Энергия ферми и температура вырождения. Энергия ферми

24.09.2019

Решение у. Ш. внутри ямы имеет простой вид:

.
(x) = a sin k x x + b cos k x x,
(x) = 0 b = 0, (L) = 0 k x L = n x .
(6.3)

Здесь n - целое число. Последние условия являются следствием “сшивания” волновой функции внутри и извне ямы. Полная энергия частицы в яме:

Максимальная энергия частицы в яме называется энергией Ферми (см. рис.6.1) :

Число состояний частицы с энергиями E < E F равно интегралу от (6.6), причем лишь по положительным значениям волновых векторов (рис.6.2). Ограничение положительными значениями импульса уменьшит (6.6) в 8 раз. Чтобы получить число возможных состояний нуклона в потенциальной яме, нужно учесть две возможные проекции спина нуклона на ось и две проекции изоспина (т.е. протоны и нейтроны). Тогда число состояний должно равняться числу нуклонов А :

. (6.7)

Объем ямы V равен объему ядра: V = (4/3)R 3 = (4/3)r 0 3 A.
Оценим нуклонную плотность ядра . Используя равенство (6.7), одновременно найдем связь импульса Ферми с экспериментально измеряемым параметром r 0:

. (6.8)
; . (6.9)

Получаем, что нуклонная плотность ядра (6.8) приблизительно постоянна.
Нуклонная плотность ядер экспериментально определена в опытах по рассеянию электронов промежуточных энергий (Е > 100 МэВ) на ядрах. Дополнили эти эксперименты опыты по рассеянию протонов тех же энергий. Результатом этих опытов было представление о распределении плотности ядерной материи в виде распределения Ферми:

Нуклонная плотность ядер, согласно этим измерениям, близка к константе, для средних и тяжелых ядер почти на зависит от А и приближенно составляет 0 0.17 Фм -3 .
Из (6.9) получим значение импульса Ферми:

K F (1.25 - 1.35) Фм -1 (250 - 270) МэВ/c. (6.12)

Отсюда значение максимальной кинетической энергии частиц Ферми-газа (энергии Ферми) составляет E F (35 - 38) МэВ. Следует подчеркнуть, что эта величина в ФГМ не зависит от числа нуклонов в ядре. Отсюда можно получить и приближенную величину глубины ядерной потенциальной ямы. Поскольку средняя энергия отделения нуклона от ядра составляет около 8 МэВ, глубина потенциальной ямы V 0 = E F + (42 - 46) МэВ (cм. рис.6.1).
Оценку этой же величины можно получить из других соображений, например из решения задачи о потенциале дейтрона. Таким образом, простая модель Ферми-газа приводит к разумным оценкам глубины потенциальной ядерной ямы.

Тот факт, что нуклоны ядра находятся в движении, особенно наглядным образом проявляется в реакциях квазиупругого рассеяния электронов. Сечение этого процесса представляет собой широкий максимум, расположенный выше по энергии, чем область возбуждения мультипольных гигантских резонансов в ядрах (см. рис.6.3). Если бы рассеяние электрона происходило на неподвижном нуклоне, максимум находился бы при переданной ядру энергии, связанной с переданным ядру импульсом q простым нерелятивистским соотношением = q 2 /M*, где = 1 - 2 - переданный импульс, M* - “эффективная” масса нуклона в ядре. Но вместо узкого пика при этой энергии на кривой сечения наблюдается широкий максимум. Его ширина обусловлена именно фермиевским движением нуклонов ядра. Рассеяние электрона происходит – в предельных случаях – как на нуклоне, движущемся навстречу электрону, так и параллельно импульсу электрона. Поэтому измерение ширин пиков квазиупругого рассеяния является способом независимого определения величины импульса Ферми. В табл.1 для нескольких ядер приведены значения импульсов Ферми, рассчитанные из данных по квазиупругому рассеянию электронов.

При абсолютном нуле в каждом из состояний, энергия которых не превышает находится один электрон; в состояниях с электроны отсутствуют. Следовательно, функция распределения электронов по состояниям с различной энергией имеет при абсолютном нуле вид, показанный на рис. 52.1.

Найдем функцию распределения при температуре, отличной от абсолютного нуля.

Следуя Киттелю, рассмотрим неупругие столкновения равновесного электронного газа с атомом примеси, внедренным в кристаллическую решетку металла. Допустим, что атом примеси может находиться лишь в двух состояниях, энергию которых мы положим равной 0 и .

Из множества процессов столкновений рассмотрим тот, в результате которого электрон переходит из состояния к с энергией Е в состояние к с энергией . Атом примеси переходит при этом с уровня с энергией на уровень с энергией, равной нулю. Вероятность перехода к пропорциональна: 1) вероятности того, что состояние занято электроном, 2) вероятности того, что состояние свободно, 3) вероятности того, что атом примеси находится в состоянии с энергией е. Таким образом,

Вероятность обратного процесса пропорциональна выражению

где - вероятность того, что атом примеси находится в состоянии с энергией, равной нулю.

В силу принципа детального равновесия коэффициент пропорциональности в выражениях (52.1) и (52.2) одинаков.

В равновесном состоянии вероятности переходов должны быть одинаковыми. Следовательно,

(мы учли, что вероятности нахождения атома примеси на уровнях подчиняются закону распределения Больцмана).

Функциональное уравнение (52.3) должно выполняться при любой температуре Т. Это произойдет, если положить

где - величина, не зависящая от Е. Соответственно

Произведение этих двух выражений при любой температуре равно

Решив уравнение (52.4) относительно получим для функции распределения электронов по состояниям с различной энергией выражение

Это выражение называется функцией распределения Ферми - Дирака. Параметр носит название химического потенциала.

В соответствии со смыслом функции (52.5) величина представляет собой среднее число электронов, находящихся в состоянии с энергией Е. Поэтому формуле (52.5) можно придать вид

(ср. с (49.4)). В отличие от (49.4), параметр в распределении (52.6) имеет положительные значения (в данном случае это не приводит к отрицательным значениям чисел ). Распределение (52.6) лежит в основе статистики Ферми-Дирака.

Частицы, подчиняющиеся этой статистике, называются фермионами. К их числу относятся все частицы с полуцелым спином.

Для фермионов характерно то, что они никогда не занимают состояния, в котором уже находится одна частица. Таким образом, фермионы являются «индивидуалистами». Напомним, что бозоны, напротив, являются «коллективистами» (см. конец § 49).

Имеющий размерность энергии параметр часто обозначается через и называется уровнем Ферми или энергией Ферми. В этих обозначениях функция (52.5) имеет вид

Исследуем свойства функции (52.7). При абсолютном нуле

Таким образом, при 0 К уровень Ферми ЕР совпадает с верхним заполненным электронами уровнем (см. предыдущий параграф).

Независимо от значения температуры, при функция равна Следовательно, уровень Ферми совпадает с тем энергетическим уровнем, вероятность заполнения которого равна половине.

Значение ЕР можно найти из условия, что полное число электронов, заполняющих уровни, должно равняться числу свободных электронов в кристалле ( - плотность электронов, V - объем кристалла). Количество состояний, приходящееся на интервал энергий , равно где - плотность состояний. Среднее число электронов, находящихся в случае теплового равновесия в этих состояниях, определяется выражением Интеграл от этого выражения даст полное число свободных электронов в кристалле:

Это соотношение представляет собой по существу условие нормировки функции

Подстановка в (52.8) выражений (51.9) и (52.7) дает

Это соотношение позволяет в принципе найти как функцию . Интеграл в выражении (52.9) не берется. При условии, что удается найти приближенное значение интеграла. В результате для уровня Ферми получается выражение

(напомним, что ) зависит от ; см. (51.10)).

Из (52.10) следует, что при низких температурах (для которых только и справедливо это выражение) уровень Ферми хотя и зависит от температуры, но очень слабо. Поэтому во многих случаях можно полагать Однако для понимания, например, термоэлектрических явлений (см. § 63) зависимость от Т имеет принципиальное значение.

При температурах, отличных от абсолютного нуля, график функции (52.7) имеет вид, показанный на рис. 52.2. В случае больших энергий (т. е. при что выполняется в области «хвоста» кривой распределения) единицей в знаменателе функции можно пренебречь. Тогда распределение электронов по состояниям с различной энергией принимает вид

т. е. переходит в функцию распределения Больцмана.

Отметим, что заметное отличие кривой на рис. 52.2 от графика, изображенного на рис. 52.1, наблюдается лишь в области порядка Чем выше температура, тем более полого идет ниспадающий участок кривой.

Поведение электронного газа в сильной степени зависит от соотношения между температурой кристалла и температурой Ферми, равной Различают два предельных случая.

Поэтому уже при комнатной температуре электронный газ во многих полупроводниках является невырожденным и подчиняется классической статистике.

Энергия Ферми. Влияние температуры на распределение Ферми-Дирака

Функция распределения Ферми-Дирака, описывающая распределение фермионов по состояниям, имеет следующий вид:

здесь E F - химический потенциал системы фермионов, т.е. работа, которую необходимо затратить, чтобы изменить число частиц в системе на одну. В случае электронов величина E F называется энергией Ферми .

Рассмотрим вид функции Ферми-Дирака при температуре, стремящейся к абсолютному нулю. Как нетрудно видеть из формулы (3.4), для любой энергии частицы, большей энергии Ферми, экспонента в знаменателе стремится к бесконечности при , следовательно f(Е) стремится к нулю. Это значит, что все энергетические состояния с Е > E F совершенно свободны при абсолютном нуле. Если Е < E F при , f(E) стремится к единице. Это значит, что все квантовые состояния с энергией, меньше энергии Ферми, полностью заняты электронами. Отсюда понятен физический смысл энергии Ферми как параметра распределения электронов по состояниям: энергия Ферми есть максимально возможная энергия электронов в металле при температуре абсолютного нуля . Энергетический уровень, соответствующий энергии Ферми, называется уровнем Ферми .

Вид функции распределения Ферми-Дирака при Т = 0К представлен на рис. 3.2,а. На рис. 3.2,б показано распределение электронов по энергетическим уровням в зоне проводимости металла при этой же температуре.

Если Т , то при энергии частицы, равной энергии Ферми, функция распределения Ферми-Дирака равна 1/2 . Это значит, что при любой температуре, отличающейся от абсолютного нуля, уровень Ферми заполнен наполовину. Вид функции Ферми-Дирака для двух различных температур показан схематически на рис. 3.3. Изменение характера распределения электронов по состояниям связано с тепловым возбуждением электронов. При этом часть электронов переходит в состояния с энергиями, большей энергии Ферми. Соответственно часть состояний ниже уровня Ферми оказывается свободной. В результате функция f(E) "размыта" вблизи энергии Ферми. Тепловому возбуждению подвергается незначительная часть электронов, находящихся вблизи уровня Ферми. Функция Ферми-Дирака заметно отличается от вида, который она имела при абсолютном нуле, лишь при . Величина "размытия" пропорциональна температуре (рис. 3.3). Чем выше температура, тем более существенному изменению подвергается функция распределения.

При условии

(3.5)

экспонента в знаменателе становится значительно больше единицы в формуле (3.4). В этом случае единицей можно пренебречь и распределение Ферми-Дирака преобразуется к виду

Выражение (3.6) совпадает по форме с функцией распределения Максвелла-Больцмана.

Вероятность того, что некоторый энергетический уровень с энергией Е свободен, т.е. занят дыркой, равна

Свободные электроны в металле можно рассматривать как своеобразный электронный газ. Первая попытка описать свойства металлов была предпринята Друде и Лоренцем в классической электронной теории металлов. Согласно этой теории электронный газ ведет себя подобно электронному газу, состоящему из молекул, и поэтому должен подчиняться статистике Максвелла-Больцмана. Но эта теория не смогла объяснить ряд явлений. Так, например, из опыта известно, что молярные теплоемкости всех твердых тел (и металлов, и диэлектриков) приблизительно одинаковы и равны 3R (закон Дюлонга и Пти). Отсюда следует, что теплоемкость электронного газа в металлах настолько мала, что ее вклад в общую теплоемкость не обнаруживается на опыте. По классической же теории теплоемкость электронного газа должна быть равна , а теплоемкость металла, равная сумме теплоемкости решетки и электронного газа, должна быть равна

C = 3R + =4,5 R (3.2.1)

Другим существенным затруднением классической теории является невозможность объяснения температурной зависимости сопротивления металлов. Опытным путем установлено, что удельное сопротивление практически всех металлов в достаточно широком температурном интервале линейно зависит от температуры

r = r 0 (1+at), (3.2.2)

где r- удельное сопротивление при температуре t, r 0 - удельное сопротивление при температуре 0°C, a - температурный коэффициент сопротивления при температуре 0°C.

Из классической же теории следует, что удельное сопротивление должно быть пропорционально корню квадратному из температуры.

Дальнейшее развитие физической науки привело к созданию квантовой механики и квантовой теории металлов, учитывающих волновые свойства электронов. Согласно квантовым представлениям электронный газ в металле подчиняется принципу Паули и описывается квантовой статистикой Ферми – Дирака

, (3.2.3)

где f F - функция распределения Ферми-Дирака, характеризующая вероятность заполнения квантового состояния (уровня) с энергией Е , и равнаясредней степени заселенности электронами квантового состояния, соответствующего энергии Е, m - химический потенциал электронного газа. При абсолютном нуле температуры (Т=0 К) химический потенциал называют также энергией Ферми и обозначают E F .



Найдем вид функции распределения f F при Т=0 К .

Рассмотрим состояния электронов с энергией E < E F . В этом cлучае показатель экспоненты в выражении (3.2.3) отрицателен;

при T → 0 → 0 f(E) → 1.

Для состояний электронов с энергией E > E F показатель экспоненты в выражении (2.4) положителен;

при T → 0 → ∞ f(E) → 0.

Из этого рассмотрения следует, что при Т=0 функция распределения f F принимает значения

(3.3.4)


Согласно зонной теории валентная зона, определяющая свойства металла, заполнена электронами частично. При абсолютном нуле температуры свободные электроны занимают все дозволенные энергетические уровни вплоть до уровня Ферми, при этом вероятность заполнения этих уровней равна 1. На каждом уровне согласно принципу Паули располагаются по 2 электрона с противоположными спинами (рис.3.4).

Уровни, энергия которых выше E F , остаются совершенно свободными (вероятность их заполнения равна 0). Следовательно, энергия Ферми E F представляет собой максимальную энергию, которую могут иметь электроны при абсолютном нуле температуры. Эта энергия не является тепловой (kТ=0 ), она имеет квантовую природу, обусловленную, в частности, принципом Паули, и зависит от концентрации свободных электронов в металле. Расчет дает для энергии Ферми следующее выражение

. (3.2.5)

Здесь h - постоянная Планка; n - концентрация электронов.

Наивысший энергетический уровень, занятый электронами при Т=0, называют уровнем Ферми. Уровень Ферми будет тем выше, чем больше концентрация n электронов. Как показывает расчет, средняя энергия электрона при Т=0 равна

  • 1.8. Атом водорода в квантовой механике. Квантовые числа
  • Состояния электрона в атоме водорода
  • 1.9. 1S– состояние электрона в атоме водорода
  • 1.10. Спин электрона. Принцип Паули
  • 1.11. Спектр атома водорода
  • 1.12. Поглощение света, спонтанное и вынужденное излучения
  • 1.13. Лазеры
  • 1.13.1. Инверсия населенностей
  • 1.13.2. Способы создания инверсии населенностей
  • 1.13.3. Положительная обратная связь. Резонатор
  • 1.13.4. Принципиальная схема лазера.
  • 1.14. Уравнение Дирака. Спин.
  • 2. Зонная теория твердых тел.
  • 2.1. Понятие о квантовых статистиках. Фазовое пространство
  • 2.2. Энергетические зоны кристаллов. Металлы. Полупроводники. Диэлектрики
  • Удельное сопротивление твердых тел
  • 2.3. Метод эффективной массы
  • 3. Металлы
  • 3.1. Модель свободных электронов
  • При переходе из вакуума в металл
  • 3.2. Распределение электронов проводимости в металле по энергиям. Уровень и энергия Ферми. Вырождение электронного газа в металлах
  • Энергия Ферми и температура вырождения
  • 3.3. Понятие о квантовой теории электропроводности металлов
  • 3.4. Явление сверхпроводимости. Свойства сверхпроводников. Применение сверхпроводимости
  • 3.5. Понятие об эффектах Джозефсона
  • 4. Полупроводники
  • 4.1. Основные сведения о полупроводниках. Классификация полупроводников
  • 4.2. Собственные полупроводники
  • 4.3.Примесные полупроводники
  • 4.3.1.Электронный полупроводник (полупроводник n-типа)
  • 4.3.2. Дырочный полупроводник (полупроводник р-типа)
  • 4.3.3.Компенсированный полупроводник. Частично компенсированный полупроводник
  • 4.3.4.Элементарная теория примесных состояний. Водородоподобная модель примесного центра
  • 4.4. Температурная зависимость удельной проводимости примесных полупроводников
  • 4.4.1.Температурная зависимость концентрации носителей заряда
  • 4.4.2.Температурная зависимость подвижности носителей заряда
  • 4.4.3. Температурная зависимость удельной проводимости полупроводникаn-типа
  • 4.4.5. Термисторы и болометры
  • 4.5. Рекомбинация неравновесных носителей заряда в полупроводниках
  • 4.6. Диффузия носителей заряда.
  • 4.6.1. Диффузионная длина
  • 4.6.2. Соотношение Эйнштейна между подвижностью и коэффициентом диффузии носителей заряда
  • 4.7. Эффект Холла в полупроводниках
  • 4.7.1. Возникновение поперечного электрического поля
  • 4.7.2. Применение эффекта Холла для исследования полупроводниковых материалов
  • 4.7.3. Преобразователи Холла
  • 4.8. Магниторезистивный эффект
  • 5. Электронно-дырочный переход
  • 5.1.Образование электронно-дырочного перехода
  • 5.1.1. Электронно-дырочный переход в условиях равновесия (при отсутствии внешнего напряжения)
  • 5.1.2.Прямое включение
  • 5.1.3.Обратное включение
  • 5.2.КласСификация полупроводниковых диодов
  • 5.3. Вольт-амперная характеристика электроннно-дырочного перехода. Выпрямительные, детекторные и преобразовательные диоды
  • 5.3.1.Уравнение вольт-амперной характеристики
  • Классификация полупроводниковых диодов
  • 5.3.2.Принцип действия и назначение выпрямительных, детекторных и преобразовательных диодов
  • 5.4. Барьерная емкость. Варикапы
  • 5.5.Пробой электронно-дырочного перехода
  • 5.6. Туннельный эффект в вырожденном электронно-дырочном переходе. Туннельные и обращенные диоды
  • 6.Внутренний фотоэффект в полупроводниках.
  • 6.1.Фоторезистивный эффект. Фоторезисторы
  • 6.1.1.Воздействие излучения на полупроводник
  • 5.1.2.Устройство и характеристики фоторезисторов
  • 6.2.Фотоэффект в электронно-дырочном переходе. Полупроводниковые фотодиоды и фотоэлементы.
  • 6.2.1.Воздействие света наp-n-переход
  • 7.Люминесценция твердых тел
  • 7.1.Виды люминесценции
  • 7.2.Электролюминесценция кристаллофосфоров
  • 7.2.1. Механизм свечения кристаллофосфоров
  • 7.2.2. Основные характеристики электролюминесценции кристаллофосфоров
  • 7.3.Инжекционная электролюминесценция. Устройство и характеристики светодиодных структур
  • 7.3.1.Возникновение излучения в диодной структуре
  • 7.3.2.Конструкция светодиода
  • 7.3.3.Основные характеристики светодиодов
  • 7.3.4.Некоторые применения светодиодов
  • 7.4 Понятие об инжекционных лазерах
  • 8. Транзисторы
  • 8.1.Назначение и виды транзисторов
  • 8.2.Биполярные транзисторы
  • 8.2.1 Структура и режимы работы биполярного транзистора
  • 8.2.2.Схемы включения биполярных транзисторов
  • 8.2.3.Физические процессы в транзисторе
  • 8.3.Полевые транзисторы
  • 8.3.1.Разновидности полевых транзисторов
  • 8.3.2.Полевые транзисторы с управляющим переходом
  • 8.3.3. Полевые транзисторы с изолированным затвором. Структуры мдп-транзисторов
  • 8.3.4.Принцип действия мдп-транзисторов с индуцированным каналом
  • 8.3.5. Мдп-транзисторы со встроенным каналом
  • 8.4. Сравнение полевых транзисторов с биполярными
  • Заключение
  • 1.Элементы квантовой механики 4
  • 2. Зонная теория твердых тел. 42
  • 3. Металлы 50
  • 4. Полупроводники 66
  • 5. Электронно-дырочный переход 98
  • 6.Внутренний фотоэффект в полупроводниках. 109
  • 7.Люминесценция твердых тел 114
  • 8. Транзисторы 123
  • Энергия Ферми и температура вырождения

    Средняя энергия классического (невырожденного) газа составляет величину порядка ~ kT . При комнатных температурах (T ≈300 K ) kT ≈ 0,025 эВ. Сравнение этой величины с энергией Ферми показывает, чтоkT << E F . Это означает, чтоэлектронный газ в металлах всегда вырожден , то есть проявляет чисто квантовые свойства.

    Одним из критериев вырождения является температура вырождения , равная

    При T < T F система вырождена и подчиняется квантовым статистикам. ПриT > T F система не вырождена, и ее поведение подчиняется классической статистике Максвелла-Больцмана.

    В таблице 3.1 приведены также температуры вырождения электронного газа. Они составляют по порядку величины десятки и сотни тысяч градусов. Значит электронный газ является вырожденным при всех температурах, при которых металл находится в твердом состоянии. Вырождению газа способствуют малое значение массы электронов m и их высокая концентрацияn .

    Рассмотрим поведение функции распределения f F приТ>0

    .(3.2.8)

    С повышением температуры электроны приобретают тепловую энергию порядка k Т и переходят на более высокие энергетические уровни (выше уровня Ферми), вследствие чего меняется характер распределения их по энергетическим состояниям (рис.3.3, б). По сравнению с нулевой температурой спад кривойf F (E ) происходит не скачком до нуля приE = E F , а происходит плавно в полосе шириной порядка~ 2 kT . Так как энергия теплового движенияk Т значительно меньше энергии Ферми, то тепловому возбуждению могут подвергаться лишь электроны узкой энергетической полосы порядкаk Т ,непосредственно расположенной вблизи уровня Ферми (рис.3.5).

    Электроны, находящиеся на более глубоких энергетических уровнях, остаются практически незатронутыми, так как энергии теплового движенияk Т недостаточно для их возбуждения (для перевода за уровень Ферми). ЭнергииE = E F , соответствует значение функции распределения
    . Поэтому приТ > 0 уровень Ферми - это уровень энергии, вероятность заполнения которого равна .

    На рис.3.3,б заштрихованные площади пропорциональны числу электронов, покидающих состояние с энергией
    , (площадка АДВ) и переходящих на уровни, расположенные выше уровня Ферми
    (площадка ВМС). По величине эти площади равны друг другу. Доля электронов, приходящих в состояние теплового возбуждения, равна

    , (3.2.9)

    При комнатной температуре эта доля незначительна и составляет менее 1% от общего числа электронов проводимости.

    Данным обстоятельством объясняется тот факт, что теплоемкость электронного газа оказывается чрезвычайно малой по сравнению с теплоемкостью решетки. Молярная теплоемкость его
    , а по классической теории
    . (ЗдесьR- универсальная газовая постоянная). Этот результат хорошо согласуется с опытом и снимает одно из затруднений классической электронной теории металлов.

    3.3. Понятие о квантовой теории электропроводности металлов

    Теория электропроводности металлов, построенная на основе квантовой механики и квантовой статистики Ферми-Дирака, называется квантовой теорией электропроводности металла.

    Расчет электропроводимости металлов в квантовой теории был произведен Зоммерфельдом. Был выведен закон Ома в дифференциальной форме

    , (3.3.1)

    где - удельная проводимость;- плотность тока в данной точке;- напряженность электрического поля.

    Для удельной проводимости было получено следующее выражение:

    ; (3.3.2)

    где
    - средняя длина свободного пробега электрона, обладающего энергией Ферми,
    - скорость такого электрона,m - его масса.

    Сравним (3.12) с выражением, полученным из классической электронной теории металлов

    . (3.3.3)

    В этом выражении < λ > - средняя длина свободного пробега электрона,
    - средняя скорость его теплового движения.

    Несмотря на то, что выражения (3.12) и (3.13) по внешнему виду похожи, их содержание различно. Средняя скорость теплового движения
    зависит от температуры, как
    , а
    практически не зависит от температуры, так как с изменением температуры энергия Ферми, а, следовательно, и скорость, остаются практически неизменными.

    Наиболее существенное различие формул (3.3.2) и (3.3.3) состоит в том, какой смысл вкладывается в понятие длины свободного пробега электрона < λ > в классической и квантовой теории металлов.

    Классическая электронная теория рассматривает электроны как обычные частицы и причиной электрического сопротивления металлов считает столкновения электронов с узлами кристаллической решетки. Полагая, что электроны сталкиваются почти со всеми узлами решетки, встречающимися на их пути, классическая теория принимает < λ > равной параметру решеткиd (d 10 -10 м ).

    Квантовая теория рассматривает электрон как частицу, обладающую волновыми свойствами, а электрический ток в металле - как процесс распространения электронных волн, длина волны которых определяется формулой де Бройля

    . (3.3.4)

    Такие представления позволяют объяснить наблюдаемую экспериментально температурную зависимость удельной проводимости и удельного сопротивления. Рассмотрим идеальную кристаллическую решетку металла, в узлах которой находятся неподвижные ионы, а примеси и дефекты отсутствуют. Такая идеальная решетка не рассеивает электронные волны, и электрическое сопротивление такого металла должно быть равно нулю.

    В реальных кристаллах при T > 0 ионы совершают тепловые колебания около положения равновесия, нарушая строгую периодичность решетки. Кроме того, в таких решетках обычно присутствуют структурные дефекты: примеси, вакансии, дислокации и так далее. Все эти неоднородности играют роль центров рассеивания для электронных волн и являются причиной электрического сопротивления. Расчет показывает, что средняя длина свободного пробега< λ F > зависит от температуры по закону

    , (3.3.5)

    где
    - модуль упругости;d - параметр решетки.

    С учетом (3.15) удельная проводимость ,определяемая формулой (3.12), будет иметь вид

    , (3.3.6)

    то есть , а, что хорошо согласуется с опытом в области не слишком низких температур.

    При очень низких температурах формула (3.3.5) не выполняется. При этом длина свободного пробега оказывается обратно пропорциональной не первой, а пятой степени температуры, поэтому и удельное сопротивлениеρ будет пропорционально пятой степени абсолютной температуры.

    На рис.3.7 изображена зависимость удельного электрического сопротивления металла от температуры. При Т=0 удельное сопротивление металла равно не нулю, а остаточному сопротивлению ост , обусловленному рассеиванием электронных волн на структурных дефектах решетки металла.



    © dagexpo.ru, 2024
    Стоматологический сайт