Энергия связи ядра атома. Энергия связи ядер. Дефект массы

24.09.2019

Абсолютно любого химического вещества состоит из определенного набора протонов и нейтронов. Они удерживаются вместе благодаря тому, что внутри частицы присутствует энергия связи атомного ядра.

Характерной особенностью ядерных сил притяжения является их очень большая мощность на сравнительно маленьких расстояниях (примерно от 10 -13 см). С ростом расстояния между частицами ослабевают и силы притяжения внутри атома.

Рассуждение об энергии связи внутри ядра

Если представить, что имеется способ отделять по очереди от ядра атома протоны и нейтроны и располагать их на таком расстоянии, чтобы энергия связи атомного ядра переставала действовать, то это должно быть очень тяжелой работой. Для того чтобы извлечь из ядра атома его составляющие, нужно постараться преодолеть внутриатомные силы. Эти усилия пойдут на то, чтобы разделить атом на содержащиеся в нем нуклоны. Поэтому можно судить, что энергия атомного ядра меньше чем энергия тех частиц, из которых оно состоит.

Равна ли масса внутриатомных частиц массе атома?

Уже в 1919 году исследователи научились измерять массу атомного ядра. Чаще всего его «взвешивают» при помощи особых технических приборов, которые получили название масс-спектрометров. Принцип работы таких приборов состоит в том, что сравниваются характеристики движения частиц с различными массами. При этом такие частицы имеют одинаковые электрические заряды. Подсчеты показывают, что те частицы, которые обладают разными показателями массы, двигаются по различным траекториям.

Современные ученые выяснили с большой точностью массы всех ядер, а также входящих в их состав протонов и нейтронов. Если же сравнить массу определенного ядра с суммой масс содержащихся в нем частиц, то окажется, что в каждом случае масса ядра будет больше, чем масса отдельно взятых протонов и нейтронов. Эта разница составит приблизительно 1% для любого химического вещества. Поэтому можно сделать вывод, что энергия связи атомного ядра - это 1% энергии его покоя.

Свойства внутриядерных сил

Нейтроны, которые находятся внутри ядра, отталкиваются друг от друга кулоновскими силами. Но при этом атом не распадается на части. Этому способствует присутствие силы притяжения между частицами в атоме. Такие силы, которые имеют природу, отличную от электрической, называются ядерными. А взаимодействие нейтронов и протонов называется сильным взаимодействием.

Вкратце свойства ядерных сил сводятся к следующим:

  • это зарядовая независимость;
  • действие лишь на коротких расстояниях;
  • а также насыщаемость, под которой понимается удерживание друг около друга лишь определенного количества нуклонов.

По закону сохранения энергии, в тот момент, когда ядерные частицы соединяются, происходит выброс энергии в виде излучения.

Энергия связи атомных ядер: формула

Для упомянутых вычислений используется общепринятая формула:

Е св =(Z·m p +(A-Z)·m n -M я )·c²

Здесь под Е св понимается энергия связи ядра; с - скорость света; Z -количество протонов; (A-Z ) - число нейтронов; m p обозначает массу протона; а m n - массу нейтрона. M я обозначает массу ядра атома.

Внутренняя энергия ядер различных веществ

Чтобы определить энергию связи ядра, используется одна и та же формула. Вычисляемая по формуле энергия связи, как ранее уже было указано, составляет не более 1% от общей энергии атома или энергии покоя. Однако при детальном рассмотрении оказывается, что это число довольно сильно колеблется при переходе от вещества к веществу. Если попробовать определить его точные значения, то они будут особенно различаться у так называемых легких ядер.

Например, энергия связи внутри водородного атома составляет ноль, потому что в нем находится лишь один протон.Энергия связи ядра гелия будет равна 0,74%. У ядер вещества под названием тритий это число будет равно 0,27%. У кислорода - 0,85%. В ядрах, где находится порядка шестидесяти нуклонов, энергия внутриатомной связи будет составлять около 0,92%. Для атомных ядер, обладающих большей массой, это число будет постепенно уменьшаться до 0,78%.

Чтобы определить энергию связи ядра гелия, трития, кислорода, или же любого другого вещества, используется та же формула.

Типы протонов и нейтронов

Основные причины подобных различий могут быть объяснены. Ученые выяснили, что все нуклоны, которые содержатся внутри ядра, делятся на две категории: поверхностные и внутренние. Внутренние нуклоны - это те, что оказываются окружены другими протонами и нейтронами со всех сторон. Поверхностные же окружены ими лишь изнутри.

Энергия связи атомного ядра - это сила, которая выражена больше у внутренних нуклонов. Нечто подобное, кстати, происходит и при поверхностном натяжении различных жидкостей.

Сколько нуклонов помещается в ядре

Выяснено, что количество внутренних нуклонов особенно мало у так называемых легких ядер. А у тех, что относятся к категории самых легких, практически все нуклоны расцениваются как поверхностные. Считается, что энергия связи атомного ядра - это величина, которая должна расти с количеством протонов и нейтронов. Но даже такой рост не может продолжаться до бесконечности. При определенном количестве нуклонов - а это от 50 до 60 - приходит в действие другая сила - их электрическое отталкивание. Оно происходит даже независимо от наличия энергии связи внутри ядра.

Энергия связи атомного ядра в различных веществах используется учеными для того, чтобы высвободить ядерную энергию.

Многих ученых всегда интересовал вопрос: откуда возникает энергия, когда более легкие ядра сливаются в тяжелые? На самом деле, данная ситуация аналогична атомному делению. В процессе слияния легких ядер, точно так же, как это происходит при расщеплении тяжелых, всегда образуются ядра более прочного типа. Чтобы «достать» из легких ядер все находящиеся в них нуклоны, требуется затратить меньше количество энергии, нежели то, что выделяется при их объединении. Обратное утверждение также является верным. На самом деле энергия синтеза, которая приходится на определенную единицу массы, может быть и больше удельной энергии деления.

Ученые, исследовавшие процессы деления ядра

Процесс был открыт учеными Ганом и Штрасманом в 1938 году. В стенах Берлинского химического университета исследователи открыли, что в процессе бомбардировки урана другими нейтронами, он превращается в более легкие элементы, стоящие в середине таблицы Менделеева.

Немалый вклад в развитие этой области знания внесла и Лиза Мейтнер, которой Ган в свое время предложил изучать радиоактивность вместе. Ган разрешил Мейтнер работать лишь на том условии, что она будет проводить свои исследования в подвале и никогда не станет подниматься на верхние этажи, что было фактом дискриминации. Однако это не помешало достичь ей значительных успехов в исследованиях атомного ядра.

Энергия связи

энергия связанной системы каких-либо частиц (например, атома), равная работе, которую необходимо затратить, чтобы разложить эту систему на бесконечно удаленные друг от друга и не взаимодействующие между собой составляющие ее частицы. Является отрицательной величиной, т. к. при образовании связанного состояния энергия выделяется; ее абсолютная величина характеризует прочность связи (например, устойчивость ядер). Согласно соотношению Эйнштейна, Э. с. эквивалентна дефекту масс (См. Дефект масс) Δm : ΔЕ = Δmc2 (с - скорость света в вакууме). Значение Э. с. определяется типом взаимодействия частиц в данной системе. Так, Э. с. ядра обусловлена сильными взаимодействиями (См. Сильные взаимодействия) нуклонов в ядре (у наиболее устойчивых ядер промежуточных атомов она Энергия связи8 10 6 эв на 1 нуклон - удельная Э. с.). Она может выделяться при слиянии легких ядер в более тяжелые (см. Термоядерные реакции), а также при делении тяжелых ядер, что объясняется уменьшением удельной Э. с. (см. Ядерные реакции) с ростом атомного номера.

Э. с. электронов в атоме или молекуле определяется электромагнитными взаимодействиями (См. Электромагнитные взаимодействия) и пропорциональна для каждого электрона ионизационному потенциалу (См. Ионизационный потенциал), для электрона атома и в нормальном состоянии она равна 13,6 эв. Этими же взаимодействиями обусловлена

Э. с. атомов в молекуле и кристалле (см. Химическая связь). Э. с. при гравитационном взаимодействии обычно мала, но для некоторых космических объектов ее величина может быть значительной (см., например, «Черная дыра» (См. Чёрная дыра)).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов. Силы, удерживающие нуклоны в ядре, называются ядерными . Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия – так называемого сильного взаимодействия. Ядерные силы примерно в 100 раз превосходят электростатические силы и на десятки порядков превосходят силы гравитационного взаимодействия нуклонов. Важной особенностью ядерных сил является их короткодействующий характер. Ядерные силы заметно проявляются, как показали опыты Резерфорда по рассеянию α-частиц, лишь на расстояниях порядка размеров ядра (10 –12 –10 –13 см). На больших расстояниях проявляется действие сравнительно медленно убывающих кулоновских сил.

На основании опытных данных можно заключить, что протоны и нейтроны в ядре в отношении сильного взаимодействия ведут себя одинаково, т. е. ядерные силы не зависят от наличия или отсутствия у частиц электрического заряда.

Важнейшую роль в ядерной физике играет понятие энергии связи ядра .

Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.

Энергию связи любого ядра можно определить с помощью точного измерения его массы. В настоящее время физики научились измерять массы частиц – электронов, протонов, нейтронов, ядер и др. – с очень высокой точностью. Эти измерения показывают, что масса любого ядра M я всегда меньше суммы масс входящих в его состав протонов и нейтронов :

Эта энергия выделяется при образовании ядра в виде излучения γ-квантов.

В качестве примера рассчитаем энергию связи ядра гелия например, энергия ионизации равна 13,6 эВ.

В таблицах принято указывать удельную энергию связи , т. е. энергию связи на один нуклон. Для ядра гелия удельная энергия связи приблизительно равна 7,1 МэВ/нуклон. На рис. 6.6.1 приведен график зависимости удельной энергии связи от массового числа A . Как видно из графика, удельная энергия связи нуклонов у разных атомных ядер неодинакова. Для легких ядер удельная энергия связи сначала круто возрастает от 1,1 МэВ/нуклон у дейтерия до 7,1 МэВ/нуклон у гелия . Затем, претерпев ряд скачков, удельная энергия медленно возрастает до максимальной величины 8,7 МэВ/нуклон у элементов с массовым числом A = 50–60, а потом сравнительно медленно снижается у тяжелых элементов. Например, у урана она составляет 7,6 МэВ/нуклон.

Уменьшение удельной энергии связи при переходе к тяжелым элементам объясняется увеличением энергии кулоновского отталкивания протонов. В тяжелых ядрах связь между нуклонами ослабевает, а сами ядра становятся менее прочными.

В случае стабильных легких ядер, где роль кулоновского взаимодействия невелика, числа протонов и нейтронов Z и N оказываются одинаковыми (, , ). Под действием ядерных сил как бы образуются протон-нейтронные пары. Но у тяжелых ядер, содержащих большое число протонов, из-за возрастания энергии кулоновского отталкивания для обеспечения устойчивости требуются дополнительные нейтроны. На рис. 6.6.2 приведена диаграмма, показывающая число протонов и нейтронов в стабильных ядрах. У ядер, следующих за висмутом (Z > 83), из-за большого числа протонов полная стабильность оказывается вообще невозможной.

Из рис. 6.6.1 видно, что наиболее устойчивыми с энергетической точки зрения являются ядра элементов средней части системы Менделеева. Это означает, что существуют две возможности получения положительного энергетического выхода при ядерных превращениях:

1. деление тяжелых ядер на более легкие;

2. слияние легких ядер в более тяжелые.

В обоих этих процессах выделяется огромное количество энергии. В настоящее время оба процесса осуществлены практически: реакции деления и термоядерные реакции.

Выполним некоторые оценки. Пусть, например, ядро урана делится на два одинаковых ядра с массовыми числами 119. У этих ядер, как видно из рис. 6.6.1, удельная энергия связи порядка 8,5 МэВ/нуклон. Удельная энергия связи ядра урана 7,6 МэВ/нуклон. Следовательно, при делении ядра урана выделяется энергия, равная 0,9 МэВ/нуклон или более 200МэВ на один атом урана.

Рассмотрим теперь другой процесс. Пусть при некоторых условиях два ядра дейтерия сливаются в одно ядро гелия . Удельная энергия связи ядер дейтерия равна 1,1 МэВ/нуклон, а удельная энергия связи ядра гелия равна 7,1 МэВ/нуклон. Следовательно, при синтезе одного ядра гелия из двух ядер дейтерия выделится энергия, равная 6 МэВ/нуклон или 24 МэВ на атом гелия.

Следует обратить внимание на то, что синтез легких ядер по сравнению с делением тяжелых сопровождается примерно в 6 раз большим выделением энергии на один нуклон.

Изотопы водорода отличаются друг от друга по массе в два или три раза. Дейтерий нерадиоактивен, входит в качестве небольшой смеси в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода, ее физические свойства заметно отличаются от свойств обычной воды. При нормальном атмосферном давлении она кипит при 101,2 С и замерзает при –3,8 С. Тритий имеет атомную массу 3, он бета-активен, с периодом полураспада 12 лет.

Смесью трех изотопов является природный уран, который состоит из U-238 (99,28%), U-235 (0,714%), U-234 (0,006%), ядра этих изото-

Всего известно около 2000 естественных и искусственно полученных радиоактивных изотопов. Некоторые изотопы, встречающиеся в природе, и почти все изотопы, которые получены искусственным путем, не могут существовать сколь угодно долго. Такие неустойчивые изотопы принято называть радионуклидами .

Термин «изотопы» следует применять только в тех случаях, когда речь идет об атомах одного и того же химического элемента. Если подразумеваются атомы разных химических элементов, рекомендуется использовать термин «нуклиды».

Например, смесь радионуклидов Sr-90, I-131, Cs-137, но изотопы углерода С-12, С-14. Природный калий представлен тремя изотопами: K-39, K-40, K-41; соответственно, 93,08%, 0,0119% и 6,91%.

Атомные ядра с одинаковым массовым числом А и разнымZ называютсяизобарами , а атомные ядра с одинаковым числом нейтроновN (приN = A – Z ) называютизотонами .

Например: ядра 40 18 Ar,40 19 K,40 20 Ca –изобары (для нихА = 40);

ядра 136 54 Хе,138 56 Ва,139 57 La –изотоны (для нихN = 82).

Существование изотопов доказывает, что заряд ядра определяет не все свойства атома, а лишь его химические свойства и те физические свойства, которые зависят от электронной оболочки, например размеры. Масса же атома и его радиоактивные свойства не определяются порядковым номером в таблице Менделеева.

3.2. Энергия связи атомных ядер

Нуклоны в ядрах находятся в состояниях, существенно отличающихся от их свободных состояний. За исключением ядра обычного водорода, во всех ядрах имеется не менее двух нуклонов, между кото-

рыми существует ядерное сильное взаимодействие – притяжение, обеспечивающее устойчивость ядер, несмотря на отталкивание одноименно заряженных протонов, т. е. между нуклонами, составляющими ядро атома, действуют особого рода силы, называемые ядерными . Особенностью этих сил является то, что они действуют лишь на очень малых расстояниях только между соседними нуклонами.

Прочность ядер характеризуется энергией связи . По своей величине энергия связи равна той работе, которую необходимо затратить для разрушения ядра на составляющие его нуклоны без придания им кинетической энергии. Такое же количество энергии освобождается при образовании ядра из нуклонов. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

Энергия связи нуклонов в ядре в миллионы раз превышает энергию связи атомов в молекуле. Поэтому при химических превращениях веществ атомные ядра не изменяются.

При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Количество заключенной в веществе энергии непосредственно связано с его массой соотношением Эйнштейна

Точнейшие измерения масс ядер показывают, что масса покоя ядра всегдаменьшесуммымасспокояслагающихегопротоновинейтронов:

Уменьшение массы при образовании ядра из нуклонов означает, что при этом уменьшается энергия этой системы нуклонов на величиину энергии связи Е св :

m c2 Z m

m c2 .

При образовании ядра из частиц последние за счет действия ядерных сил на малых расстояниях устремляются с огромным ускорением друг к другу. Излучаемые при этом гамма-кванты как раз обладают энергиейЕ св и массойm .

Энергия связи, приходящаяся на один нуклон (т. е. полная энергия связи поделенная на число нуклонов в ядре), называется удельной энергией связи :

Е св.

Чем больше по абсолютной величине удельная энергия связи, тем сильнее взаимодействие между нуклонами и тем прочнее ядро. Наибольшая энергия связи, приходящаяся на один нуклон, порядка 8,75 МэВ, присуща элементам средней части таблицы Менделеева.

3.3. Радиоактивность. Закон радиоактивного распада

Явление самопроизвольного (спонтанного) изменения структуры ядра атома одного элемента и превращение его в более устойчивое ядро атома другого элемента называется радиоактивностью , а само неустойчивое ядро –радиоактивным .

Каждый такой отдельный акт самопроизвольного превращения ядер с испусканием элементарных частиц или их групп называется радиоактивным распадом . Если радиоактивный распад сопровождается испусканием альфа-частиц, то это альфа-распад; бета-частиц – бета-распад. Альфа- и бета-распады обычно сопровождаются гаммаизлучением.

Возникающие при самостоятельных превращениях ядер атомов потоки элементарных частиц или их групп являются ионизирующими излучениями . Различают три вида радиоактивных излучений: альфа-, бета- и гамма-излучение.

Из общего числа (около 2 тыс.) известных ныне радиоактивных нуклидов лишь около 300 являются природными, остальные получены искусственным путем в результате ядерных реакций.

Самопроизвольные превращения радиоактивных ядер приводят к непрерывному уменьшению числа ядер атомов исходного радионуклида и образованию дочерних продуктов.

Для определенного радиоактивного вещества вероятность распада каждого ядра одинакова в любой момент времени, т. к. ядра распадаются независимо друг от друга.

Закон радиоактивного распада для любых превращений ядер устанавливает, что за единицу времени распадается всегда одна и та же доля нераспавшихся ядер данного радионуклида. Эту долю называют постоянной распадаи обозначают. В общем виде этот закон выражается экспоненциальной зависимостью:

N N0 et ,

где N – число ядер, распавшихся за времяt ;N 0 – начальное число ядер

радионуклида; е = 2,718; – постоянная распада, и соответствующий ей период полураспада зависит только от устойчивости ядер.

Этот закон, выражающий уменьшение количества ядер атомов радиоактивного вещества во времени, называется законом радиоактивного распада (рис. 4).

Рис. 4. График радиоактивного распада:

N 0 – исходное количество радиоактивного вещества;Т 1/2 – период полураспада вещества

Радионуклид может превращаться в другой радионуклид, что приводит к образованию так называемых радиоактивных цепочек .

Для любого момента времени

N 1N 0

e 1 t ;

N0 (e 1 t e 2 t )

где N 1 иN 2 – число ядер материнского и дочернего радионуклидов;N 0 – число ядер материнского радионуклида в начальный момент времени;1 и2 – постоянные распада материнского и дочернего радионуклидов.

Для характеристики устойчивости ядер радиоактивного вещества относительно распада используется понятие «период полураспада». Период полураспада радиоактивных веществ – промежуток времени, в течение которого в результате радиоактивного распада количество ядер данного радиоактивного вещества уменьшается в два раза. Соответственно вдвое уменьшается интенсивность ионизирующего излучения, испускаемого этим радиоактивным веществом. Между постоянной

распада () и периодом полураспада (Т 1/2 ) существует соотношение

0,693 .

Величина, обратная постоянной распада, называется средним

временем жизни радиоактивного ядра:

Т 1/ 2

1,443 Т 1/ 2 .

Период полураспада для различных радионуклидов имеет протяженность от долей секунды до миллиардов лет. Соответственно, и радиоактивные вещества разделяют на короткоживущие (часы, дни) и долгоживущие (многие годы).

Например: 214 84 Po (Т 1/2 = 1,6 10–4 с); 238 92 U (Т 1/2 = 4,47 1010 лет).

Период полураспада – одна из основных характеристик радиоактивных веществ, которую учитывают при их практическом применении. Так, при гамма-терапии предпочтение отдают радиоактивным веществам с большим периодом полураспада.

Например: 137 55 Cs (Т 1/2 = 30 лет);27 60 Co (Т 1/2 = 5,25 года).

При введении радиоактивных веществ в организм с диагностической целью стремятся свести к минимуму дозу облучения органов и

>> Энергия связи атомных ядер

§ 105 ЭНЕРГИЯ СВЯЗИ АТОМНЫХ ЯДЕР

Важнейшую роль во всей ядерной физике играет понятие энергии связи ядра. Энергия связи позволяет объяснить устойчивость ядер, выяснить, какие процессы ведут к выделению ядерной энергии. Нуклоны в ядре прочно удерживаются ядерными силами. Для того чтобы удалить нуклон из ядра, надо совершить довольно большую работу, т. е. сообщить ядру значительную энергию.

Под энергией связи ядра понимают ту энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. На основе закона сохранения энергии можно также утверждать, что энергия связи ядра равна той энергии, которая выделяется при образовании ядра из отдельных частии.

Энергия связи атомных ядер очень велика. Но как ее определить?

В настоящее время рассчитать энергию связи теоретически, подобно тому как это можно сделать для электронов в атоме, не удается. Выполнить соответствующие расчеты можно, лишь применяя соотношение Эйнштейна между массой и энергией:

Е = mс 2 . (13.3)

Точнейшие измерения масс ядер показывают, что масса покоя ядра М21 всегда меньше суммы масс входящих в его состав протонов и нейтронов:

М я < Zm p + Nm n . (13.4)

Существует, как говорят, дефект масс: разность масс

М = Zm p + Nm n - М я

положительна. В частности, для гелия масса ядра на 0,75% меньше суммы масс двух протонов и двух нейтронов. Соответственно для гелия в количестве вещества один моль M = 0,03 г.

Уменьшение массы при образовании ядра из нуклонов означает, что при этом уменьшается энергия этой системы нуклонов на значение энергии связи Есв:

Е св = Мс 2 = (Zm p + Nm n - M я) с 2 . (13.5)

Но куда при этом исчезают энергия Е св и масса M?

При образовании ядра из частиц последние за счет действия ядерных сил на малых расстояниях устремляются с огромным ускорением друг к другу. Излучаемые при этом -кванты как раз обладают енергией Е св и массой .

Энергия связи - это энергия, которая выделяется при образовании ядра из отдельных частиц, и соответственно это та энергия, которая необходима для расщепления ядра на составляющие его частицы.

О том, как велика энергия связи, можно судить по такому примеру: образование 4 г гелия сопровождается выделением такой же энергии, что и при сгорании 1,5-2 вагонов каменного угля.

Важную информацию о свойствах ядер содержит зависимость удельной энергии связи от массового числа А.

Удельной энергией связи называют энергию связи, приходящуюся на один нуклон ядра. Ее определяют экспериментально. Из рисунка 13.11 хорошо видно, что, не считая самых легких ядер, удельная энергия связи примерно постоянна и равна 8 МэВ/нуклон. Отметим, что энергия связи электрона и ядра в атоме водорода , равная энергии ионизации, почти в миллион раз меньше этого значения. Кривая на рисунке 13.11 имеет слабо выраженный максимум.

Максимальную удельную энергию связи (8,6 МэВ/нуклон) имеют элементы с массовыми числами от 50 до 60, т. е. железо и близкие к нему но порядковому номеру элементы. Ядра этих элементов наиболее устойчивы.

У тяжелых ядер удельная энергия связи уменьшается за счет возрастающей с увеличением Z кулоновской энергии отталкивания протонов. Кулоновские силы стремятся разорвать ядро .

Частицы в ядре сильно связаны друг с другом. Энергия связи частиц определяется по дефекту масс.


1. Что называют энергией связи ядра!
2. Почему ядро меди более устойчиво, чем ядро урана!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

© dagexpo.ru, 2024
Стоматологический сайт