальная ось является не только осью времени, но и осью нулевого потенциала. ЭКГ представляет собой кривую, состоящую из трех характерных зубцов, обозначающихся Р, QRS, T, разделенных интервалом нулевого потенциала. Высоты зубцов в различных отведениях обусловлены направлением электрической оси сердца, т.е. углом α (см. рис. 13.9). Электрокардиограмма, записанная при норме в стандартных отведениях, характеризуется тем, что ее зубцы в разных отведениях будут неодинаковы по амплитуде (рис. 13.12).

Рис. 13.11. Электрокардиограмма здорового человека и ее спектр:

Р - деполяризация предсердия; QRS -деполяризация желудочков; Т - репо-

ляризация; частота пульса 60 ударов в минуту (период сокращения - 1 с)

Рис. 13.12. Нормальная ЭКГ в трех стандартных отведениях

Зубцы ЭКГ будут наиболее высокими во II отведении и наиболее низкими в III отведении (при нормальном положении электрической оси).

Сопоставляя кривые, зарегистрированные в трех отведениях, можно судить о характере изменения Р с за цикл работы сердца, на основании чего и составляется представление о состоянии нервномышечного аппарата сердца.

Для анализа ЭКГ используют также ее гармонический спектр.

13.6. Векторкардиография

Обычные электрокардиограммы являются одномерными. В 1957 г. немецкий врач физиолог Шмитт разработал метод объемных кривых (векторкардиография).

Напряжение от двух взаимно перпендикулярных отведений подают на взаимно перпендикулярные пластины осциллографа. При этом на экране получается изображение, состоящее из двух петель - большой и малой. Малая петля заключена в большой и сдвинута к одному из полюсов.

Вторая аналогичная картина может быть получена на втором осциллографе, где одно из двух уже использованных отведений сопоставляется с третьим. Картины на обоих осциллографах можно рассматривать через стереоскопическую систему линз или фотографировать одновременно, чтобы в дальнейшем построить пространственную (трехмерную) модель.

Для расшифровки электрокардиограмм нужен большой опыт. С появлением ЭВМ стало возможным автоматизировать процесс «чтения» кривых. ЭВМ сравнивает кривую данного больного с образцами, хранящимися в ее памяти, и выдает врачу предположительный диагноз.

Иной подход используется при проведении электрокардиотопографического исследования. При этом на грудную клетку накладывают около 200 электродов, строят картину электрического поля по 200 кривым, которые анализируются одновременно.

13.7. Физические факторы, определяющие особенности ЭКГ

ЭКГ у разных людей и даже у одного и того же человека характеризуются большой вариабельностью. Это связано с индивидуальными анатомическими особенностями проводниковой системы сердца, различиями в соотношении мышечных масс анатомических фрагментов сердца, электропроводностью окружающих сердце тканей, индивидуальной реакцией нервной системы на воздействие внешних и внутренних факторов.

Факторы, определяющие особенности ЭКГ у отдельного человека, следующие: 1) положение сердца в грудной клетке, 2) положение тела, 3) дыхание, 4) действие физических раздражителей, в первую очередь физических нагрузок.

Положение сердца в грудной клетке оказывает существенное влияние на форму ЭКГ. При этом надо знать, что направление электрической оси сердца совпадает с анатомической осью сердца. Если угол α, характеризующий направление электрической оси сердца (рис. 13.9), имеет величину:

а) в пределах от 40 до 70°, то такое положение электрической оси сердца считается нормальным; в этих случаях ЭКГ будет иметь обычные соотношения зубцов в I, II, III стандартных отведениях;

б) близкую к 0°, т.е. электрическая ось сердца параллельна линии первого отведения, то такое положение электрической оси сердца обозначается как горизонтальное, и ЭКГ характеризуется высокими амплитудами зубцов в I отведении;

в) близкую к 90°, положение обозначается как вертикальное, зубцы ЭКГ будут наименьшими в I отведении.

Как правило, положение анатомической и электрической осей сердца совпадают. Но в отдельных случаях может быть расхождение: рентгенограмма свидетельствует о нормальном положении сердца, а ЭКГ показывает отклонение электрической оси в ту или другую сторону. Такие расхождения являются диагностически значимыми (клинически это означает одностороннее поражение миокарда).

Изменение положения тела всегда вызывает некоторые изменения положения сердца в грудной клетке. Это сопровождается изменением

электропроводности окружающих сердце сред. ЭКГ у человека с вертикальным положением сердца будет отличаться от нормальной. Если ЭКГ не изменяет своей формы при перемещении тела, то этот факт тоже имеет диагностическое значение; характеристики зубцов изменяются при любом отклонении электрической оси.

Дыхание. Амплитуда и направленность зубцов ЭКГ изменяются при любом отклонении электрической оси, меняясь при вдохе и выдохе. При вдохе электрическая ось сердца отклоняется примерно на 15°, при глубоком вдохе это отклонение может достичь 30°. Нарушения или изменения дыхания (при тренировках, при реабилитационных упражнениях и гимнастике) могут быть диагностированы по изменению ЭКГ.

В медицине роль физических нагрузок чрезвычайно велика. Физическая нагрузка всегда вызывает существенное изменение в ЭКГ. У здоровых людей эти изменения состоят, главным образом, в учащении ритма, форма зубцов тоже изменяется в определенной закономерности. При функциональных пробах с физической нагрузкой могут иметь место такие изменения, которые явно указывают на патологические изменения в работе сердца (тахикардия, экстрасистолия, мерцательная аритмия и т.д.).

Искажения при записи ЭКГ. При записи ЭКГ всегда нужно иметь в виду, что существуют причины, которые могут исказить ее форму: неисправности в усилителе электрокардиографа; переменный ток городской сети может наводить э.д.с. вследствие электромагнитной индукции в рядом расположенных усилительных цепях и даже биологических объектах, нестабильность блока питания и т.д. Расшифровка искаженной ЭКГ приводит к постановке неправильного диагноза.

Диагностическая значимость метода электрокардиографии, несомненно, велика. Совместно с другими методами оценки деятельности сердца (методы регистрации механических колебаний сердца, рентгеновский метод) он позволяет получать важную клиническую информацию о работе сердца.

В последние годы в современной врачебно-диагностической практике стали использоваться компьютерные электрокардиографы со средствами автоматического анализа ЭКГ.

13.8. Основные понятия и формулы

Окончание таблицы

Электроды накладывают (смотрите рисунок) на правой руке (красная марки­ровка), левой руке (желтая маркировка) и на левой ноге (зеленая марки­ровка). Эти электроды по­парно подключаются к электрокардиографу для регистрации каждого из трех стан­дартных отведений. Четвертый электрод устанавливается на правую ногу для под­ключения заземляющего провода (черная маркировка)

Стандартные отведения от конечностей регистрируют при следую­щем попарном подключении электродов:
I отведение - левая рука (+) и правая рука (-);
II отведение - левая нога (+) и правая рука (-);
III отведение - левая нога (+) и левая рука (-).
Как видно на рисунке выше, три стандартных отведения образуют равносто­ронний треугольник (треугольник Эйнтховена), в центре кото­рого расположен электрический центр сердца, или единый сердечный диполь. Перпендикуляры, проведенные из центра сердца, т.е. из места расположения единого сердечного диполя, к оси каждого стандартного отведения, делят каждую ось на две равные части: положительную, об­ращенную в сторону положительного (активного) электрода (+) отведе­ния, и отрицательную, обращенную к отрицательному электроду (-)

Усиленные отведения ЭКГ от конечностей

Усиленные отведения от конечностей регистрируют разность по­тенциалов между одной из конечностей, на которой установлен активный положительный электрод данного отведения, и средним потенциалом двух других конечностей (см. рисунок ниже). В ка­честве отрицательного электрода в этих отведениях используют так называемый объединенный электрод Гольд­бергера, который образуется при соединении через дополнительное со­противление двух конечностей.
Три усиленных однополюсных отведения от конечностей обозна­чают следующим образом:
aVR - усиленное отведение от правой руки;
aVL - усиленное отведение от левой руки;
aVF - усиленное отведение от левой ноги.
Как видно на рисунке ниже, оси усиленных однополюсных отведе­ний от конечностей получают, соединяя электрический центр сердца с местом наложе­ния активного электрода данного отведения, т.е. факти­чески - с одной из вер­шин треугольника Эйнтховена.


Формирование трех усиленных однополюсных отведе­ний от конечностей. Внизу - треугольник Эйнтховена и расположение осей трех усиленных однополюсных отведений от конечностей

Электрический центр сердца как бы делит оси этих отведений на две равные части: положительную, обращенную к активному элек­троду, и отрицательную, обращенную к объединенному электроду Гольдбергера

11749 0

ЭКГ — незаменимый метод диагностики нарушений сердечного ритма и проводящей системы сердца, гипертрофии миокарда желудочков и предсердий, ИБС, ИМ и других заболеваний сердца. Подробное описание теоретических основ ЭКГ, механизмов формирования ЭКГ-изменений при вышеперечисленных заболеваниях и синдромах приведено в многочисленных современных руководствах и монографиях по ЭКГ (В. Н. Орлов, В. В. Мурашко; А. В. Струтынский, М. И. Кечкер; А. З. Чернов, М. И. Кечкер; А. Б. де Луна, Ф. Циммерман, М. Габриэль Хан и др.). В настоящем руководстве мы ограничимся краткими сведениями о методике и технике традиционной ЭКГ в 12 отведениях, о принципах анализа ЭКГ и критериях диагностики ЭКГ-синдромов и заболеваний сердца.

Электрокардиографические отведения

ЭКГ - запись колебаний разности потенциалов, возникающих на поверхности миокарда или в окружающей его проводящей среде при распространении волны возбуждения по сердцу. ЭКГ регистрируют с помощью электрокардиографа - прибора, предназначенного для записи изменения разности потенциалов между двумя точками в электрическом поле сердца (например, на поверхности тела) во время его возбуждения. Современные электрокардиографы отличает техническое совершенство и способность к одноканальной и многоканальной записи ЭКГ. Изменения разности потенциалов на поверхности тела, возникающие во время работы сердца, фиксируют с помощью различных систем отведений ЭКГ. Каждое отведение регистрирует разность потенциалов между двумя точками (электродами) электрического поля сердца. Электроды подключают к гальванометру электрокардиографа. Один из электродов присоединяют к положительному полюсу гальванометра (это положительный, или активный электрод отведения), второй - к его отрицательному полюсу (отрицательный, или индифферентный электрод отведения). В клинической практике широко используют 12 отведений ЭКГ. Регистрация их показателей обязательна для каждого ЭКГ. Регистрируют:

  • 3 стандартных отведения;
  • 3 усиленных однополюсных отведения от конечностей;
  • 6 грудных отведений.

Стандартные двуполюсные отведения, предложенные в 1913 г. Эйнтховеном, фиксируют разность потенциалов между двумя точками электрического поля, удалёнными от сердца и расположенными во фронтальной плоскости (электроды на конечностях). Для записи отведений электроды накладывают на правую руку (красная маркировка), левую руку (жёлтая маркировка) и левую ногу (зелёная маркировка) (рис. 1).

Рис. 1. Схема формирования трех стандартных электрокардиографических отведений от конечностей. Внизу - треугольник Эйнтховена, каждая сторона которого является осью того или иного стандартного отведения

Электроды попарно подключают к электрокардиографу для регистрации каждого из трёх стандартных отведений. Четвёртый электрод устанавливают на правую ногу для подключения заземляющего провода (чёрная маркировка). Стандартные отведения от конечностей регистрируют, попарно подключая электроды следующим образом:

  • I отведение - левая рука (+) и правая рука (-);
  • II отведение - левая нога (+) и правая рука (-);
  • III отведение - левая нога (+) и левая рука (-).

Знаками (+) и (-) обозначены соответствующие подключения электродов к положительному или отрицательному полюсам гальванометра, то есть указаны положительный и отрицательный полюс каждого отведения. Три стандартных отведения образуют равносторонний треугольник (треугольник Эйнтховена). Его вершины - электроды, установленные на правой руке, левой руке и левой ноге. В центре равностороннего треугольника Эйнтховена расположен электрический центр сердца, или точечный единый сердечный диполь, одинаково удаленный от всех трех стандартных отведений. Гипотетическая линия, соединяющая два электрода одного электрокардиографического отведения, называется осью отведения. Оси стандартных отведений - стороны треугольника Эйнтховена. Перпендикуляры, опущенные из электрического центра сердца к оси каждого стандартного отведения, делят каждую ось на две равные части: положительную, обращенную в сторону положительного (активного) электрода (+) отведения, и отрицательную, обращенную к отрицательному электроду (-).

Усиленные отведения от конечностей предложены Гольдбергером в 1942 г. Они регистрируют разность потенциалов между активным положительным электродом данного отведения, установленным на правой руке, левой руке или левой ноге, и средним потенциалом двух других конечностей (рис. 2).

Рис. 2. Схема формирования трех усиленных однополюсных отведений от конечностей. Внизу - треугольник Эйнтховена и расположение осей трех усиленных однополюсных отведений от конечностей

Таким образом, роль отрицательного электрода в этих отведениях играет так называемый объединённый электрод Гольдбергера, образованный соединением двух конечностей через дополнительное сопротивление. Три усиленных однополюсных отведения от конечностей обозначают следующим образом:

  • aVR - усиленное отведение от правой руки;
  • aVL - усиленное отведение от левой руки;
  • aVF - усиленное отведение от левой ноги.

Обозначение усиленных отведений от конечностей - это сокращение английских слов, означающих: (а) - augemented (усиленный); (V) - voltage (потенциал); (К) - right (правый); (L) - left (левый); (F) - foot (нога). Как видно на рис. 2, оси усиленных однополюсных отведений от конечностей получают, соединяя метрический центр сердца с местом наложения активного электрода данного отведения, то есть с одной из вершин треугольника Эйнтховена. Электрический центр сердца делит оси этих отведений на две равные части: положительную, обращенную к активному электроду, и отрицательную, обращенную к объединённому электроду Гольдбергера.

Стандартные и усиленные однополюсные отведения от конечностей регистрируют изменения электродвижущей силы сердца во фронтальной плоскости, то есть в плоскости треугольника Эйнтховена. Для точного и наглядного определения различных отклонений электродвижущей силы сердца во фронтальной плоскости предложена шестиосевая система координат (Бэйли, 1943). Оси трёх стандартных и трёх усиленных отведений от конечностей, проведённые через электрический метр сердца, образуют шестиосевую систему координат. Электрический центр сердца делит ось каждого отведения на положительную и отрицательную часть, обращённую соответственно к активному (положительному) или к отрицательному электроду (рис. 3).

Рис. 3. Шестиосевая система координат по Бэйли

Электрокардиографические отклонения в отведениях от конечностей рассматривают как различные проекции одной и той же электродвижущей силы сердца на оси данных отведений. Таким образом, сопоставляя амплитуду и полярность электрокардиографических комплексов в отведениях, входящих в состав шестиосевой системы координат, можно точно определять величину и направление вектора электродвижущей силы сердца во фронтальной плоскости. Направление осей отведений определяют в градусах. За начало отсчёта принимают радиус, проведённый строго горизонтально из электрического центра сердца влево по направлению к положительному полюсу I стандартного отведения. Положительный полюс II стандартного отведения расположен под углом +60°, отведения aVF - под углом +90°, III стандартного отведения- под углом +120°, aVL - под углом -30°, а aVR - под углом -150° к горизонтали. Ось отведения aVL перпендикулярна оси II стандартного отведения, ось I стандартного отведения перпендикулярна оси aVF, а ось aVR перпендикулярна оси III стандартного отведения.

Грудные однополюсные отведения, предложенные Вильсоном в 1934 г., регистрируют разность потенциалов между активным положительным электродом, установленным в определённых точках на поверхности грудной клетки, и отрицательным объединённым электродом Вильсона (рис. 4).

Рис. 4. Места наложения 6 грудных электродов

Его образуют соединение дополнительных сопротивлений трёх конечностей (правой руки, левой руки и левой ноги) с объединённым потенциалом, близким к нулю (около 0,2 мВ). Для записи ЭКГ активные электроды устанавливают в 6 общепринятых позиций на грудной клетке:

  • отведение V1 - в четвёртом межреберье по правому краю грудины;
  • отведение V2 - в четвёртом межреберье по левому краю грудины;
  • отведение V3 - между второй и четвёртой полицией, примерно на уровне V ребра по левой окологрудинной линии;
  • отведение V4 - в пятом межреберье по левой срединно-ключичной линии;
  • отведение V5 - на том же горизонтальном уровне, что и V4 , по левой передней подмышечной линии;
  • отведение V6 - по левой средней подмышечной линии на том же горизонтальном уровне, что и электроды отведений V4 и V5 .

В отличие от стандартных и усиленных отведений от конечностей грудные отведения регистрируют изменения электродвижущей силы сердца в горизонтальной плоскости. Линия, соединяющая электрический центр сердца с местом расположения активного электрода на грудной клетке, образует ось каждого грудного отведения (рис. 5). Оси отведений V1 и V5 , а также V2 и V6 приблизительно перпендикулярны друг другу.

Рис. 5. Расположение осей 6 грудных электрокардиографических отведений в горизонтальной плоскости

Диагностичсекие возможности ЭКГ могут быть расширены с помощью дополнительных отведений. Их использование особенно целесообразно в тех случаях, когда обычная программа регистрации 12 общепринятых отведений ЭКГ не позволяет диагностировать ту или иную патологию или требуется уточнение количественных параметров обнаруженных изменений. Методика регистрации дополнительных грудных отведений отличается от методики записи 6 общепринятых грудных отведений локализацией активного электрода на поверхности грудной клетки. Роль электрода, соединённого с отрицательным полюсом кардиографа, играет объединённый электрод Вильсона. Для более точной диагностики очаговых изменений миокарда в заднебазальных отделах ЛЖ используют однополюсные отведения V7 -V9 . Активные электроды устанавливают по задней подмышечной (V7 ), лопаточной (V8 ) и околопозвоночной (V9 ) линии на уровне горизонтали электродов V4 -V6 (рис. 6).

Рис. 6. Расположение электродов дополнительных грудных отведений V7 - V9 (а) и осей этих отведений в горизонтальной плоскости (б)

Для диагностики очаговых изменений миокарда задней, переднебоковой и верхних отделов передней стенки применяют двухполюсные отведения по Небу. Для записи этих отведений применяют электроды для регистрации трёх стандартных отведений от конечностей. Электрод с красной маркировкой, обычно устанавливаемый на правой руке, помещают во второе межреберье по правому краю грудины; электрод с левой ноги (зелёная маркировка) переставляют в позицию грудного отведения V4 , (у верхушки сердца); электрод с жёлтой маркировкой, устанавливаемый на левую руку, помещают на том же горизонтальном уровне, что и зелёный электрод, но по задней подмышечной линии (рис. 7). Если переключатель отведений электрокардиографа находится в положении I стандартного отведения, регистрируют отведение. Перемещая переключатель на II и III стандартные отведения, записывают соответственно отведения (Inferior, I) и (Anterior, А). Для диагностики гипертрофии правых отделов сердца и очаговых изменений ПЖ применяют отведения V38 - V68 . Их активные электроды помещают на правой половине грудной клетки (рис. 8).

Рис. 7. Расположение электродов и осей дополнительных грудных отведений по Небу

Рис. 8. Расположение электродов дополнительных грудных отведений V38 - V68

Струтынский А.В.

Электрокардиография


При разработке собственного струнного гальванометра Эйнтховен взял за основу конструкцию магнитоэлектрического гальванометра Депре -Д’Арсонваля. Он заменил подвижные части (катушку и зеркало) на тонкую посеребрённую кварцевую нить (струну). По нити пропускался электрический сигнал сердца, регистрируемый с поверхности кожи. Вследствие этого на нить в поле электромагнита действовала сила Ампера, прямо пропорциональная величине силы тока (), и нить отклонялась нормально к направлению линий магнитного поля. Кварцевые нити изготовлялись следующим образом: на конце стрелы закреплялось кварцевое волокно таким образом, чтобы оно удерживало стрелу при натянутой тетиве лука; волокно нагревалось до той степени, когда оно не было способно сдерживать натяжение тетивы, и стрела выстреливала, вытягивая волокно в тонкую однородную нить диаметром 7?. Далее нить требовалось покрыть слоем серебра, для этого Эйнтховен сконструировал специальную камеру, в которой она бомбардировалась беспримесным серебром. Одной из самых больших проблем было создание источника сильного и постоянного по значению магнитного поля. Эйнтховену удалось создать электромагнит, обеспечивавший поле в 22 000 Гс, однако он настолько разогревался в рабочем состоянии, что для него пришлось подвести систему водяного охлаждения. Другая проблема заключалась в создании системы записи и измерения отклонений нити. Посоветовавшись с Дондерсом и Снелленом, Эйнтховен сконструировал систему линз, позволявшую фотографировать тень нити. В качестве источника света он использовал массивную дуговую лампу. Устройство фотографической камеры включало в себя фотографическую пластинку, которая во время снятия показаний двигалась с постоянной скоростью, регулируемой масляным поршнем. Пластинка передвигалась под линзой, на которой была нанесена шкала в вольтах. Временна?я шкала наносилась на саму пластинку тенями от спиц вращающегося с постоянной угловой скоростью велосипедного колеса.

Благодаря использованию очень лёгкой и тонкой нити и возможности изменять её напряжение для регулирования чувствительности прибора струнный гальванометр позволил получить более точные выходные данные, чем капиллярный электрометр. Первую статью о записывании электрокардиограммы человека на струнном гальванометре Эйнтховен опубликовал в 1903 году. Существует мнение, что Эйнтховену удалось достичь точности, превосходящей многие современные электрокардиографы.

В 1906 году Эйнтховен опубликовал статью «Телекардиограмма» (фр. Le t?l?cardiogramme), в которой описал метод записи электрокардиограммы на расстоянии и впервые показал, что электрокардиограммы различных форм сердечных заболеваний имеют характерные различия. Он привёл примеры кардиограмм, снятых у пациентов с гипертрофией правого желудочка при митральной недостаточности, гипертрофией левого желудочка при аортальной недостаточности, гипертрофией левого ушка предсердия при митральном стенозе, ослабленной сердечной мышцей, с различными степенями блокады сердца при экстрасистоле.

Треугольник Эйнтховена

В 1913 году Виллем Эйнтховен в сотрудничестве с коллегами опубликовал статью, в которой предложил к использованию три стандартных отведения: от левой руки к правой, от правой руки к ноге и от ноги к левой руке с разностями потенциалов: V1,V2 и V3 соответственно. Такая комбинация отведений составляет электродинамически равносторонний треугольник с центром в источнике тока в сердце. Эта работа положила начало векторкардиографии, получившей развитие в 1920-х годах ещё при жизни Эйнтховена.

Закон Эйнтховена

Закон Эйтховена является следствием закона Кирхгофа и утверждает, что разности потенциалов трёх стандартных отведений подчиняются соотношению V1 + V3 = V2. Закон имеет применение, когда вследствие дефектов записи не удаётся идентифицировать зубцы P, Q, R, S, T и U для одного из отведений; в таких случаях можно вычислить значение разности потенциалов, при условии, если для других отведений получены нормальные данные.

Поздние годы и признание

В 1924 году Эйнтховен прибыл в США , где помимо посещения различных медицинских заведений прочитал лекцию из цикла Лекций Харви (англ. Harvey Lecture Series), положил начало циклу Лекций Данхема (англ. Dunham Lecture Series) и узнал о присуждении ему Нобелевской премии. Примечательно, что когда Эйнтховен в первый раз прочитал эту новость в Boston Globe, он подумал, что это либо шутка, либо опечатка. Однако его сомнения развеялись, когда он ознакомился с сообщением от Reuters. В том же году он получил премию с формулировкой «За открытие техники электрокардиограммы». За свою карьеру Эйнтховен написал 127 научных статей. Последняя его работа была опубликована посмертно, в 1928 году, и посвящалась токам действия сердца. Исследования Виллема Эйнтховена порой причисляются к десяти величайшим открытиям в области кардиологии в XX веке. В 1979 году был основан Фонд Эйнтховена, целью которого является организация конгрессов и семинаров по кардиологии и кардиохирургии.

ЭКГ (электрокардиография, или попросту, кардиограмма) является основным методом исследования сердечной деятельности. Метод настолько прост, удобен, и, вместе с тем, информативен, что к нему прибегают повсеместно. К тому же ЭКГ абсолютно безопасна, и к ней нет противопоказаний.

Поэтому ее используют не только диагностики сердечно-сосудистых заболеваний, но и в качестве профилактики при плановых медицинских осмотрах, перед спортивными соревнованиями. Помимо этого ЭКГ регистрируют для определения пригодности к некоторым профессиям, связанным с тяжелыми физическими нагрузками.

Наше сердце сокращается под действием импульсов, которые проходят по проводящей системе сердца. Каждый импульс представляет собой электрический ток. Этот ток зарождается в месте генерации импульса в синсусовом узле, и далее идет на предсердия и на желудочки. Под действием импульса происходит сокращение (систола) и расслабление (диастола) предсердий и желудочков.

Причем систолы и диастолы возникают в строгой последовательности – сначала в предсердиях (в правом предсердии чуть раньше), а затем в желудочках. Только так обеспечивается нормальная гемодинамика (кровообращение) с полноценным снабжением кровью органов и тканей.

Электрические токи в проводящей системе сердца создают вокруг себя электрическое и магнитное поле. Одна из характеристики этого поля – электрический потенциал. При ненормальных сокращениях и неадекватной гемодинамике величина потенциалов будет отличаться от потенциалов, свойственных сердечным сокращениям здорового сердца. В любом случае, как в норме, так и при патологии электрические потенциалы ничтожно малы.

Но ткани обладают электропроводностью, и поэтому электрическое поле работающего сердца распространяется по всему организму, а потенциалы можно фиксировать на поверхности тела. Все, что для этого нужно – это высокочувствительный аппарат, снабженный датчиками или электродами. Если с помощью этого аппарата, именуемого электрокардиографом, регистрировать электрические потенциалы, соответствующие импульсам проводящей системы, то можно судить о работе сердца и диагностировать нарушения его работы.

Эта идея легла в основу соответствующей концепции, разработанной голландским физиологом Эйнтховеном. В конце XIX в. этот ученый сформулировал основные принципы ЭКГ и создал первый кардиограф. В упрощенном виде электрокардиограф представляет собой электроды, гальванометр, систему усиления, переключатели отведений, и регистрирующее устройство. Электрические потенциалы воспринимаются электродами, которые накладываются на различные участки тела. Выбор отведения осуществляется с помощью переключателя аппарата.

Поскольку электрические потенциалы ничтожно малы, они сначала усиливаются, а затем подаются на гальванометр, а оттуда, в свою очередь на регистрирующее устройство. Это устройство представляет собой чернильный самописец и бумажную ленту. Уже вначале XX в. Эйнтховен впервые применил ЭКГ в диагностических целях, за что и был удостоен Нобелевской премии.

ЭКГ Треугольник Эйнтховена

Согласно теории Эйнтховена сердце человека, расположенное в грудной клетке со смещением влево, находится в центре своеобразного треугольника. Вершины этого треугольника, который так и называют треугольником Эйнтховена, образованы тремя конечностями – правой рукой, левой рукой, и левой ногой. Эйнтховен предложил регистрировать разницу потенциалов между электродами, накладываемыми на конечности.

Разница потенциалов определяется в трех отведениях, которые именуют стандартными, и обозначают римскими цифрами. Эти отведения являются сторонами треугольника Эйнтховена. При этом в зависимости от отведения, в котором происходит запись ЭКГ, один и тот же электрод может быть активным, положительным (+), или отрицательным (-):

  1. Левая рука (+) – правая рука (-)
  2. Правая рука (-) – левая нога (+)
  • Левая рука (-) – левая нога (+)

Рис. 1. Треугольник Эйнтховена.

Немногим позже было предложено регистрировать усиленные однополюсные отведения от конечностей – вершин треугольника Эйтховена. Эти усиленные отведения обозначают английскими аббревиатурами aV (augmented voltage – усиленный потенциал).

aVL (left) – левая рука;

aVR (right) – правая рука;

aVF (foot) – левая нога.

В усиленных однополюсных отведениях определяется разность потенциалов между конечностью, на которую накладывается активный электрод, и средним потенциалом двух других конечностей.

В середине XX в. ЭКГ была дополнена Вильсоном, который помимо стандартных и однополюсных отведений предложил регистрировать электрическую активность сердца с однополюсных грудных отведений. Эти отведения обозначают буквой V. При ЭКГ исследовании пользуются шестью однополюсными отведениями, расположенными на передней поверхности грудной клетки.

Поскольку сердечная патология, как правило, случаев затрагивает левый желудочек сердца, большинство грудных отведений V располагаются в левой половине грудной клетки.

Рис. 2.

V 1 – четвертое межреберье у правого края грудины;

V 2 – четвертое межреберье у левого края грудины;

V 3 – середина между V 1 и V 2 ;

V 4 – пятое межреберье по среднеключичной линии;

V 5 – по горизонтали по передней подмышечной линии на уровне V 4 ;

V 6 – по горизонтали по средней подмышечной линии на уровне V 4 .

Эти 12 отведений (3 стандартных + 3 однополюсных от конечностей + 6 грудных) являются обязательными. Их регистрируют и оценивают во всех случаях проведения ЭКГ с диагностической или с профилактической целью.

Помимо этого существует ряд дополнительных отведений. Их регистрируют редко и по определенным показаниям, например, когда нужно уточнить локализацию инфаркта миокарда, диагностировать гипертрофию правого желудочка, предсердий, и т.д. К дополнительным ЭКГ отведениям относят грудные:

V 7 – на уровне V 4 -V 6 по задней подмышечной линии;

V 8 – на уровне V 4 -V 6 по лопаточной линии;

V 9 – на уровне V 4 -V 6 по околопозвоночной (паравертебральной) линии.

В редких случаях для диагностики изменений верхних отделов сердца грудные электроды могут располагаться на 1-2 межреберья выше, чем обычно. При этом обозначают V 1 , V 2 , где верхний индекс отображает, на какое количество межреберий выше располагается электрод.

Иногда для диагностики изменений в правых отделах сердца грудные электроды накладывают на правую половину грудной клетки в точках, которые симметричны таковым при стандартной методике регистрации грудных отведений в левой половине грудной клетки. В обозначении таких отведений используют букву R , что значит right, правый – В 3 R , В 4 R .

Кардиологи иногда прибегают к двуполюсным отведениям, в свое время предложенным немецким ученым Небом. Принцип регистрации отведений по Небу приблизительно такой же, как и регистрации стандартних отведений I, II, III. Но для того чтобы образовался треугольник, электроды накладывают не на конечности, а на грудную клетку.

Электрод от правой руки руки устанавливают во втором межреберье у правого края грудины, от левой руки – по задній подмышечной линии на уровне вертушки сердца, а от левой ноги – непосредственно в точку проекции вертушки сердца, соответствующую V 4 . Между этими точками регистрируют три отведения, которые обозначают латинскими буквами D, A, I:

D (dorsalis) – заднее отведение, соответствует стандартному отведению I, имеет сходство с V 7 ;

A (anterior) – переднее отведение, соотвествует стандартному отведению II, имеет сходство с V 5 ;

I (inferior) – нижнее отведение, соответствует стандартному отведению III, имеет сходство с V 2 .

Для диагностики заднебазальных форм инфаркта регистрируют отведения по Слопаку, обозначаемые буквой S. При регистрации отведений по Слопаку електрод, накладываемый на левую руку, устанавливают по левой задней подмышечной линии на уровне верхушечного толчка, а електрод от правой руки перемещают поочередно в четыре точки:

S 1 – у левого края грудины;

S 2 –по среднеключичной линии;

S 3 – посредине между С 2 и С 4 ;

S 4 – по передней подмышечной линии.

В редких случаях для проведения ЭКГ диагностики прибегают к прекардиальному картированию, когда 35 электродов в 5 рядов по 7 в каждом располагаются на левой переднебоковой поверхности грудной клетки. Иногда электроды располагают в эпигастральной области, продвигают в пищевод на расстоянии 30-50 см от резцов, и даже вводят в полость камер сердца при его зондировании через крупные сосуды. Но все эти специфические методики регистрации ЭКГ осуществляются только в специализированных центрах, имеющих необходимое для этого оснащение и квалифицированных врачей.

Методика ЭКГ

В плановом порядке запись ЭКГ проводится в специализированном помещении, оборудованном электрокардиографом. В некоторых современных кардиографах вместо обычного чернильного самописца используется термопечатающий механизм, который с помощью тепла выжигает кривую кардиограммы на бумаге. Но в этом случае для кардиограммы нужна особая бумага или термобумага. Для наглядности и удобства подсчета параметров ЭКГ в кардиографах используют миллиметровую бумагу.

В кардиографах последних модификаций ЭКГ выводится на экран монитора, посредством прилагаемого программного обеспечения расшифровывается, и не только распечатывается на бумаге, но и сохраняется на цифровом носителе (диск, флешка). Несмотря на все эти усовершенствования принцип устройства кардиографа регистрации ЭКГ практически не изменился с того времени, как его разработал Эйнтховен.

Большинство современных электрокардиографов являются многоканальными. В отличие от традиционных одноканальных приборов они регистрируют не одно, а несколько отведений сразу. В 3-х канальных аппаратах регистрируются сначала стандартные I, II, III, затем усиленные однополюсные отведения от конечностей aVL , aVR, aVF, и затем грудные – V 1-3 и V 4-6 . В 6-канальных электрокардиографах сначала регистрируют стандартные и однополюсные отведения от конечностей, а затем все грудные отведения.

Помещение, в котором осуществляется запись, должно быть удалено от источников электромагнитных полей, рентгеновского излучения. Поэтому кабинет ЭКГ не следует размещать в непосредственной близости от рентгенологического кабинета, помещений, где проводятся физиотерапевтические процедуры, а также электромоторов, силовых щитов, кабелей, и т.д.

Специальная подготовка перед записью ЭКГ не проводится. Желательно чтобы пациент был отдохнувшим и выспавшимся. Предшествующие физические и психоэмоциональные нагрузки могут сказаться на результатах, и поэтому нежелательны. Иногда прием пищи тоже может отразиться на результатах. Поэтому ЭКГ регистрируют натощак, не ранее чем через 2 часа после еды.

Во время записи ЭКГ обследуемый лежит на ровной жесткой поверхности (на кушетке) в расслабленном состоянии. Места для наложения электродов должны быть освобождены от одежды.

Поэтому нужно раздеться до пояса, голени и стопы освободить от одежды и обуви. Электроды накладываются на внутренние поверхности нижних третей голеней и стоп (внутренняя поверхность лучезапястных и голеностопных суставов). Эти электроды имеют вид пластин, и предназначены для регистрации стандартных отведений и однополюсных отведений с конечностей. Эти же электроды могут выглядеть как браслеты или прищепки.

При этом каждой конечности соответствует свой собственный электрод. Чтобы избежать ошибок и путаницы, электроды или провода, посредством которых они подключаются к аппарату, маркируют цветом:

  • К правой руке – красный;
  • К левой руке – желтый;
  • К левой ноге – зеленый;
  • К правой ноге – черный.

Зачем нужен черный электрод? Ведь правая нога не входит в треугольник Эйнтховена, и с нее не снимаются показания. Черный электрод предназначен для заземления. Согласно основным требованиям безопасности вся электроаппаратура, в т.ч. и электрокардиографы, должны быть заземлена.

Для этого кабинеты ЭКГ снабжаются заземляющим контуром. А если ЭКГ записывается в неспециализированном помещении, например, на дому работниками скорой помощи, аппарат заземляют на батарею центрального отопления или на водопроводную трубу. Для этого есть специальный провод с фиксирующим зажимом на конце.

Электроды для регистрации грудных отведений имеют вид груши-присоски, и снабжены проводом белого цвета. Если аппарат одноканальный, присоска одна, и ее передвигают по требуемым точкам на грудной клетке.

В многоканальных приборах этих присосок шесть, и их тоже маркируют цветом:

V 1 – красный;

V 2 – желтый;

V 3 – зеленый;

V 4 – коричневый;

V 5 – черный;

V 6 – фиолетовый или синий.

Важно, чтобы все электроды плотно прилегали к коже. Сама кожа должна быть чистой, лишенной сально-жировых и потовых выделений. В противном случае качество электрокардиограммы может ухудшиться. Между кожей и электродом возникают наводные токи, или попросту, наводка. Довольно часто наводка возникает у мужчин с густым волосяным покровом на грудной клетке и на конечностях. Поэтому здесь особо тщательно нужно следить за тем, чтобы контакт между кожей и электродом не был нарушен. Наводка резко ухудшает качество электрокардиограмме, на которой вместо ровной линии отображаются мелкие зубцы.

Рис. 3. Наводные токи.

Поэтому место наложения электродов рекомендуют обезжирить спиртом, смачивают мыльным раствором или токопроводящим гелем. Для электродов с конечностей подойдут и марлевые салфетки, смоченные с физраствором. Однако следует учитывать, что физраствор быстро высыхает, и контакт может нарушиться.

Перед тем как проводить запись, необходимо проверить калибровку прибора. Для этого на нем есть специальная кнопка – т.н. контрольный милливольт. Данная величина отображает высоту зубца при разнице потенциалов 1 милливольт (1 мV). В электрокардиографии принято значение контрольного милливольта в 1 см. Это значит, что при разнице электрических потенциалов в 1 мV высота (или глубина) ЭКГ зубца равна 1 см.

Рис. 4. Каждой записи ЭКГ должна предшествовать проверка контрольного милливольта.

Запись электрокардиограмм осуществляется при скорости движения ленты от 10 до 100 мм/с. Правда, крайние значения используются очень редко. В основном кардиограмму записывают со скоростью 25 или 50 мм/с. Причем последняя величина, 50 мм/с, является стандартной, и чаще всего используемой. Скорость 25 мм/ч применяют там, где нужно регистрировать наибольшее количество сокращений сердца. Ведь чем меньше скорость движения ленты, тем большее количество сокращений сердца она отображает в единицу времени.

Рис. 5. Одна и та же ЭКГ, записанная со скоростью 50 мм/с и 25 мм/с.

Запись ЭКГ проводится при спокойном дыхании. При этом обследуемый не должен разговаривать, чихать, кашлять, смеяться, делать резкие движения. При регистрации III стандартного отведения может потребоваться глубокий вдох с кратковременной задержкой дыхания. Делается это для того чтобы отличить функциональные изменения, которые довольно часто обнаруживаются в этом отведении, от патологических.

Участок кардиограммы с зубцами, соответствующий систоле и диастоле сердца, именуют сердечным циклом. Обычно в каждом отведении регистрируют 4-5 сердечных циклов. В большинстве случаев этого достаточно. Однако при нарушениях сердечного ритма, при подозрении на инфаркт миокарда может потребоваться запись до 8-10 циклов. Для перехода с одного отведения на другой медсестра пользуется специальным переключателем.

По окончании записи обследуемого освобождают от электродов, и ленту подписывают – в самом ее начале указывают Ф.И.О. и возраст. Иногда для детализации патологии или определения физической выносливости ЭКГ проводят на фоне медикаментозных или физических нагрузок. Медикаментозные тесты проводят с различными препаратами – атропином, курантилом, калия хлоридом, бета-адреноблокаторами. Физические нагрузки осуществляются на велотренажере (велоэргометрия), с ходьбой на беговой дорожке, или пешими прогулками на определенные расстояния. Для полноты информации ЭКГ регистрируется до нагрузки и после, а также непосредственно во время велоэргометрии.

Многие негативные изменения работы сердца, например, нарушения ритма, имеют преходящий характер, и могут не выявляться во время записи ЭКГ даже с большим количеством отведений. В этих случаях проводят холтеровское мониторирование – записывают ЭКГ по Холтеру в непрерывном режиме в течение суток. Портативный регистратор, снабженный электродами, крепят к телу пациента. Затем пациент направляется домой, где ведет обычный для себя режим. По истечении суток регистрирующее устройство снимают, и расшифровывают имеющиеся данные.

Нормальная ЭКГ выглядит примерно следующим образом:

Рис. 6. Лента с ЭКГ

Все отклонения в кардиограмме от срединной линии (изолинии) именуют зубцами. Отклоненные вверх от изолинии зубцы принято считать положительными, вниз – отрицательными. Промежуток между зубцами называют сегментом, а зубец и соответствующий ему сегмент – интервалом. Прежде чем выяснить, что представляет собой тот или иной зубец, сегмент или интервал, стоит вкратце остановиться на принципе формирования ЭКГ кривой.

В норме сердечный импульс зарождается в синоатриальном (синусовом) узле правого предсердия. Затем он распространяется на предсердия – сначала правое, затем левое. После этого импульс направляется в предсердно-желудочковый узел (атриовентрикулярное или АВ-соединение), и далее по пучку Гиса. Ветви пучка Гиса или ножки (правая, левая передняя и левая задняя) заканчиваются волокнами Пуркинье. С этих волокон импульс распространяется непосредственно на миокард, приводя к его сокращению – систоле, которая сменяется расслаблением – диастолой.

Прохождение импульса по нервному волокну и последующее сокращение кардиомиоцита – сложный электромеханический процесс, в ходе которого меняются значения электрических потенциалов по обе стороны мембраны волокна. Разница между этими потенциалами называют трансмембранным потенциалом (ТМП). Эта разница обусловлена неодинаковой проницаемостью мембраны для ионов калия и натрия. Калия больше внутри клетки, натрия – вне ее. При прохождении импульса эта проницаемость изменяется. Точно так же изменяется соотношение внутриклеточного калия и натрия, и ТМП.

При прохождении возбуждающего импульса ТМП внутри клетки повышается. При этом изолиния смещается вверх, образуя восходящую часть зубца. Данный процесс именуют деполяризацией. Затем после прохождения импульса ТМП старается принять исходное значение. Однако проницаемость мембраны для натрия и калия не сразу приходит в норму, и занимает определенное время.

Этот процесс, именуемый реполяризацией, на ЭКГ проявляется отклонением изолинии вниз и образованием отрицательного зубца. Затем поляризация мембраны принимает исходное значение (ТМП) покоя, и ЭКГ вновь принимает характер изолинии. Это соответствует фазе диастолы сердца. Примечательно, что один и тот же зубец может выглядеть как положительно, так и отрицательно. Все зависит от проекции, т.е. отведения, в котором он регистрируется.

Компоненты ЭКГ

Зубцы ЭКГ принято обозначать латинскими прописными буквами, начиная с буквы Р.


Рис. 7. Зубцы, сегменты и интервалы ЭКГ.

Параметры зубцов – направление (положительный, отрицательный, двухфазный), а также высота и ширина. Поскольку высота зубца соответствует изменению потенциала, ее измеряют в мV. Как уже говорилось, высота 1 см на ленте соответствует отклонению потенциала, равному 1 мV (контрольный милливольт). Ширина зубца, сегмента или интервала соответствует продолжительности фазы определенного цикла. Это временная величина, и ее принято обозначать не в миллиметрах, а миллисекундах (мс).

При движении ленты со скоростью 50 мм/с каждый миллиметр на бумаге соответствует 0,02 с, 5 мм – 0,1 мс, а 1 см – 0,2 мс. Все очень просто: если 1 см или 10 мм (расстояние) разделить на 50 мм/с (скорость), то мы получим 0.2 мс (время).

Зубец Р. Отображает распространение возбуждения по предсердиям. В большинстве отведений он положителен, и его высота составляет 0,25 мV, а ширина – 0,1 мс. Причем начальная часть зубца соответствует прохождению импульса по правому желудочку (поскольку он возбуждается раньше), а конечная – по левому. Зубец Р может быть отрицательным или двухфазным в отведениях III, aVL, V 1 , и V 2 .

Интервал P- Q (или P- R) – расстояние от начала зубца P до начала следующего зубца – Q или R. Этот интервал соответствует деполяризации предсердий и прохождению импульса через АВ-соединение, и далее по пучку Гиса и его ножкам. Величина интервала зависит от частоты сердечных сокращений (ЧСС) – чем она больше, тем интервал короче. Нормальные величины находятся в пределах 0,12 – 0,2 мс. Широкий интервал свидетельствует о замедлении предсердно-желудочковой проводимости.

Комплекс QRS . Если P отображает работу предсердий, то следующие зубцы, Q,R,S и T, отображают функцию желудочков, и соответствуют различным фазам деполяризации и реполяризации. Совокупность зубцов QRS так и называют – желудочковый комплекс QRS. В норме его ширина должна составлять не более 0,1 мс. Превышение свидетельствует о нарушении внутрижелудочковой проводимости.

Зубец Q . Соответствует деполяризации межжелудочковой перегородки. Этот зубец всегда отрицательный. В норме ширина этого зубца не превышает 0,3, мс, а его высота – не более ¼ следующего за ним зубца R в том же отведении. Исключение составляет лишь отведение aVR, где регистрируется глубокий зубец Q. В остальных отведениях глубокий и уширенный зубец Q (на медицинском сленге – куище) может указывать на серьезную патологию сердца – на острый инфаркт миокарда или рубцы после перенесенного инфаркта. Хотя возможны и другие причины – отклонения электрической оси при гипертрофии камер сердца, позиционные изменения, блокады ножек пучка Гиса.

Зубец R .Отображает распространение возбуждения по миокарду обоих желудочков. Этот зубец положительный, и его высота не превышает 20 мм в отведениях от конечностей, и 25 мм в грудных отведениях. Высота зубца R неодинакова а в различных отведениях. В норме во II отведении он наибольший. В рудных отведениях V 1 и V 2 он невысок (из-за этого его часто обозначают буквой r), затем увеличивается в V 3 и V 4 , в V 5 и V 6 вновь снижается. При отсутствии зубца R комплекс принимает вид QS, что может свидетельствовать о трансмуральном или рубцовом инфаркте миокарда.

Зубец S . Отображает прохождение импульса по нижней (базальной) части желудочков и межжелудочковой перегородке. Это отрицательный зубец, и его глубина варьирует в широких пределах, но не должна превышать 25 мм. В некоторых отведениях зубец S может отсутствовать.

Зубец Т . Конечный отдел ЭКГ комплекса, отображающий фазу быстрой реполяризации желудочков. В большинстве отведений этот зубец положительный, но может быть и отрицательным в V 1 , V 2 , aVF. Высота положительных зубцов напрямую зависит от высоты зубца R в этом же отведении – чем выше R, тем выше Т. Причины отрицательного зубца Т многообразны – мелкоочаговый инфаркт миокарда, дисгормональные нарушения, предшествующий прием пищи, изменения электролитного состава крови, и многое другое. Ширина зубцов Т обычно не превышает 0,25 мс.

Сегмент S- T – расстояние от конца желудочкового комплекса QRS до начала зубца Т, соответствующее полному охвату возбуждением желудочков. В норме этот сегмент расположен на изолинии или отклоняется от нее незначительно – не более 1-2 мм. Большие отклонения S-T свидетельствуют о тяжелой патологии – о нарушении кровоснабжения (ишемии) миокарда, которая может перейти в инфаркт. Возможны и другие, менее серьезные причины – ранняя диастолическая деполяризация, сугубо функциональное и обратимое расстройство преимущественно у молодых мужчин до 40 лет.

Интервал Q- T – расстояние от начала зубца Q до зубца Т. Соответствует систоле желудочков. Величина интервала зависит от ЧСС – чем быстрее бьется сердце, тем интервал короче.

Зубец U . Непостоянный положительный зубец, который регистрируется вслед за зубцом Т спустя 0,02-0,04 с. Происхождение этого зубца до конца не выяснено, и он не имеет диагностического значения.

Расшифровка ЭКГ

Ритм сердца . В зависимости от источника генерации импульсов проводящей системы различают синусовый ритм, ритм из АВ-соединения, и идиовентрикулярный ритм. Из этих трех вариантов только синусовый ритм является нормальным, физиологическим, а остальные два варианта свидетельствуют о серьезных нарушениях в проводящей системе сердца.

Отличительной чертой синусового ритма является наличие предсердных зубцов Р – ведь синусовый узел расположен в правом предсердии. При ритме из АВ соединения зубец Р будет наслаиваться на комплекс QRS (при этом он не виден, или же следовать за ним. При идиовентрикулярном ритме источник водителя ритма находится в желудочках. При этом на ЭКГ регистрируются уширенные деформированные комплексы QRS.

ЧСС . Рассчитывается по величине промежутков между зубцами R соседних комплексов. Каждый комплекс соответствует сердечному сокращению. Рассчитать ЧСС при этом несложно. Нужно разделить 60 на промежуток R-R, выраженный в секундах. Например, промежуток R-R равен 50 мм или 5 см. При скорости движения ленты 50 м/с он равен 1 с. 60 делим на 1, и получаем 60 ударов сердца в минуту.

В норме ЧСС находится в пределах 60-80 уд/мин. Превышение этого показателя свидетельствует об учащении сердечных сокращений – о тахикардии, а снижение – об урежении, о брадикардии. При нормальном ритме промежутки R-R на ЭКГ должны быть одинаковыми, или примерно одинаковыми. Допускается небольшая разница значений R-R, но не более 0,4 мс, т.е. 2 см. Такая разница характерна для дыхательной аритмии. Это физиологическое явление, которое нередко наблюдается у молодых людей. При дыхательной аритмии отмечается незначительное урежение ЧСС на высоте вдоха.

Угол альфа. Этот угол отображает суммарную электрическую ось сердца (ЭОС) – общий направляющий вектор электрических потенциалов в каждом волокне проводящей системы сердца. В большинстве случаев направления электрической и анатомической оси сердца совпадают. Угол альфа определяют по шестиосевой системе координат по Бейли, где в качестве осей используются стандартные и однополюсные отведения от конечностей.

Рис. 8. Шестиосевая система координат по Бейли.

Угол альфа определяется между осью первого отведения и осью, где регистрируется наибольший зубец R. В норме этот угол составляет от 0 до 90 0 . При этом нормальное положение ЭОС – от 30 0 до 69 0 , вертикальное – от 70 0 до 90 0 , а горизонтальное – от 0 до 29 0 . Угол 91 и более свидетельствует об отклонении ЭОС вправо, а отрицательные значения этого угла – об отклонении ЭОС влево.

В большинстве случаев для определения ЭОС не используют шестиосевую систему координат, а делают это приблизительно, по величине R в стандартных отведениях. При нормальном положении ЭОС высота R наибольшая во II отведении, и наименьшая в III.

С помощью ЭКГ диагностируют различные нарушения ритма и проводимости сердца, гипертрофию камер сердца (в основном – левого желудочка), и многое другое. ЭКГ играет ключевую роль в диагностике инфаркта миокарда. По кардиограмме без труда можно определить давность и распространенность инфаркта. О локализации судят по отведениям, в которых обнаружены патологические изменения:

I – передняя стенка левого желудочка;

II, aVL, V 5 , V 6 – переднебоковая, боковая стенки левого желудочка;

V 1 -V 3 – межжелудочковая перегородка;

V 4 – верхушка сердца;

III, aVF – заднедиафрагмальная стенка левого желудочка.

Также ЭКГ используется для диагностики остановки сердца и оценки эффективности реанимационных мероприятий. При остановке сердца всякая электрическая активность прекращается, и на кардиограмме видна сплошная изолиния. Если реанимационные м6роприятия (непрямой массаж сердца, введение лекарств) оказались успешными, на ЭКГ вновь отображаются зубцы, соответствующие работе предсердий и желудочков.

А если пациент смотрит и улыбается, а на ЭКГ изолиния то возможны два варианта – либо ошибки в технике регистрации ЭКГ, либо неисправности аппарата. Регистрацию ЭКГ проводит медсестра, интерпретацию полученных данных – кардиолог или врач функциональной диагностики. Хотя ориентироваться в вопросах ЭКГ диагностики обязан врач любой специальности.



© dagexpo.ru, 2024
Стоматологический сайт