Электронно лучевая трубка действие магнитного поля на. Методы отклонения пучка. Примесная проводимость проводников

21.09.2019

Пожалуй, нет такого человека, который бы в своей жизни не сталкивался с приборами, в конструкцию которых входит электронно-лучевая трубка (или ЭЛТ). Сейчас подобные решения активно вытесняются своими более современными аналогами на основе жидкокристаллических экранов (ЖК). Однако существует ряд областей, в которых электронно-лучевая трубка по-прежнему является незаменимой. Например, в высокоточных осциллографах ЖК использовать нельзя. Тем не менее, очевидно одно - прогресс устройств отображения информации в конечном итоге приведет к полному отказу от ЭЛТ. Это вопрос времени.

История появления

Первооткрывателем можно считать Ю. Плюккера, который в 1859 году, изучая поведение металлов при различных внешних воздействиях, обнаружил явление излучения (эмиссии) элементарных частиц - электронов. Формируемые пучки частиц получили название катодных лучей. Также он обратил внимание на возникновение видимого свечения некоторых веществ (люминофор) при попадании на них электронных лучей. Современная электронно-лучевая трубка способна создавать изображение именно благодаря этим двум открытиям.

Через 20 лет опытным путем было установлено, что направлением движения излучаемых электронов можно управлять воздействием внешнего магнитного поля. Это легко объяснить, если вспомнить, что перемещающиеся носители отрицательного заряда характеризуются магнитным и электрическим полями.

В 1895 году К. Ф. Браун доработал систему управления в трубке и тем самым сумел менять вектор направленности потока частиц не только полем, но и особым зеркалом, способным вращаться, что открыло совершенно новые перспективы использования изобретения. В 1903 году Венельт разместил внутри трубки катод-электрод в виде цилиндра, что дало возможность управлять интенсивностью излучаемого потока.

В 1905 году Эйнштейн сформулировал уравнения расчета фотоэффекта и через 6 лет было продемонстрировано работающее устройство передачи изображений на расстояния. Управление лучом осуществлялось а за величину яркости отвечал конденсатор.

Во время начала производства первых моделей ЭЛТ промышленность была не готова создавать экраны с большим размером диагонали, поэтому в качестве компромисса применялись увеличительные линзы.

Устройство электронно-лучевой трубки

С тех пор устройство было доработано, однако изменения носят эволюционный характер, так как ничего принципиально нового в ход работы добавлено не было.

Стеклянный корпус начинается трубкой с конусообразным расширением, образующим экран. В устройствах цветного изображения внутренняя поверхность с определенным шагом покрыта тремя видами люминофора дающими свой цвет свечения при попадании пучка электронов. Соответственно, есть три катода (пушки). Для того чтобы отсеять расфокусировавшиеся электроны и обеспечить точное попадание нужного луча в нужную точку экрана, между катодной системой и слоем люминофора размещают стальную решетку - маску. Ее можно сравнить с трафаретом, отсекающим все лишнее.

С поверхности подогреваемых катодов начинается эмиссия электронов. Они устремляются в сторону анода (электрод, с положительным зарядом), подключенного к конусной части трубки. Далее пучки фокусируются специальной катушкой и попадают в поле отклоняющей системы. Проходя через решетку, падают на нужные точки экрана, вызывая преобразование своей в свечение.

Вычислительная техника

Мониторы с электронно-лучевой трубкой нашли широкое применение в составе компьютерных систем. Простота конструкции, высокая надежность, точная цветопередача и отсутствие задержек (тех самых миллисекунд реакции матрицы в ЖК) - вот их основные преимущества. Однако в последнее время, как уже указывалось, ЭЛТ вытесняется более экономными и эргономичными ЖК-мониторами.

Электронно-лучевая трубка, изобретенная еще в 1897 г., является электронно-вакуумным прибором, который имеет много общего с обычной электронной лампой. Внешне трубка представляет собой стеклянную колбу с удлиненной горловиной и плоской торцовой частью— экраном.

Внутри колбы и горловины, так же как и внутри баллона электронной лампы, располагаются электроды, выводы которых, так же как и у лампы, подпаяны к ножкам цоколя.

Основное назначение электронно-лучевой трубки — образование видимого изображения с помощью электрических сигналов. Подводя к электродам трубки соответствующие напряжения, можно рисовать на ее экране графики переменных напряжения и токов, характеристики различных радиоустройств, а также получать движущиеся изображения, подобным тем, которые мы видим на экране кино.

Рис. 1. Чудесный карандаш.

Все это делает электронно-лучевую трубку незаменимой частью телевизоров, радиолокаторов, многих измерительных и вычислительных приборов.

Какой же «быстрый карандаш» успевает зарисовывать на экране электроннолучевой трубки импульсы тока, которые длятся миллионные доли секунды? Каким образом удается подбирать тона сложного рисунка? Как можно мгновенно «стирать» с экрана одно изображение и с такой же быстротой создать другое? (рис. 1).

Люминесцирующий экран к электронный луч. В основе работы электронно-лучевой трубки лежит способность некоторых веществ (виллемит, сернистый цинк, алюминат цинка:) светиться (люминесцировать) под действием электронной бомбардировки.

Если таким люминесцирующим веществом покрыть изнутри анод обычной электронной лампы, то он будет ярко светиться за счет бомбардировки электронами, образующими анодный ток. Между прочим, такой люминесцирующий анод используется в одной из специальных электронных ламп — оптическом индикаторе настройки 6Е5С. Люминесцирующим составом покрывают изнутри утолщенный торец колбы, образуя таким образам люминесцирующий экран электронно-лучевой трубки. С помощью специального устройства —«электронной пушки»— из горловины трубки на экран направляютузкий пучок электродов —«электронный луч».

Рис. 2. Экран светится под действием пучка электронов.

В том месте, где электроны ударяются о люминесцирующий слой, на экране образуется светящаяся точка, которая отлично видна (с торца) снаружи трубки сквозь стекло. Чем большее количество электронов образует луч и чем с большей скоростью эти электроны движутся, тем ярче светящаяся точка на люминесцирующем экране.

Если электронный луч перемещать в пространстве, то и светящаяся точка также будет двигаться по экрану, причем если перемещение луча происходит достаточно быстро, то наш глаз вместо движущейся точки увидит на экране сплошные светящиеся линии (рис. 2).

Если электронным лучом быстро прочертить весь экран строка за строкой и при этом соответствующим образом менять ток луча (т. е. яркость светящейся точки), то на экране можно будет получить сложную и достаточно четкую картину.

Таким образом, изображение на люминесцирующем экране трубки получается с помощью остро направленного пучка электронов и поэтому, так же как и в электронной лампе, основные процессы в трубке связаны с получением и упорядоченным движением свободных электронов в вакууме.

Электронно-лучевая трубка и триод

Электроннолучевая трубка во многом напоминает усилительную лампу — триод. Так же как и в лампе, в трубке имеется катод, испускающий электроны, необходимые для образования электронного луча. От катода трубки электроны движутся к экрану, который, так же как и анод триода, имеет высокий положительный потенциал относительно катода.

Рис. 3. Возникновение вторичных электронов

Однако подача положительного напряжения непосредственно «а экран затруднена, так как люминесцирующее вещество является полупроводником. Поэтому положительные напряжения на экране приходится создавать косвенным путем. Колбу изнутри покрывают слоем графита, на который и подают положительное напряжение. Электроны, образующие луч, с силой ударяя в люминесцирующее вещество, «выбивают» из него так называемые «вторичные» электроны, которые упорядоченно движутся к графитовому покрытию под действием положительного напряжения на нем (рис. 3).

В первый момент число вторичных электронов, покидающих экран, намного превышает число попадающих в него электронов луча. Это приводит к тому, что в атомах люминесцирующего вещества образуется нехватка электронов, т. е. экран приобретает положительный потенциал. Равновесие между числом попадающих на экран электронов и числом выбиваемых из него вторичных электронов установится лишь тогда, когда напряжение на экране трубки окажется близким к напряжению на графитовом покрытии. Таким образом, ток в электронно-лучевой трубке замыкается по пути катод — экран — графитовое покрытие, а следовательно, именно графитовое покрытие играет роль анода, хотя электроды, вылетевшие из катода, непосредственно на него не попадают.

Вблизи катода трубки располагается управляющий электрод (модулятор), который играет ту же роль, что и управляющая сетка триода. Меняя напряжение на управляющем электроде, можно изменять величину тока луча, что в свою очередь приведет к изменению яркости светящейся на экране точки.

Однако наряду со сходством между усилительной электронной лампой и электронно-лучевой трубкой в работе последней имеются особенности, принципиально отличающие ее от триода.

Во-первых, электроны движутся от катода к экрану трубки узким пучком, в то время как к аноду лампы они движутся «широким фронтом».

Во-вторых, для того чтобы, передвигая светящуюся точку по экрану, создавать на нем изображение, необходимо изменять направление движения летящих к экрану электронов и, таким образом, перемещать электронный луч в пространстве.

Из всего этого следует, что важнейшими процессами, отличающими трубку от триода, являются образование тонкого электронного луча и отклонение этого луча в разные стороны.

Образование и фокусировка электронного луча

Образование электронного луча начинается уже около катода электронно-лучевой трубки, который состоит из маленького никелевого цилиндра с колпачком, покрытым эмиттирующим (хорошо испускающим электроны при нагревании) материалом. Внутри цилиндра помещается изолированная проволока — подогреватель. Благодаря такой конструкции катода электроны излучаются со значительно меньшей поверхности, чем в обычной электронной лампе. Это сразу создает некоторую направленность пучка летящих от катода электронов.

Катод электронно-лучевой трубки помещен в тепловой экран — металлический цилиндр, торцовая часть которого, направленная в сторону колбы, открыта. Благодаря этому электроны движутся от катода не во все стороны, как это имеет место в лампе, а только в направлении люминесцирующето экрана. Однако, несмотря на специальную конструкцию катода и тепловой экран, поток движущихся электронов остается чрезмерно широким.

Резкое сужение потока электронов осуществляется управляющим электродом, который хотя и выполняет роль управляющей сетки, конструктивно ничего общего с сеткой не имеет. Управляющий электрод выполнен в виде накрывающего катод цилиндра, в торцовой части которого сделано круглое отверстие диаметром в несколько десятых долей миллиметра.

На управляющий электрод подают значительное (несколько десятков вольт) отрицательное смещение, благодаря чему он отталкивает электроны, обладающие, как известно, отрицательным зарядом. Под действием отрицательного напряжения траектории (пути движения) электронов, проходящих сквозь узкое отверстие в управляющем электроде, «сжимаются» к центру этого отверстия и таким образом образуется довольно тонкий электронный луч.

Однако для нормальной работы трубки нужно не только создать электронный луч, но и произвести его фокусировку, т. е. добиться того, чтобы траектории всех электронов луча сходились на экране в одной точке. Если фокусировки луча не производить, то на экране вместо светящейся точки появится довольно большое светящееся пятно и вследствие этого изображение окажется расплывчатым или, как говорят фотолюбители, «нерезким».

Рис. 4. Электронная пушка и ее оптическая аналогия.

Фокусировка луча осуществляется электронной оптической системой, которая действует на движущиеся электроны так же, как и обычная оптика на световые лучи. Электронная оптическая система образуется электростатическими линзами (статическая фокусировка) либо электромагнитными линзами (магнитная фокусировка), конечный результат действия которых одинаков.

Электростатическая линза — это не что иное (рис. 4,а), как образованное с помощью специальных электродов электрическое поле, под действием которого искривляются траектории электронов луча. В трубке со статической фокусировкой (рис. 4,б) обычно имеются две линзы, для образования которых используют уже известный нам управляющий электрод, а также два специальных электрода: первый и второй аноды. Оба эти электрода представляют собой металлические цилиндры, иногда разных диаметров, на которые подают большое положительное (относительно катода) напряжение: на первый анод — обычно 200—500 в, на второй — 800—15 000 в.

Первая линза образуется между управляющим электродом и первым анодом. Ее оптическим аналогом является короткофокусная собирающая линза, состоящая из двух элементов: двояковыпуклой и двояковогнутой линз. Эта линза дает внутри первого анода изображение катода, в свою очередь проектируемого на экран трубки с помощью второй линзы.

Вторая линза образуется полем между первым и вторым анодами и аналогична первой линзе, за исключением того, что ее фокусное расстояние значительно больше. Таким образом, первая линза играет роль конденсора, а вторая линза — главной проекционной линзы.

Внутри анодов располагают тонкие металлические пластины с отверстиями в центре — диафрагмы, которые улучшают фокусирующие свойства линз.

Изменяя напряжение на любом из трех образующих электростатические линзы электродов, можно менять свойства линз, добиваясь хорошей фокусировки луча. Обычно это делают путем изменения напряжения на первом аноде.

Несколько слов о названиях электродов «первый анод» и «второй анод». Раньше мы установили, что роль анода в электронно-лучевой трубке играет графитовое покрытие вблизи экрана. Однако первый « второй аноды, в основном предназначенные для фокусировки луча, благодаря наличию на них большого положительного напряжения ускоряют электроны, т. е. делают то же, что и анод усилительной лампы. Поэтому названия этих электродов можно считать оправданными, тем более что на них попадает некоторая часть вылетающих из катода электронов.

Рис. 5. Трубка с магнитной фокусировкой. 1 —управляющий электрод; 2—первый анод; 3—фокусирующая катушка; 4—графитовое покрытие; 5—-люминесцирующий экран; 6—колба.

В электронно-лучевых трубках с магнитной фокусировкой (рис. 5) второй анод отсутствует. Роль собирающей линзы в этой трубке играет магнитное поле. Это поле образуется охватывающей горловину трубки катушкой, по которой пропускают постоянный ток. Магнитное поле катушки создает вращательное движение электронов. В то же время электроны с большой скоростью движутся параллельно оси трубки к люминесцирующему экрану под действием положительного напряжения на нем. В результате этого траектории электронов представляют собой кривую, «напоминающую винтовую линию.

По мере приближения к экрану скорость поступательного движения электронов возрастает, а действие магнитного поля ослабляется. Поэтому радиус кривой постепенно уменьшается и вблизи экрана пучок электронов вытягивается в тонкий прямой луч. Хорошей фокусировки, как правило, добиваются путем изменения тока в фокусирующей катушке, т. е. путем изменения напряженности магнитного поля.

Всю систему для образования электронного луча в трубках часто называют «электронной пушкой» или «электронным прожектором».

Отклонение электронного луча

Отклонение электронного луча, так же как и его фокусировка, осуществляется с помощью электрических полей (электростатическое отклонение) либо с помощью магнитных полей (магнитное отклонение).

В трубках с электростатическим (рис. 6,а) отклонением электронный луч, прежде чем попасть на экран, проходит между четырьмя плоскими металлическими пластинами-электродами, которые получили название отклоняющих пластин.

Рис. 6. Управление лучом при помощи. а—электростатического и б—магнитного полей.

На экран электронно-лучевой трубки люминофоры наносятся в виде крошечных точек, причем эти точки собираются по три; в каждой тройке, или триаде, имеются одна красная, одна синяя и одна зеленая точки. На рисунке я вам показал несколько таких триад. Всего на экране трубки имеется около 500 тысяч триад. Картина, которую вы видите в телевизоре, вся состоит из светящихся точек. Там, где детали изображения более светлые, на точки попадает больше электронов, и они светятся ярче. На темные места изображения электронов попадает, соответственно, меньше. Если в цветном изображении имеется белая деталь, то повсюду в пределах этой детали все три точки в каждой триаде светятся с одинаковой яркостью. Наоборот, если в цветном изображении имеется деталь красного цвета, то повсюду в пределах этой детали светятся только красные точки каждой триады, а зеленые и синие не светятся совсем.

Вы поняли, что значит создать цветное изображение на экране телевизора? Это, во-первых, заставить электроны попадать в нужные места, то есть на те люминофорные точки, которые должны светиться, и не попадать в другие места, то есть на те точки, которые светиться не должны. Во-вторых, электроны должны попадать в нужные места в нужное время. Ведь изображение на экране постоянно меняется, и там, где в какой-то момент, например, было ярко-оранжевое пятно, через мгновение должно появиться, скажем, темно-фиолетовое. Наконец, в-третьих, в нужное место и в нужное время должно попадать нужное количество электронов. Больше - туда, где свечение должно быть ярче, и меньше - туда, где свечение темнее.

Поскольку на экране размещается почти полтора миллиона люминофорных точек, задача на первый взгляд представляется исключительно сложной. На самом деле - ничего сложного. Прежде всего в электронно-лучевой трубке имеется не один, а три отдельных нагретых катода. Точно таких, как в обычной электронной лампе. Каждый катод испускает электроны, и вокруг него создается электронное облачко. Около каждого катода находятся сетка и анод. Количество электронов, прошедших сквозь сетку к аноду, зависит от напряжения на сетке. Пока все происходит, как в обычной трехэлектродной лампе - триоде.

Какое отличие? Анод здесь не сплошной, а с отверстием в самом центре. Поэтому большинство электронов, движущихся от катода к аноду, не задерживается на аноде - они вылетают через отверстие наружу в виде круглого пучка. Конструкция, состоящая из катода, сетки и анода, так и называется: электронная пушка. Пушка как бы выстреливает пучком электронов, а количество электронов в пучке зависит от напряжения на сетке.

Нацелены электронные пушки так, чтобы пучок, вылетающий из первой пушки, всегда попадал только в красные точки триад, пучок из второй пушки - только в зеленые точки, а пучок из третьей пушки - только в синие точки. Таким образом решается одна из трех задач по образованию цветного изображения. Подавая нужные напряжения на сетки каждой из трех пушек, устанавливают нужные интенсивности красного, зеленого и синего свечения, а значит, обеспечивают нужную окраску каждой детали изображения.

Принцип работы электронно-лучевой трубки построен на испускании электронов отрицательно заряженным термокатодом, которые затем при­тягиваются положительно заряженным анодом и собираются на нем. Это принцип работы старой электронной лампы с термокатодом.

В ЭЛТ высокоскоростные электроны испускаются электронной пуш­кой (рис. 17.1). Они фокусируются электронной линзой и направляют­ся к экрану, который ведет себя как положительно заряженный анод. Экран покрыт изнутри флуоресцирующим порошком, который начинает светиться под ударами быстрых электронов. Электронный пучок (луч), испускаемый электронной пушкой, создает неподвижное пятно на экра­не. Для того чтобы электронный пучок оставил след (линию) на экране, его нужно отклонять как в горизонтальном, так и в вертикальном напра­влениях - Х и Y.

Рис. 17.1.

Методы отклонения пучка

Существует два метода отклонения пучка электронов в ЭЛТ. В электростатическом методе используются две параллельные пластины, между которыми создается разность электрических потенциалов (рис. 17.2(а)). Электростатическое поле, возникающее между пластинами, отклоняет электроны, попадающие в область действия поля. В электромагнитном методе пучок электронов управляется магнитным полем, создаваемым электрическим током, протекающим через катушку. При этом, как по­казано на рис. 17.2(б), применяются два набора управляющих катушек (в телевизорах они называются отклоняющими катушками). Оба метода обеспечивают линейное отклонение.


Рис. 17.2. Электростатический (а) и электромагнитный (б)

методы отклонения электронного пучка.

Однако метод электростатического отклонения имеет более широкий частотный диапазон, именно поэтому его применяют в осциллографах. Электромагнитное отклонение лучше подходит для высоковольтных трубок (кинескопов), работающих в те­левизорах, и к тому же более компактно в реализации, поскольку обе катушки располагаются в одном и том же месте вдоль горловины теле­визионной трубки.

Конструкция ЭЛТ

На рис. 17.3 дано схематическое представление внутреннего устройства электронно-лучевой трубки с электростатической отклоняющей систе­мой. Показаны различные электроды и соответствующие им потенциалы. Электроны, испускаемые катодом (или электронной пушкой), проходят через небольшое отверстие (апертуру) в сетке. Сетка, потенциал которой отрицателен по отношению к потенциалу катода, определяет интен­сивность или число испускаемых электронов и, таким образом, яркость пятна на экране.


Рис. 17.3.


Рис. 17.4.

Затем электронный пучок проходит сквозь электрон­ную линзу, фокусирующую пучок на экран. Конечный анод А 3 имеет потенциал в несколько киловольт (по отношению к катоду), что соот­ветствует диапазону сверхвысоких напряжений (СВН). Две пары откло­няющих пластин D 1 и D 2 обеспечивают электростатическое отклонение пучка электронов в вертикальном и горизонтальном направлениях соот­ветственно.

Вертикальное отклонение обеспечивают Y-пластины (пластины верти­кального отклонения), а горизонтальное - Х-пластины (пластины гори­зонтального отклонения). Входной сигнал подается на Y-пластины, кото­рые отклоняют электронный пучок вверх и вниз в соответствии с ампли­тудой сигнала.

X-пластины заставляют пучок перемещаться по горизонтали от одно­го края экрана к другому (развертка) с постоянной скоростью и затем очень быстро возвращаться в исходное положение (обратный ход). На Х- пластины подается сигнал пилообразной формы (рис. 17.4), вырабатывае­мый генератором. Этот сигнал называют сигналом временной развертки.

Подавая соответствующим образом сигналы на Х- и Y-пластины, можно получить такое смещение электронного пучка, при котором на экране ЭЛТ будет «прорисовываться» точная форма входного сигнала.

В этом видео рассказывается об основных принципах работы электронно-лучевой трубки:

Электронно-лучевая трубка (ЭЛТ) - электронный прибор, имеющий форму трубки, удлиненной (часто с коническим расширением) в направлении оси электронного луча, который формируется в ЭЛТ. ЭЛТ состоит из электронно-оптической системы, отклоняющей системы и флуоресцентного экрана или мишени. Ремонт телевизоров в Бутово , обращайтесь к нам за помощью.

Классификация ЭЛТ

Классификация ЭЛТ чрезвычайно затруднена, что объясняется их чрезвычайн

о широким применением в науке и технике и возможностью модификации конструкции с целью получения технических параметров, которые необходимы для реализации конкретной технической идеи.

Зависимости от метода управления электронным лучом ЭЛТ подразделяются на:

электростатические (с электростатической системой отклонения лучей);

электромагнитные (с электромагнитной системой отклонения лучей).

В зависимости от назначения ЭЛТ подразделяются на:

электронно-графические трубки (приемные, телевизионные, осциллографические, индикаторные, телевизионные знакодрукувальни, кодирующие и др..)

оптико-электронные претворюючи трубки (передающие телевизионные трубки, электронно-оптические преобразователи и др..)

электронно-лучевые переключатели (коммутаторы);

другие ЭЛТ.

Электронно-графические ЭЛТ

Электронно-графические ЭЛТ - группа электронно-лучевых трубок, применяемых в различных областях техники, для преобразования электрических сигналов в оптические (преобразование типа «сигнал - свет»).

Электронно-графические ЭЛТ подразделяются:

В зависимости от области применения:

приемной телевизионные (кинескопы, ЭЛТ с сверхвысоким разрешением для специальных телевизионных систем, и др..)

приемной осциллографические (низкочастотные, высокочастотные, сверхвысокочастотные, импульсные высоковольтные и др..)

приемной индикаторные;

запоминающие;

знакодрукувальни;

кодирующие;

другие ЭЛТ.

Строение и действие ЭЛТ с электростатической системой отклонения лучей

Электронно-лучевая трубка состоит из катода (1), анода (2), выравнивающего цилиндра (3), экрана (4), регуляторов плоскости (5) и высоты (6).

Под действием фото-или термоэмиссии из металла катода (тонкая проводниковая спираль) выбиваются электроны. Поскольку между анодом и катодом поддерживается напряжение (разность потенциалов) в несколько кило вольт, то эти электроны, выравниваясь цилиндром, движутся по направлению анода (пустотелый цилиндр). Пролетая сквозь анод электроны попадают к регуляторам плоскости. Каждый регулятор - это две металлические пластины, разноименно заряженные. Если левую пластину зарядить отрицательно, а правую положительно, то электроны проходя сквозь них будут отклоняться вправо, и наоборот. Аналогично действуют и регуляторы высоты. Если же на эти пластины подать переменный ток, то можно будет контролировать поток электронов как в горизонтальной, так и вертикальной плоскостях. В конце своего пути поток электронов попадает на экран, где может вызвать изображения.



© dagexpo.ru, 2024
Стоматологический сайт