Эквипотенциальные точки. Эквипотенциальные поверхности. Эквипотенциальные линии их свойства

21.09.2019

Эквипотенциальные поверхности это такие поверхности каждая из точек, которых обладают одинаковым потенциалом. То есть на эквипотенциальной поверхности электрический потенциал имеет неизменное значение. Такой поверхностью является поверхности проводников, так как их потенциал одинаков.

Представим себе такую поверхность, для двух точек которой разность потенциалов будет равна нулю. Это и будет эквипотенциальная поверхность. Поскольку потенциал на ней одинаков. Если рассматривать эквипотенциальную поверхность в двухмерном пространстве, допустим на чертеже, то она будет иметь форму лини. Работа сил электрического поля по перемещению электрического заряда вдоль этой лини будет равна нулю.

Одним из свойств эквипотенциальных поверхностей является то, что они всегда перпендикулярны силовым линиям поля. Это свойство можно сформулировать и наоборот. Любая поверхность, которая перпендикулярна во всех точках к линиям электрического поля и называется эквипотенциальной.

Также такие поверхности никогда не пересекаются между собой. Так как это означало бы различие потенциала в пределах одной поверхности, что противоречит определению. Еще они всегда замкнуты. Поверхности равного потенциала не могут начаться и уйти в бесконечность, не имея при этом четких границ.

Как правило, на чертежах нет необходимости изображать поверхности целиком. Чаще изображают перпендикулярное сечение к эквипотенциальным поверхностям. Таким образом, они вырождаются в линии. Этого оказывается вполне достаточно для оценки распределения данного поля. При изображении графически поверхности располагают с одинаковым интервалом. То есть между двумя соседними поверхностям соблюдается одинаковый, шаг скажем в один вольт. Тогда по густоте линий образованных сечением эквипотенциальных поверхностей можно судить о напряжённости электрического поля.

Для примера рассмотрим поле, создаваемое точечным электрическим зарядом. Силовые линии такого поля радиальные. То есть они начинаются в центре заряда и направлены на бесконечность, если заряд положительный. Или направлены к заряду, если он отрицательный. Эквипотенциальные поверхности такого поля будут иметь форму сфер с центром в заряде и расходящихся от него. Если же изобразить двухмерное сечение, то тогда эквипотенциальные лини будут в виде концентрических окружностей, центр которых также расположен в заряде.

Рисунок 1 — эквипотенциальные лини точечного заряда

Для однородного поля такого как, например поле между обкладками электрического конденсатора поверхности равного потенциала будут иметь форму плоскостей. Эти плоскости расположены параллельно друг другу на одинаковом расстоянии. Правда на краях обкладок картина поля исказится вследствие краевого эффекта. Но мы представим себе, что обкладки бесконечно длинные.

Рисунок 2 — эквипотенциальные линии однородного поля

Чтобы изобразить эквипотенциальные лини для поля, создаваемого двумя равными по величине и противоположными по знаку зарядами не достаточно применить принцип суперпозиции. Так как в этом случае при наложении двух изображений точечных зарядов будут точки пересечения линий поля. А этого быть не может, так как поле не может быть направлено сразу в две разные стороны. В этом случае задачу необходимо решить аналитически.

Рисунок 3 — Картина поля двух электрических зарядов

Для наглядного представления векторных полей используют картину силовых линий. Силовая линия есть воображаемая математическая кривая в пространстве, направление касательной к которой в каждой точке, через которую она проходит, совпадает с направлением вектора поля в той же точке (рис. 1.17).
Рис. 1.17 :
Условие параллельности вектора E → и касательной можно записать в виде равенства нулю векторного произведения E → и элемента дуги d r → силовой линии:

Эквипотенциалью называют поверхность, на которой постоянна величина электрического потенциала ϕ . В поле точечного заряда, как показано на рис. , эквипотенциальными являются сферические поверхности с центров в месте расположения заряда; это видно из уравнения ϕ = q ∕ r = const .

Анализируя геометрию электрических силовых линий и эквипотенциальных поверхностей, можно указать ряд общих свойств геометрии электростатического поля.

Во-первых, силовые линии начинаются на зарядах. Они либо уходят на бесконечность, либо заканчиваются на других зарядах, как на рис. .


Рис. 1.19:

Во-вторых, в потенциальном поле силовые линии не могут быть замкнуты. В противном случае можно было бы указать такой замкнутый контур, что работа электрического поля при перемещении заряда по этому контуру не равна нулю.

В-третьих, силовые линии пересекают любую эквипотенциаль по нормали к ней. Действительно, электрическое поле всюду направлено в сторону скорейшего уменьшения потенциала, а на эквипотенциальной поверхности потенциал постоянен по определению (рис. ).
Рис. 1.20 :
И наконец, силовые линии нигде не пересекаются за исключением точек, где E → = 0 . Пересечение силовых линий означает, что поле в точке пересечения есть неоднозначная функция координат, а вектор E → не имеет определенного направления. Единственным вектором, который обладает таким свойством, является нулевой вектор. Структура электрического поля вблизи точки нуля будет проанализирована в задачах к ?? .

Метод силовых линий, конечно, применим для графического представления любых векторных полей. Так, в главе ?? мы встретим понятие магнитных силовых линий. Однако геометрия магнитного поля совершенно отлична от геометрии электрического поля.


Рис. 1.21 :
Представление о силовых линиях тесно связано с понятием силовой трубки. Возьмем какой-либо произвольный замкнутый контур L и через каждую точку его проведём электрическую силовую линию (рис. ). Эти линии и образуют силовую трубку. Рассмотрим произвольное сечение трубки поверхностью S . Положительную нормаль проведём в ту же сторону, в какую направлены силовые линии. Пусть N — поток вектора E → через сечение S . Нетрудно видеть, что если внутри трубки нет электрических зарядов, то поток N остаётся одним и тем же по всей длине трубки. Для доказательства нужно взять другое поперечное сечение S ′ . По теореме Гаусса, поток электрического поля через замкнутую поверхность, ограниченную боковой поверхностью трубки и сечениями S , S ′ , равен нулю, так как внутри силовой трубки нет электрических зарядов. Поток через боковую поверхность равен нулю, так как вектор E → касается этой поверхности. Следовательно, поток через сечение S ′ численно равен N , но противоположен по знаку. Внешняя нормаль к замкнутой поверхности на этом сечении направлена противоположно n → . Если же направить нормаль в ту же сторону, то потоки через сечения S и S ′ совпадут и повеличине, и по знаку. В частности, если трубка бесконечно тонкая, а сечения S и S ′ нормальны к ней, то

E S = E ′ S ′ .

Получается полная аналогия с течением несжимаемой жидкости. В тех местах, где трубка тоньше, поле E → сильнее. В тех местах, где она шире, поле E → сильнее. Следовательно, по густоте силовых линий можно судить о напряженности электрического поля.

До изобретения компьютеров для экспериментального воспроизведения силовых линий брали стеклянный сосуд с плоским дном и наливали в него жидкость, не проводящую электрически ток, например, касторовое масло или глицерин. В жидкости равномерно размешивали истертые в порошок кристаллики гипса, асбеста или какие-либо другие продолговатые частицы. В жидкость погружали металлические электроды. При соединении с источниками электричества, электроды возбуждали электрическое поле. В этом поле частицы электризуются и, притягиваясь друг к другу разноименно наэлектризованными концами, располагаются в виде цепочек вдоль силовых линий. Картина силовых линий искажается течениями жидкости, вызываемыми силами, действующими на неё в неоднородном электрическом поле.

To Be Done Yet
Рис. 1.22 :
Лучшие результаты получаются по методу, применявшемуся Робертом В. Полем (1884-1976). На стеклянную пластинку наклеиваются электроды из станиоля, между которыми создается электрическое напряжение. Затем на пластинку насыпают, слегка постукивая по ней, продолговатые частички, например, кристаллики гипса. Они располагаются по ней вдоль силовых линий. На рис. ?? изображена полученная таким образом картина силовых линий между двумя разноименно заряженными кружками из станиоля.

▸ Задача 9.1

Записать уравнение силовых линий в произвольных ортогональных координатах.

▸ Задача 9.2

Записать уравнение силовых линий в сферических координатах.

Графическое изображение полей, можно составить не только с линиями напряженности, но и с помощью разности потенциалов. Если объединить в электрическом поле точки с равными потенциалами, то мы получим поверхности равного потенциала или как еще их называют эквипотенциальные поверхности. В пересечении с плоскостью чертежа эквипотенциальные поверхности дают эквипотенциальные линии. Изображая эквипотенциальные линии, которые соответствуют различным значениям потенциала, мы получаем наглядную картину, которая отражает, как изменяется потенциал конкретного поля. Перемещение вдоль эквипотенциальной поверхности заряда работы не требует, так как все точки поля по такой поверхности имеют равный потенциал и сила, которая действует на заряд, всегда перпендикулярна перемещению.

Следовательно, линии напряженности всегда перпендикулярны поверхностям с равными потенциалами.

Наиболее наглядная картина поля будет представлена, если изображать эквипотенциальные линии с равными изменениями потенциала, например в 10 В, 20В, 30 В и т.д. В таком случае скорость изменения потенциала будет обратно пропорциональна расстоянию между соседними эквипотенциальными линиями. То есть густота эквипотенциальных линий пропорциональна напряженности поля (чем выше напряженность поля, тем теснее изображаются линии). Зная эквипотенциальные линии, можно построить линии напряженности рассматриваемого поля и наоборот.

Следовательно, изображения полей с помощью эквипотенциальных линий и линий напряженности равнозначны.

Нумерация эквипотенциальных линий на чертеже

Довольно часто эквипотенциальные линии на чертеже нумеруют. Для того, чтобы указать разность потенциалов на чертеже, произвольную линию обозначают цифрой 0, возле всех остальных линий расставляют цифры 1,2,3 и т.д. Эти цифры указывают разность потенциалов в вольтах избранной эквипотенциальной линии и линии, которую выбрали нулевой. При этом отмечаем, что выбор нулевой линии не важен, так как физический смысл имеет только разность потенциалов для двух поверхностей, и она не зависит от выбора нуля.

Поле точечного заряда с положительным зарядом

Рассмотрим как пример поле точечного заряда, который имеет положительный заряд. Линиями поля точечного заряда являются радиальные прямые, следовательно, эквипотенциальные поверхности - это система концентрических сфер. Линии поля перпендикуляры поверхностям сфер в каждой точке поля. Эквипотенциальными линиями же служат концентрические окружности. Для положительного заряда рисунок 1 представляет эквипотенциальные линии. Для отрицательного заряда рисунок 2 представляет эквипотенциальные линии.

Что очевидно из формулы, которая определяет потенциал поля точечного заряда при нормировке потенциала на бесконечность ($\varphi \left(\infty \right)=0$):

\[\varphi =\frac{1}{4\pi \varepsilon {\varepsilon }_0}\frac{q}{r}\left(1\right).\]

Система параллельных плоскостей, которые находятся на равных расстояниях друг от друга, является эквипотенциальными поверхностями однородного электрического поля.

Пример 1

Задание: Потенциал поля, создаваемый системой зарядов, имеет вид:

\[\varphi =a\left(x^2+y^2\right)+bz^2,\]

где $a,b$ -- постоянные больше нуля. Какова форма имеют эквипотенциальных поверхностей?

Эквипотенциальные поверхности, как мы знаем, -- это поверхности, в которых в любых точках потенциалы равны. Зная вышесказанное, изучим уравнение, которое предложено в условиях задачи. Разделим правую и левую части уравнения $=a\left(x^2+y^2\right)+bz^2,$ на $\varphi $, получим:

\[{\frac{a}{\varphi }x}^2+{\frac{a}{\varphi }y}^2+\frac{b}{\varphi }z^2=1\ \left(1.1\right).\]

Запишем уравнение (1.1) в каноническом виде:

\[\frac{x^2}{{\left(\sqrt{\frac{\varphi }{a}}\right)}^2}+\frac{y^2}{{\left(\sqrt{\frac{\varphi }{a}}\right)}^2}+\frac{z^2}{{\left(\sqrt{\frac{\varphi }{b}}\right)}^2}=1\ (1.2)\]

Из уравнения $(1.2)\ $ видно, что заданной фигурой является эллипсоид вращения. Его полуоси

\[\sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi}{a}},\ \sqrt{\frac{\varphi}{b}}.\]

Ответ: Эквипотенциальная поверхность заданного поля -- эллипсоид вращения с полуосями ($\sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi }{b}}$).

Пример 2

Задание: Потенциал поля, имеет вид:

\[\varphi =a\left(x^2+y^2\right)-bz^2,\]

где $a,b$ -- $const$ больше нуля. Что представляют собой эквипотенциальные поверхности?

Рассмотрим случай при $\varphi >0$. Приведем уравнение, заданное в условиях задачи к каноническому виду, для этого разделим обе части уравнения на $\varphi ,$ получим:

\[\frac{a}{\varphi }x^2+{\frac{a}{\varphi }y}^2-\frac{b}{\varphi }z^2=1\ \left(2.1\right).\]

\[\frac{x^2}{\frac{\varphi }{a}}+\frac{y^2}{\frac{\varphi }{a}}-\frac{z^2}{\frac{\varphi }{b}}=1\ \left(2.2\right).\]

В (2.2) мы получили каноническое уравнение однополостного гиперболоида. Его полуоси равны ($\sqrt{\frac{\varphi }{a}}\left(действительная\ полуось\right),\ \sqrt{\frac{\varphi }{a}}\left(действительная\ полуось\right),\ \sqrt{\frac{\varphi }{b}}(мнимая\ полуось)$).

Рассмотрим случай, когда $\varphi

Представим $\varphi =-\left|\varphi \right|$ Приведем уравнение, заданное в условиях задачи к каноническому виду, для этого разделим обе части уравнения на минус модуль $\varphi ,$ получим:

\[-\frac{a}{\left|\varphi \right|}x^2-{\frac{a}{\left|\varphi \right|}y}^2+\frac{b}{\left|\varphi \right|}z^2=1\ \left(2.3\right).\]

Перепишем уравнение (1.1) в виде:

\[-\frac{x^2}{\frac{\left|\varphi \right|}{a}}-\frac{y^2}{\frac{\left|\varphi \right|}{a}}+\frac{z^2}{\frac{\left|\varphi \right|}{b}}=1\ \left(2.4\right).\]

Мы получили каноническое уравнение двуполостного гиперболоида, его полуоси:

($\sqrt{\frac{\left|\varphi \right|}{a}}\left(мнимая\ полуось\right),\ \sqrt{\frac{\left|\varphi \right|}{a}}\left(мнимая\ полуось\right),\ \sqrt{\frac{\left|\varphi \right|}{b}}(\ действительная\ полуось)$).

Рассмотрим случай, когда $\varphi =0.$ Тогда уравнение поля имеет вид:

Перепишем уравнение (2.5) в виде:

\[\frac{x^2}{{\left(\frac{1}{\sqrt{a}}\right)}^2}+\frac{y^2}{{\left(\frac{1}{\sqrt{a}}\right)}^2}-\frac{z^2}{{\left(\frac{1}{\sqrt{b}}\right)}^2}=0\left(2.6\right).\]

Мы получили каноническое уравнение прямого круглого конуса, который опирается на эллипс с полуосями $(\frac{\sqrt{b}}{\sqrt{a}}$;$\ \frac{\sqrt{b}}{\sqrt{a}}$).

Ответ: В качестве эквипотенциальных поверхностей для заданного уравнения потенциала мы получили: при $\varphi >0$ -- однополостной гиперболоид, при $\varphi

Эквипотенциальная поверхность эквипотенциа́льная пове́рхность

поверхность, все точки которой имеют один и тот же потенциал. Эквипотенциальная поверхность ортогональна силовым линиям поля. Поверхность проводника в электростатике является эквипотенциальной поверхностью.

ЭКВИПОТЕНЦИАЛЬНАЯ ПОВЕРХНОСТЬ

ЭКВИПОТЕНЦИА́ЛЬНАЯ ПОВЕ́РХНОСТЬ, поверхность, во всех точках которой потенциал (см. ПОТЕНЦИАЛ (в физике)) электрического поля имеет одинаковое значение j= const. На плоскости эти поверхности представляют собой эквипотенциальные линии поля. Используются для графического изображения распределения потенциала.
Эквипотенциальные поверхности замкнуты и не пересекаются. Изображение эквипотенциальных поверхностей осуществляют таким образом, чтобы разности потенциалов между соседними эквипотенциальными поверхностями были одинаковы. В этом случае в тех участках, где линии эквипотенциальных поверхностей расположены гуще, больше напряженность поля.
Между двумя любыми точками на эквипотенциальной поверхности разность потенциалов равна нулю. Это означает, что вектор силы в любой точке траектории движения заряда по эквипотенциальной поверхности перпендикулярен вектору скорости. Следовательно, линии напряженности (см. НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ) электростатического поля перпендикулярны эквипотенциальной поверхности. Другими словами: эквипотенциальная поверхность ортогональна к силовым линиям (см. СИЛОВЫЕ ЛИНИИ) поля, а вектор напряженности электрического поля Е всегда перпендикулярен эквипотенциальным поверхностям и всегда направлен в сторону убывания потенциала. Работа сил электрического поля при любом перемещении заряда по эквипотенциальной поверхности равна нулю, так как?j = 0.
Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд. Эквипотенциальные поверхности однородного электрического поля представляют собой плоскости, перпендикулярные линиям напряженности. Поверхность проводника в электростатическом поле является эквипотенциальной поверхностью.


Энциклопедический словарь . 2009 .

Смотреть что такое "эквипотенциальная поверхность" в других словарях:

    Поверхность, все точки которой имеют один и тот же потенциал. Эквипотенциальная Поверхность ортогональна к силовым линиям поля. Поверхность проводника в электростатике является эквипотенциальной поверхностью … Большой Энциклопедический словарь

    Поверхность, все точки к рой имеют один и тот же потенциал. Напр., поверхность проводника в электростатике Э. п. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    эквипотенциальная поверхность - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN surface of equal potentialsequal energy surfaceequipotential… … Справочник технического переводчика

    Эквипотенциальные поверхности электрического диполя (изображены тёмным их сечения плоскостью рисунка; цветом условно передано значение потенциала в разных точках наиболее высокие значения пурпурным и красным, н … Википедия

    эквипотенциальная поверхность - vienodo potencialo paviršius statusas T sritis fizika atitikmenys: angl. equipotential surface vok. Äquipotentialfläche, f rus. эквипотенциальная поверхность, f pranc. surface de potentiel constant, f; surface d’égal potentiel, f; surface… … Fizikos terminų žodynas

    Поверхность равного потенциала, поверхность, все точки которой имеют один и тот же Потенциал. Например, поверхность проводника в электростатике Э. п. В силовом поле Силовые линии нормальны (перпендикулярны) к Э. п … Большая советская энциклопедия

    - (от лат. aequus равный и потенциал) геом. место точек в поле, к рым соответствует одно и то же значение потенциала. Э. п. перпендикулярны силовым линиям. Эквипотенциальной является, напр., поверхность проводника, находящегося в электростатич.… … Большой энциклопедический политехнический словарь



© dagexpo.ru, 2024
Стоматологический сайт