Фракционирование в лучевой терапии. Результаты поиска по \"фракционирование дозы\". Радиочувствительность нормальных тканей

28.06.2020

1

Шаназаров Н.А., Чертов Е.А., Некрасова О.В., Жусупова Б.Т.

Рак легкого в России – распространенное заболевание. Одним из широко используемых методов, применяемых для его лечения, является лучевая терапия. В настоящее время существуют различные точки зрения и подходы к выбору способов лучевого воздействия. Имеют место труды, сообщающие о преимуществах дозного воздействия, отличающегося от классического. Подобные работы существуют как у российских, так и иностранных авторов. Статья представляет собой обзор научных сведений отечественной и зарубежной литературы об использовании нетрадиционного фракционирования в лучевом лечении рака легких. Использование новых методов позволяет одновременно альтернативно влиять на степень лучевого повреждения опухоли и нормальных тканей. Это приводит к улучшению показателей лучевого лечения.

рак легкого

нетрадиционное фракционирование.

Рак легкого является самой частой злокачественной опухолью человека. В общей структуре онкологической заболеваемости мужчин России рак легкого занимает 1-е место и составляет 25 %, доля рака легкого среди женского населения - 4,3 %. Ежегодно в России заболевают раком легкого свыше 63000 человек, в том числе свыше 53000 мужчин. Уровень смертности в возрасте от 25 до 64 лет на 100 тыс. населения составляет 37,1 случая .

Большинство больных раком легкого к моменту установления диагноза в силу распространенности опухолевого процесса или серьезных сопутствующих заболеваний являются неоперабельными. Среди пациентов, у которых опухоль признана резектабельной, подавляющее большинство относятся к лицам старше 60 лет, и из них серьезные сопутствующие заболевания имеют более 30 %. Вероятность «функциональной» неоперабельности у них весьма высока. Из общего числа больных раком легкого оперативному вмешательству подвергаются не более 20 %, а резектабельность составляет около 15 %. В этой связи лучевая терапия является одним из основных методов лечения больных с местнораспространенными формами немелкоклеточного рака легкого .

Результаты лечения неоперабельных больных посредством традиционной методики облучения малоутешительны: 5-летняя выживаемость варьирует от 3 до 9 % . Неудовлетворенность результатами лучевой терапии рака легкого с применением классического режима фракционирования послужили предпосылками для поиска новых вариантов фракционирования дозы.

В исследовании RTOG 83-11 (II фаза) изучали режим гиперфракционирования, где сравнивались различные уровни СОД (62 Гр; 64,8 Гр; 69,6 Гр; 74,4 Гр и 79,2 Гр), подводимые фракциями по 1,2 Гр дважды в день. Наибольшая выживаемость больных отмечена при СОД 69,6 Гр. Поэтому в III фазе клинических испытаний изучали режим фракционирования с СОД 69,6 Гр (RTOG 88-08). В исследование были включены 490 больных местно-распространенным НМРЛ, которые были рандомизированы следующим образом: 1-я группа - по 1,2 Гр два раза в день до СОД 69,6 Гр и 2-я группа - по 2 Гр ежедневно до СОД 60 Гр. Однако отдаленные результаты оказались ниже ожидаемых: медиана выживаемости и 5-летняя продолжительность жизни в группах составила 12,2 мес., 6 % и 11,4 мес., 5 % соответственно .

Fu X.L. et al. (1997) исследовали режим гиперфракционирования по схеме 1,1 Гр 3 раза в день с интервалом 4 часа до СОД 74,3 Гр. 1-, 2-, и 3-летняя выживаемость составила 72, 47, и 28 % в группе больных, получавших ЛТ в режиме гиперфракционирования, и 60, 18, и 6 % в группе с классическим фракционированием дозы. При этом «острые» эзофагиты в изучаемой группе наблюдались достоверно чаще (87 %) по сравнению с контрольной группой (44 %). В то же время не отмечено увеличения частоты и тяжести поздних лучевых осложнений .

В рандомизированном исследовании Saunders NI et al (563 больных) сравнивались две группы больных. Непрерывное ускоренное фракционирование (1,5 Гр 3 раза в день в течение 12 дней до СОД 54 Гр) и классическая лучевая терапия до СОД 66 Гр. Больные, пролеченные в режиме гиперфракционирования, имели значительное улучшение показателей 2-летней выживаемости (29 %) по сравнению со стандартным режимом (20 %). В работе не отмечено также увеличения частоты поздних лучевых повреждений. В то же время в изучаемой группе тяжелые эзофагиты наблюдались чаще, чем при классическом фракционировании (19 и 3 % соответственно), хотя они и отмечались преимущественно после окончания лечения .

Cox J.D. и соавт. у больных немелкоклеточным раком легкого III стадии в рандомизированном исследовании изучили эффективность режима фракционирования 1,2 Гр два раза в день с интервалом 6 ч при СОД-60 Гр, 64,5 Гр, 69,6 Гр, 74,4 Гр, 79 Гр. Наилучшие результаты получены при СОД 69,6 Гр: 1 год жили 58 %, 3 года - 20 % больных .

Суммарная очаговая доза, необходимая для разрушения первичной опухоли, по данным различных авторов, колеблется от 50 до 80 Гр. Ее подводят за 5-8 нед. При этом, в связи с разной радиочувствительностью, следует учитывать гистологическое строение опухоли. При плоскоклеточном раке суммарная доза обычно составляет 60-65 Гр, при железистом - 70-80 Гр .

M. Saunders и S. Dische сообщили о 64 % одногодичной и 32 % двухлетней выживаемости больных IIIА и IIIБ стадии немелкоклеточного рака легкого после 12-дневного облучения в СОД 50,4 Гр в режиме 1,4 Гр три раза в день каждые 6 ч .

В кооперативных исследованиях МРНЦ РАМН, Северного государственного медицинского университета, Архангельского областного клинического онкологического диспансера, Калужского областного онкологического диспансера приняли участие 482 больных с I-IIIB стадий, не операбельных в связи с распространенностью опухолевого процесса или в связи с медицинскими противопоказаниями. Все пациенты были разделены на 4 группы: 1-я -149 человек (традиционное фракционирование - ТФ) - облучение в РОД 2 Гр в день, 5 дней в неделю, СОД 60-64 Гр; 2-я - 133 пациента (ускоренное фракционирование -УФ) - облучение двукратно в сутки в РОД 2,5 Гр, через день, СОД изоэффективна 66-72 Гр; 3-я - 105 человек (ускоренное гиперфракционирование - УГФ) - уменьшение разовой дозы за фракцию при двукратном облучении в сутки в РОД 1,25 Гр, СОД изоэффективна 67,5-72,5 Гр; 4-я - 95 больных (ускоренное гиперфракционирование с эскалацией дозы - УГФсЭ) - уменьшение дозы за фракцию при двукратном облучении в сутки до 1,3 Гр с последующим увеличением до 1,6 Гр, начиная с 4-й недели курса, СОД изоэффективна 68 Гр. Во всех группах преобладал плоскоклеточный рак (79,1-87,9 %). Число больных с I стадией варьировало в группах от 13,9 до 20,3 %, большинство было в группе УГФсЭ (20,3 %). В каждой группе более чем у 40 % пациентов установлена III стадия рака легкого, наибольшее число таких больных (52 %) было в группе УГФсЭ, меньше всего - при ТФ (41 %). При сравнительном анализе 5-летняя общая выживаемость составила: ТФ - 9,7 %; УФ- 13 %; УГФ - 19 %; УГФсЭ - 19 %. Различия между 2 последними и первой группой статистически достоверны. При расчете отношения шансов традиционного и ускоренного гиперфракционирования ОР равно 0,46, 95 %-й доверительный интервал - 0,22-0,98 Р (односторонний критерий Фишера) - 0,039. При расчете отношение шансов традиционного и ускоренного гиперфракционирования с эскалацией дозы ОР равно 0,46, 95 %-й доверительный интервал - 0,21-1,0 Р (односторонний критерий Фишера) - 0,046. Оценку лучевых повреждений через 1-1,5 года проводили в соответствии с классификацией, используемой в межцентровых исследованиях, проводимых RTOG и EORTС. При изучении изменений в легком, пищеводе, перикарде, коже установлено, что самыми частыми были лучевые повреждения легкого и пищевода. Больше всего повреждений, соответствующих III степени, выявлено при ускоренном фракционировании (12,4 и 10,2 % соответственно), меньше всего (5 и 4 %) - при традиционном фракционировании. Лучевые повреждения перикарда и кожи III степени также наиболее часто встречались при ускоренном фракционировании (2,1 и 4,2 % соответственно), тогда как при других режимах фракционирования дозы ионизирующего излучения не превышали 0,8 и 2,4 % соответственно. Лучевые повреждения III степени в отличие от повреждений I-II степени ухудшали качество жизни пациентов и требовали длительного поддерживающего лечения .

Таким образом, можно заключить, что нетрадиционное фракционирование дозы позволяет одновременно альтернативно влиять на степень лучевого повреждения опухоли и нормальных тканей, что влечет за собой улучшение показателей лучевого лечения .

Список литературы

  1. Лучевая терапия немелкоклеточного рака легкого / А.В. Бойко, А.В. Черниченко и др. // Практическая онкология. - 2000. - №3. - С. 24-28.
  2. Внутриполостная лучевая терапия злокачественных опухолей трахеи и бронхов / А.В. Бойко, А.В. Черниченко,И.А. Мещерякова и др. //Российский Онкологический журнал. - 1996. - № 1. - С. 30-33.
  3. Бычков М.Б. Мелкоклеточный рак легкого: что изменилось за последние 30 лет? // Современная онкология. - 2007. - Т. 9. - С. 34-36.
  4. Дарьялова С.Л., Бойко А.В., Черниченко А.В. Современные возможности лучевой терапии злокачественных опухолей // Российский онкологический журнал. - 2000. - № 1 - С. 48-55.
  5. Повышение эффективности лучевой терапии рака легкого: клинические и экономические проблемы / А.Г. Золотков, Ю.С. Мардынский и др. // Радиология практика. - 2008. - № 3. - С. 16-20.
  6. Мардынский Ю.С., Золотков А.Г., Кудрявцев Д.В. Значение лучевой терапии в лечении рака легкого // Вопросы онкологии. - 2006. - Т. 52. - С. 499-504.
  7. Полоцкий Б.Е., Лактионов К.К. Энциклопедия клинической онкологии / под ред. М.И. Давыдова. - М., 2004. - С. 181-193.
  8. Лучевая терапия в лечении рака: Практическое руководство / под ред. рабочей группы ВОЗ. - М., 2000. - С. 101-114.
  9. Чиссов В.И., Старинский В.В., Петрова Г.В. Состояние онкологической помощи населению в 2004 году. - М., 2005.
  10. Alberti W., Bauer P.C., Bush M. et al The managment of recurrent or obstructive lung cancer with the Essen afterloading technique and the NeodymiumSYAG laser //Tumor Diagnost. Ther. - 1986. -Vol. 7. - Р. 22-25.
  11. Budhina M, Skrk J, Smid L, et al: Tumor cell repopulating in the rest interval of split-course radiation treatment. - Stralentherapie, 1980.
  12. Cox J.D. Interruptions of high dose radiation therapy decrease long-term survival of favorable patients with inresectable non-smoll cell carcinoma of the lung: analysis of 1244 cases from Radiotherapy Oncology Group (RTOG) trials // Int. J. Radiat. Oncol. Biol. Phys. - 1993. - Vol. 27. - P. 493-498.
  13. Cox J., Azarnia N., Byhardt R. et al. A randomized phase I/II trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy. Possible survival benefid with dose і69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage III nonSsmall cell lung carcinoma: Repot of Radiation Therapy Oncology Group 83-11 // J. Clin. Oncol.- 1990. - Vol. 8. - P. 1543-1555.
  14. Hayakawa K., Mitsuhashi N., Furuta M. et al. HighSdose radiation therapy for inoperable nonSsmall cell lung cancer without mediastinal involvement (clinical stage N0, N1) // Strahlenther. Onkol. - 1996. - Vol. 172(9). -P. 489-495.
  15. Haffty B., Goldberg N., Gerstley J. Results of radical radiation therapy in clinical stage I, technically operable nonSsmall cell lung cancer // Int. J. Radiat. Oncol. Biol. Phys. - 1988. - Vol. 15. - P. 69-73.
  16. Fu XL, Jiang GL, Wang LJ, Qian H, Fu S, Yie M, Kong FM, Zhao S, He SQ, Liu TF Hyperfractionated accelerated radiation therapy for non-small cell lung cancer: clinical phase I/II trial // Int J Radiat Oncol Biol Phys. - 1997. - №39(3). - Р. 545-52
  17. King SC, Acker JC, Kussin PS, et al. High-dose hyperfractionated accelerated radiotherapy using a concurrent boost for the treatment of nonsmall cell lung cancer: unusual toxicity and promising early results //I nt J Radiat Oncol Biol Phys. - 1996. - №36. - Р. 593-599.
  18. Kohek P.H., Pakish B., Glanzer H. Intraluminal irradiadiation in the treatment of malignant airway obstruction // Europ. J. Oncol. - 1994. - Vol. 20(6). - P. 674-680.
  19. Macha H.M., Wahlers B., Reichle C. et al Endobronchial radiation therapy for obstructing malignancies: Ten years experience with IridiumS192 highSdose radiation brachytherapy afterloding technigue in 365 patients // Lung. - 1995. - Vol. 173. - P. 271-280.
  20. Maciejewski B, Withers H, Taylor J, et al: Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: Tumor dose-response and repopulating // Int J Radiat Oncol Biol Phys. - 1987. - №13. - Р. 41.
  21. Million RR, Zimmerman RC: Evaluation of University of Florida split-course technique for various head and neck squamous cell carcinomas // Cancer. - 1975. - №35. - Р. 1533.
  22. Peters LJ, Ang KK, Thames HD: Accelerated fractionation in the radiation treatment of head and neck cancer: A critical comparison of different strategies // Acta Oncol. - 1988. - №27. - Р. 185.
  23. Rosenthal S., Curran W.J., Herbert S. et al. Clinical stage II nonSsmall cell lung cancer treated with radiation therapy alone: The significance of clinically staged ipsilateral hilar adenopathy (N l disease) // Cancer (Philad.). - 1992. -Vol. 70. -P. 2410-24I7.
  24. Saunders MI, Dische S, Barrett A, et al. Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomized multicentre trial. CHART Steering Committee // Lancet. - 1997. - №350. - Р. 161-165.
  25. Schray M.F., McDougall J.C., Martinez A. et al Managment of malignant airway compromise with laser and low dose rate brachytherapy // Chest. - 1988. - Vol. 93. - P. 264-264.
  26. Vassiliou V., Kardamakis D. Past and present: has radiotherapy increased survival of lung cancer patients in the last 50 years? // Lung cancer current, diagnosis and treatment. - Greece, 2007. - P. 210-218.
  27. Нетрадиционное фракционирование дозы / А.В. Бойко, А.В. Черниченко и др. // материалы 5-й Российской онкологической конференции. - М., 2001.
  28. Сидоренко Ю.С. Пути улучшения результатов лечения больных онкологическими болезнями // Снижение смертности - стратегическое направление демографической политики: сборник материалов ХII (80) сессии Общего собрания Российской академии медицинских наук. - М., 2007. - С. 20-27.
  29. Щепин О.П., Белов В.Б., Щепин В.О. Состояние и динамика смертности населения Российской Федерации // Снижение смертности - стратегическое направление демографической политики: сборник материалов ХII (80) сессии общего собрания Российской академии медицинских наук. - М., 2007. - С. 7-14.
  30. Бойко А.В., Трахтенберг А.X. Лучевой и хирургический методы в комплексной терапии больных с локализованной формой мелкоклеточного рака легкого // Рак легкого. - М., 1992. - С. 141-150.
  31. Дарьялова С.Л. Гипербарическая оксигенация в лучевом лечении больных злокачественными опухолями // Гипербарическая оксигенация. - М., 1986.
  32. Hilaris B.S. Brachytherapy in Lung Cancer // Chest. - 1986. -Vol. 89, 4. - 349 p.
  33. Мещерякова И.А. Внутриполостная лучевая терапия в лечении злокачественных опухолей трахеи и бронхов: автореф. дис. ... канд. мед. наук. - М., 2000. - 25 с.

Рецензенты:

Жаров А.В., д.м.н., профессор кафедры онкологии и радиологии ГОУ ВПО УГМАДО, г. Челябинск;

Зотов П.Б., д.м.н., зав. отдедением паллиативной помощи ГЛПУ ТО «Тюменский областной онкологический диспансер», г. Тюмень.

Работа поступила в редакцию 04.03.2011.

Библиографическая ссылка

Шаназаров Н.А., Чертов Е.А., Некрасова О.В., Жусупова Б.Т. КЛИНИЧЕСКИЕ АСПЕКТЫ НЕТРАДИЦИОННОГО ФРАКЦИОНИРОВАНИЯ ПРИ ЛУЧЕВОМ ЛЕЧЕНИИ РАКА ЛЕГКОГО // Фундаментальные исследования. – 2011. – № 9-1. – С. 159-162;
URL: http://fundamental-research.ru/ru/article/view?id=28117 (дата обращения: 13.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Наибольшее распространение получил режим классического фракционирова­ния. Опухоль облучают в дозе 1,8-2 Гр 5 раз в неделю до суммарной очаговой дозы в течение 1,5 месяцев. Режим применим для опухолей, обладающих вы­сокой и умеренной радиочувствительностью.

Нетрадиционные режимы фракционирования дозы представляют собой один из самых привлекательных способов радиомодификации. При адекват­но подобранном варианте фракционирования дозы удается добиться суще­ственного повышения повреждений опухоли с одновременной защитой окру­жающих здоровых тканей.

При крупном фракционировании ежедневную дозу увеличивают до 4-5 Гр, а облучение выполняют 3-5 раз в неделю. Такой режим предпочтительнее для радиорезистентных опухолей, однако при этом чаще наблюдаются лучевые ос­ложнения.

С целью повышения эффективности лечения быстро пролиферирующих опухолей применяют мулыпифракционирование: облучение в дозе 2 Гр про­водят 2 раза в день с интервалом не менее 4-5 ч. Суммарная доза уменьшает­ся на 10-15 % . Гипоксические опухолевые клетки не успевают восстановить­ся после сублетальных повреждений. При медленно растущих новообразовани­ях используют режим гиперфракционирования, т. е. увеличения количества фракций - ежедневную дозу облучения 2,4 Гр разбивают на 2 фракции по 1,2 Гр. Несмотря на увеличение суммарной дозы на 15-20 %, лучевые реакции не выражены.

Динамическое фракционирование - режим дробления дозы, при котором проведение укрупненных фракций чередуется с классическим фракционирова­нием. Усиление радиопоражаемости опухоли достигается за счет увеличения суммарных очаговых доз без усиления лучевых реакций нормальных тканей.

Особым вариантом является так называемый расщепленный курс облуче­ния, или «сплит»-курс. После подведения суммарной очаговой дозы (около 30 Гр) делают перерыв на 2-3 недели. За это время клетки здоровых тканей восстанавливаются лучше, чем опухолевые. Кроме того, в связи с уменьше­нием размеров опухоли, оксигенация ее клеток повышается.

Следующим методом лучевой терапии по способу распределения дозы во времени является непрерывный режим облучения в течение нескольких дней.Примером этого метода является внутритканевая лучевая терапия, когда в опу­холь имплантируют радиоактивные источники. Достоинством такого режима является воздействие излучения на все стадии клеточного цикла, наибольшее количество раковых клеток подвергается облучению в фазе митоза, когда они наиболее радиочувствительны.

Одномоментная лучевая терапия - суммарная очаговая доза подводится за один сеанс облучения. Примером является методика интраоперационного облучения, когда суммарная однократная доза на ложе опухоли и зоны регио­нарного метастазирования составляет 15-20 Гр.

Основные принципы лучевой терапии злокачественных опухолей:

1. Подведение оптимальной дозы к опухоли для ее разрушения при мини­
мальном повреждении окружающих опухоль здоровых тканей.

2. Своевременное применение лучевой терапии в наиболее ранних стадиях
злокачественного процесса.

3. Одновременное лучевое воздействие на первичную опухоль и пути регио­
нарного метастазирования.

4. Первый курс лучевой терапии должен быть, по возможности, радикаль­
ным и единовременным.

5. Комплексность лечения больного, т. е. использование наряду с лучевой
терапией средств, направленных на улучшение результатов лечения, а
также на предотвращение лучевых осложнений.

Показание для проведения лучевой терапии - точно установленный кли­нический диагноз с морфологическим подтверждением. Исключение составля­ет только ургентная клиническая ситуация: поражение средостения с синдро­мом сдавления верхней полой вены либо трахеи, лучевая терапия проводится по жизненным показаниям.

Лучевая терапия противопоказана при очень тяжелом состоянии больного, кахексии, анемии и лейкопении, не поддающихся коррекции, острых септичес­ких состояниях, декомпенсированных поражениях сердечно-сосудистой систе­мы, печени, почек, при активном туберкулезе легких, распаде опухоли (угроза кровотечения), распространении опухоли на соседние полые органы и прорас­тании опухолью крупных сосудов.

Одним из условий успеха лучевой терапии является тщательно составленный индивидуальный план облучения, включающий определение объема облучения, локализации опухоли, уровней поглощенных доз в зоне опухоли и регионарного метастазирования. Планирование лучевой терапии включает клиническую топометрию, дозиметрию и последующий контроль за воспроизведением намеченно­го плана лечения от сеанса к сеансу.

Фракционирование , то есть использование повторяющихся сеансов облучения в течение всего курса, уже долгое время является предметом пристального интереса и исследователей. Ранние радиологические исследования выявили, что повторяющееся использование относительно небольших доз облучения является наилучшим способом достижения суммарной дозы и наиболее эффективно с точки зрения результатов лечения.

Интерес к фракционированному подходу подогревался не только надеждами понять механизмы радиационного поражения клеток, но и перспективами для лечащих врачей выработать оптимальные для больного режимы курса радиационной терапии. Существует ряд моментов, которые определяют лечебную эффективность данной процедуры. В большинстве экспериментов с однократным использованием облучения степень поражения злокачественных клеток (определяемая в основном по торможению клеточного деления) была в прямопропорциональной линейно-логарифмической зависимости от мощности дозы.

Важной особенностью этой зависимости является то, что на низких дозах облучения график уплощается, образуя характерное «плечо». При облучении относительно более радиорезистентных клеток (например, злокачественной меланомы) это плечо расширяется, а наклон остальной кривой становится более пологим.

Согласно большинству теорий , диапазон облучений, который падает на «плечо» зависимости, относится к сублетальным воздействиям, когда в клетках еще возможны процессы репарации. Таким образом, повторяющееся или фракционированное облучение наносит дополнительное поражение еще до окончания процессов клеточной репарации. Конечно, степень восстановления клеточной популяции в периоды между повторными облучениями зависит от интервалов между ними и интенсивности облучения.

Кроме того, фракционированный метод лечения может повышать степень оксигенации опухолевых тканей, так как уменьшение опухолевой массы в промежутках между облучениями приводит к васкуляризации оставшейся опухоли и лучшему насыщению ее кислородом через систему кровоснабжения, а значит, и повышает ее радиочувствительность перед последующим воздействиями. В добавление к рассмотренным теоретическим преимуществам метод фракционирования имеет и реальное практическое значение, так как уже после первого сеанса облучения у больных часто отмечается улучшение клинической картины заболевания, что делает их более толерантными к последующему лечению.

Эффект концентрации кислорода на цитотоксическое действие рентгеновских лучей.
В экспериментах in vitro использовалась культура клеток Hela.

Это дает возможность планировать общий курс лечения более гибко, чем при однократном воздействии, и позволяет, например, по ходу лечения изменять продолжительность облучения и/или мощность поглощенной дозы.

Наоборот, удлинение курса фракционированного облучения (стандартные методики предусматривают продолжительность курса до 6 недель) может привести к тому, что все преимущества этого метода отступают перед начинающимся восстановлением опухолевой ткани из клоногенных клеток в период между сеансами облучения. Такие процессы репарации могут начаться буквально в течение 1 недели с момента первого облучения.

Поэтому повышенный интерес вызывает концепция непрерывного гиперфракционированного облучения , когда два или даже три сеанса облучения проводятся в один день, а общая продолжительность курса облучения сокращается до 2-3 недель в сравнении со стандартным 6-недельным периодом.

Кроме приведенных выше общих положений, доказывающих преимущества фракционированной лучевой терапии , существует также ряд исследований, которые направлены на оптимизацию режима облучения для достижения наилучших результатов. При определении эффективности своей работы радиологи нередко основываются на чисто эмпирических оценках эффективности и токсичности применяемого курса облучения. Например, при лечении плоскоклеточной карциномы в большинстве случаев используется продолжительный курс облучения в 6 недель, тогда как при лечении других заболеваний радиотерапевты используют более короткие курсы продолжительностью в 3 или 4 недели.

При сравнительном изучении эффективности той или иной схемы лечения очень важно предельно адекватно рассчитывать биологический эквивалент поглощенной дозы. Для примера, все радиологи знают, что биологический эффект от однократного применения дозы излучения в 10 Гр значительно превышает эффект от тех же 10 Гр, но распределенных по дозам в 1 Гр в течение 10 дней. Критерии оценки биологической эквивалента поглощенной дозы очень важны не только для перспективных исследований новых схем лечения, но и в тех случаях, когда по каким-либо причинам приходится отклоняться от стандартной схемы лечения. В любом лечебном учреждении могут случаться непредвиденные поломки оборудования или трудности с персоналом, что может нарушать лечебный график.

Дробное, или фракционированное облучение – один из основных методов наружного дистанционного облучения, причем применяется:

а) мелкое фракционирование 2 - 2,5 Гр (недельная 10-12 Гр),

б) среднее фракционирование 3 - 4 Гр и

в) крупное 5 Гр и более – разовая дневная доза.

К 40 - м годам стало общепринятым облучение опухолей 5 раз в неделю по 2 Гр в день. Такой курс, состоящий из 30 фракций по 2 Гр, широко используется в современной радикальной лучевой терапии и обозначается как “стандартный”.

Сплит-курс. Расщепленный, или, используя английский термин, ”сплит”, курс отличается от “стандартного” наличием в середине 2-3 недельного перерыва в облучении. Он был предложен с целью снижения интенсивности острых лучевых реакций, которые при лечении опухолей некоторых локализаций (например, головы и шеи) не позволяют подводить требуемую дозу. Сплит-курс сохраняет свою ценность при лечении ослабленных пожилых больных или тех локализаций опухоли (например, полости рта), когда острые лучевые реакции препятствуют проведению непрерывного курса облучения.

Гипофракционирование, т.е. использование небольшого количества крупных фракций. Обычным видом гипофракционирования является режим крупнофракционного облучения, который включает несколько фракций по 5-6, реже до 10 Гр, подводимых с интервалом в 5-7 дней до суммарной дозы в 30-45 Гр. Курс лечения – 3-9 недель. Облучение в этом режиме способствует быстрой остановке роста опухоли, хорошо переносится больными и очень удобно для амбулаторной лучевой терапии. В режиме гипофракционирования традиционно проводится облучение метастазов в кости. За счет использования 2-3 фракций по 6-8 Гр достигается быстрый анальгезирующий эффект. Этот режим удобен и для использования с различными модификаторами. Если схемы гипофракционирования, в основном, направлены для создания более удобных условий для облучения больных и при этом получение такого же результата, что и от «стандартного» режима, то режимы мультифракционирования имеют целью улучшение результативности лечения, под которым понимают, как увеличение процента излеченности опухолей, так и снижение числа лучевых осложнений. К обоснованию схем мультифракционирования клиническая радиобиология привлечена в наибольшей мере.

Мультифракционированием обычно принято обозначать режим лучевой терапии с проведением в день 2, иногда 3 сеансов облучения. Для обозначения различных вариантов мультифракционирования используются такие термины, как гиперфракционирование, ускоренное фракционирование.

Гиперфракционирование. Сейчас в качестве предпосылки использования гиперфракционирования рассматривается более высокий репарационный потенциал медленно пролиферирующих, поздно реагирующих тканей, по сравнению с быстро пролиферирующими, к которым относят и опухоли. При росте числа фракций в большей мере ослабляются лучевые реакции медленно пролиферирующих, поздно реагирующих тканей. Соответствующее снижение эффективности воздействия на опухоли компенсируется увеличением дозы, а сопутствующее усиление ранних лучевых реакций рассматривается как не представляющее угрозы для жизни и в значительной мере нивелируемое при лучшем уходе за больными. Гиперфракционирование, соответственно, должно использоваться при лечении опухолей таких локализаций, когда фактором, лимитирующим увеличение дозы, являются поздние лучевые поражения. Интервал между фракциями, согласно данным экспериментальных исследований, для полной репарации должен составлять не менее 6 часов. Расчеты показывают, что разделение ежедневной дозы в 2 Гр на 2 фракции по 1 Гр даст возрастание толерантного уровня поздно реагирующих тканей на 15-25%, в то время, как для компенсации снижения эффективности поражения опухолей потребуется всего лишь 10% повышение дозы. Разница между этими величинами и составляет выигрыш от применения гиперфракционирования.

Так, гиперфракционирование использовалось в рандомизированном клиническом исследовании лечения рака ротоглотки (I.C.Horiot и соавт., 1984). Результаты показали, что лечение 70 × 1,15 Гр (две фракции по 1,15 Гр с интервалом 4-6 ч, суммарная доза 80,5 Гр) вызвало примерно такое же количество поздних лучевых повреждений, как и схема 35 × 2 Гр (70 Гр за 7 недель). Однако большая суммарная доза при гиперфракционировании вызвала увеличение на 19% частоты местной излеченности опухоли.

Во многих случаях гиперфракционирование сочетается с элементами ускоренного фракционирования. Этот режим облучения предназначен для лечения опухолей с высокой скоростью деления клеток, когда сокращение курса способно уменьшить отрицательную роль репопуляции. К числу опухолей с высокой скоростью роста относятся, например, злокачественные лимфомы и ряд опухолей головы и шеи, рост которых, несмотря на высокую радиочувствительность клеток, у отдельных больных продолжается даже во время лучевой терапии с ежедневным облучением в дозе 2 Гр. При использовании этого метода однако возникает значительный рост ранних лучевых реакций. Особое внимание специалистов привлекает так называемое непрерывное ускоренное гиперфракционированное облучения (НУГО) опухолей головы и шеи и карциномы легких. Облучение проводится 3 раза в день по 1,5 Гр с 6 часовым интервалом в течение 12 дней без перерыва до СОД 54 Гр. В этих условиях большая ежедневная доза и отсутствие перерыва (даже в выходные дни) должны способствовать усилению поражения опухолей. При гораздо лучших результатах лечения опухолей после НУГО, по сравнению с историческим контролем, отдаленные лучевые поражения были менее тяжелыми. Заканчивая рассмотрение ускоренного фракционирования, упомянем об его использовании для сокращения длительного лечения, что бывает важным при паллиативном облучении больных.

Динамическое фракционирование. Этим термином обозначают режимы с меняющейся в течение курса величиной проводимой фракции.

Определение толерантных доз при различных режимах фракционирования. Важнейшим условием успешной лучевой терапии является сохранение жизнеспособности нормальных тканей и органов, находящихся в зоне воздействия радиации. Это относится не только к окружающим опухоль анатомическим структурам, но и к самой “мишени”, подвергающейся наиболее интенсивному облучению. Кроме элементов опухоли, в ней содержатся сосуды и другие соединительнотканные образования, от регенераторной способности которых зависит дальнейшее течение заболевания. Даже при полном уничтожении всех клеток опухоли исход заболевания будет неблагоприятный, если превышается толерантность нормальных тканей. Наступающие при этом лучевые поражения протекают не менее тяжело, чем основное заболевание.

Методы лучевой терапии делятся на наружные и внутренние в зависимости от способа подведения ионизирующего излучения к облучаемому очагу. Сочетание методов называют сочетанной лучевой терапией.

Наружные методы облучения - методы, при которых источник излучения находится вне организма. К наружным методам относятся методы дистанционного облучения на различных установках с использованием разного расстояния от источника излучения до облучаемого очага.

К наружным методам облучения относятся:

Дистанционная γ-терапия;

Дистанционная, или глубокая, рентгенотерапия;

Терапия тормозным излучением высокой энергии;

Терапия быстрыми электронами;

Протонная терапия, нейтронная и терапия другими ускоренными частицами;

Аппликационный метод облучения;

Близкофокусная рентгенотерапия (при лечении злокачественных опухолей кожи).

Дистанционная лучевая терапия может проводиться в статическом и подвижном режимах. При статическом облучении источник излучения неподвижен по отношению к больному. К подвижным методам облучения относятся ротационно-маятниковое или секторное тангенциальное, ротационно-конвергентное и ротационное облучение с управляемой скоростью. Облучение может осуществляться через одно поле или быть многопольным - через два, три и более полей. При этом возможны варианты встречных или перекрестных полей и др. Облучение может проводиться открытым пучком или с использованием различных формирующих устройств - защитных блоков, клиновидных и выравнивающих фильтров, решетчатой диафрагмы.

При аппликационном методе облучения, например в офтальмологической практике, аппликаторы, содержащие радионуклиды, прикладывают к патологическому очагу.

Близкофокусную рентгенотерапию применяют для лечения злокачественных опухолей кожи, при этом расстояние от выносного анода до опухоли составляет несколько сантиметров.

Внутренние методы облучения - методы, при которых источники излучения вводят в ткани или в полости организма, а также применяют в виде радиофармацевтического препарата, введенного внутрь пациента.

К внутренним методам облучения относятся:

Внутриполостное облучение;

Внутритканевое облучение;

Системная радионуклидная терапия.

При проведении брахитерапии источники излучения с помощью специальных устройств вводятся в полые органы методом последовательного введения эндостата и источников излучения (облучение по принципу afterloading). Для осуществления лучевой терапии опухолей разных локализаций существуют различные эндостаты: метрокольпостаты, метрастаты, кольпостаты, проктостаты, стомататы, эзофагостаты, бронхостаты, цитостаты. В эндостаты поступают закрытые источники излучения, радионуклиды, заключенные в оболочку-фильтр, в большинстве случаев имеющие форму цилиндров, игл, коротких стерженьков или шариков.

При радиохирургическом лечении установками гамма-нож, кибер-нож осуществляют прицельное облучение малых мишеней с помощью специальных стереотаксических устройств с использованием точных оптических направляющих систем для трехмерной (three-dimensional - 3D) радиотерапии множественными источниками.

При системной радионуклидной терапии используют радиофармацевтические препараты (РФП), вводимые пациенту внутрь, соединения, тропные к определенной ткани. Например, путем введения радионуклида йода проводят лечение злокачественных опухолей щитовидной железы и метастазов, при введении остеотропных препаратов - лечение метастазов в кости.

Виды лучевого лечения. Различают радикальную, паллиативную и симптоматическую цели лучевой терапии. Радикальную лучевую терапию проводят с целью излечения больного с применением радикальных доз и объемов облучения первичной опухоли и зон лимфогенного метастазирования.

Паллиативное лечение, направленное на продление жизни больного путем уменьшения размеров опухоли и метастазов, выполняют меньшими, чем при радикальной лучевой терапии, дозами и объемами облучения. В процессе проведения паллиативной лучевой терапии у части больных при выраженном положительном эффекте возможно изменение цели с увеличением суммарных доз и объемов облучения до радикальных.

Симптоматическую лучевую терапию проводят с целью снятия какихлибо тягостных симптомов, связанных с развитием опухоли (болевой синдром, признаки сдавления сосудов или органов и др.), для улучшения качества жизни. Объемы облучения и суммарные дозы зависят от эффекта лечения.

Лучевую терапию проводят с различным распределением дозы облучения во времени. В настоящее время применяют:

Однократное облучение;

Фракционированное, или дробное, облучение;

Непрерывное облучение.

Примером однократного облучения служит протонная гипофизэктомия, когда лучевую терапию выполняют за один сеанс. Непрерывное облучение происходит при внутритканевом, внутриполостном и аппликационном методах терапии.

Фракционированное облучение является основным методом подведения дозы при дистанционной терапии. Облучение проводят отдельными порциями, или фракциями. Применяют различные схемы фракционирования дозы:

Обычное (классическое) мелкое фракционирование - 1,8-2,0 Гр в день 5 раз в неделю; СОД (суммарная очаговая доза) - 45-60 Гр в зависимости от гистологического вида опухоли и других факторов;

Среднее фракционирование - 4,0-5,0 Гр в день 3 раза в неделю;

Крупное фракционирование - 8,0-12,0 Гр в день 1-2 раза в неделю;

Интенсивно-концентрированное облучение - 4,0-5,0 Гр ежедневно в течение 5 дней, например в качестве предоперационного облучения;

Ускоренное фракционирование - облучение 2-3 раза в сутки обычными фракциями с уменьшением суммарной дозы за весь курс лечения;

Гиперфракционирование, или мультифракционирование - дробление суточной дозы на 2-3 фракции с уменьшением дозы за фракцию до 1,0-1,5 Гр с интервалом 4-6 ч, при этом продолжительность курса может не измениться, но суммарная доза, как правило, повышается;

Динамическое фракционирование - облучение с различными схемами фракционирования на отдельных этапах лечения;

Сплит-курсы - режим облучения с длительным перерывом на 2-4 нед в середине курса или после достижения определенной дозы;

Низкодозный вариант фотонного тотального облучения тела - от 0,1- 0,2 Гр до 1-2 Гр суммарно;

Высокодозный вариант фотонного тотального облучения тела от 1-2 Гр до 7-8 Гр суммарно;

Низкодозный вариант фотонного субтотального облучения тела от 1-1,5 Гр до 5-6 Гр суммарно;

Высокодозный вариант фотонного субтотального облучения тела от 1-3 Гр до 18-20 Гр суммарно;

Электронное тотальное или субтотальное облучение кожи в различных режимах при ее опухолевом поражении.

Величина дозы за фракцию имеет большее значение, чем общее время курса лечения. Крупные фракции более эффективны, чем мелкие. Укрупнение фракций при уменьшении их числа требует уменьшения суммарной дозы, если не изменяется общее время курса.

Различные варианты динамического фракционирования дозы хорошо разработаны в МНИОИ имени П. А. Герцена. Предложенные варианты оказались гораздо эффективнее, чем классическое фракционирование или подведение равных укрупненных фракций. При проведении самостоятельной лучевой терапии или в плане комбинированного лечения используют изоэффективные дозы при плоскоклеточном и аденогенном раке легкого, пищевода, прямой кишки, желудка, гинекологических опухолях, саркомах

мягких тканей. Динамическое фракционирование существенно повысило эффективность облучения за счет увеличения СОД без усиления лучевых реакций нормальных тканей.

Величину интервала при сплит-курсе рекомендуется сокращать и до 10- 14 дней, так как репопуляция выживших клоновых клеток появляется в начале 3-й недели. Тем не менее при расщепленном курсе улучшается переносимость лечения, особенно в случаях, когда острые лучевые реакции препятствуют проведению непрерывного курса. Исследования показывают, что выживающие клоногенные клетки развивают настолько высокие темпы репопуляции, что для компенсации каждый дополнительный день перерыва требует прибавки примерно 0,6 Гр.

При проведении лучевой терапии используют методы модификации радиочувствительности злокачественных опухолей. Радиосенсибилизация лучевого воздействия - процесс, при котором различные способы приводят к увеличению поражения тканей под влиянием облучения. Радиопротекция - действия, направленные на снижение поражающего эффекта ионизирующего излучения.

Оксигенотерапия - метод оксигенации опухоли во время облучения с использованием для дыхания чистого кислорода при обычном давлении.

Оксигенобаротерапия - метод оксигенации опухоли во время облучения с использованием для дыхания чистого кислорода в специальных барокамерах под давлением до 3-4 атм.

Использование кислородного эффекта при оксигенобаротерапии, по данным С. Л. Дарьяловой, было особенно эффективно при лучевой терапии недифференцированных опухолей головы и шеи.

Регионарная турникетная гипоксия - метод облучения больных со злокачественными опухолями конечностей в условиях наложения на них пневматического жгута. Метод основан на том, что при наложении жгута рО 2 в нормальных тканях в первые минуты падает почти до нуля, а в опухоли напряжение кислорода еще некоторое время остается значительным. Это дает возможность увеличить разовую и суммарную дозы облучения без повышения частоты лучевых повреждений нормальных тканей.

Гипоксическая гипоксия - метод, при котором до и во время сеанса облучения пациент дышит газовой гипоксической смесью (ГГС), содержащей 10 % кислорода и 90 % азота (ГГС-10) или при уменьшении содержания кислорода до 8 % (ГГС-8). Считается, что в опухоли имеются так называемые острогипоксические клетки. К механизму возникновения таких клеток относят периодическое, длящееся десятки минут резкое уменьшение - вплоть до прекращения - кровотока в части капилляров, которое обусловлено в числе других факторов повышенным давлением быстрорастущей опухоли. Такие острогипоксические клетки радиорезистентны, в случае наличия их в момент сеанса облучения они «ускользают» от лучевого воздействия. В РОНЦ РАМН этот метод применяют с обоснованием, что искусственная гипоксия снижает величину предсуществующего «отрицательного» терапевтического интервала, который определяется наличием гипоксических радиорезистентных клеток в опухоли при их практически полном отсутс-

твии в нормальных тканях. Метод необходим для защиты высокочувствительных к лучевой терапии нормальных тканей, расположенных вблизи облучаемой опухоли.

Локальная и общая термотерапия. Метод основан на дополнительном разрушительном воздействии на опухолевые клетки. Обоснован метод перегревом опухоли, который происходит в связи со сниженным кровотоком по сравнению с нормальными тканями и замедлением вследствие этого отвода тепла. К механизмам радиосенсибилизирующего эффекта гипертермии относят блокирование ферментов репарации облученных макромолекул (ДНК, РНК, белки). При комбинации температурного воздействия и облучения наблюдается синхронизация митотического цикла: под воздействием высокой температуры большое число клеток одновременно вступает в наиболее чувствительную к облучению фазу G2. Наиболее часто применяют локальную гипертермию. Существуют аппараты «ЯХТА-3», «ЯХТА-4», «PRIMUS U+R» для микроволновой (СВЧ) гипертермии с различными датчиками для прогревания опухоли снаружи или с введением датчика в полости cм. рис. 20, 21 на цв. вклейке). Например, для прогревания опухоли предстательной железы используют ректальный датчик. При СВЧ-гипертермии с длиной волны 915 МГц в предстательной железе автоматически поддерживается температура в пределах 43-44 °С в течение 40-60 мин. Облучение следует сразу за сеансом гипертермии. Имеется возможность для одновременной лучевой терапии и гипертермии («Гамма Мет», Англия). В настоящее время считается, что по критерию полной регрессии опухоли эффективность термолучевой терапии в полтора-два раза выше, чем при проведении только лучевой терапии.

Искусственная гипергликемия приводит к снижению внутриклеточного рН в опухолевых тканях до 6,0 и ниже при очень незначительном уменьшении этого показателя в большинстве нормальных тканей. Кроме того, гипергликемия в условиях гипоксии ингибирует процессы пострадиационного восстановления. Считается оптимальным одновременное или последовательное проведение облучения, гипертермии и гипергликемии.

Электронакцепторные соединения (ЭАС) - химические вещества, способные имитировать действие кислорода (его сродство с электроном) и избирательно сенсибилизировать гипоксические клетки. Наиболее употребительными ЭАС являются метронидазол и мизонидазол, особенно при локальном применении в растворе диметилсульфоксида (ДМСО), что позволяет при создании в некоторых опухолях высоких концентраций препаратов существенно улучшить результаты лучевого лечения.

Для изменения радиочувствительности тканей применяют также препараты, не связанные с кислородным эффектом, например ингибиторы репарации ДНК. К числу таких препаратов относятся 5-фторурацил, галоидированные аналоги пуриновых и пиримидиновых оснований. В качестве сенсибилизатора применяют обладающий противоопухолевой активностью ингибитор синтеза ДНК-оксимочевину. К ослаблению пострадиационного восстановления ведет также прием противоопухолевого антибиотика актиномицина Д. Ингибиторы синтеза ДНК могут быть использованы для вре-

менной искусственной синхронизации деления опухолевых клеток с целью последующего их облучения в наиболее радиочувствительных фазах митотического цикла. Определенные надежды возлагаются на применение фактора некроза опухолей.

Применение нескольких агентов, изменяющих чувствительность опухолевой и нормальной тканей к облучению, называется полирадиомодификацией.

Комбинированные методы лечения - сочетание в различной последовательности хирургического вмешательства, лучевой терапии и химиотерапии. При комбинированном лечении лучевую терапию проводят в виде предили послеоперационного облучения, в некоторых случаях используют интраоперационное облучение.

Целями предоперационного курса облучения являются уменьшение опухоли для расширения границ операбельности, особенно при опухолях больших размеров, подавление пролиферативной активности опухолевых клеток, уменьшение сопутствующего воспаления, воздействие на пути регионарного метастазирования. Предоперационное облучение приводит к уменьшению числа рецидивов и возникновения метастазов. Предоперационное облучение является сложной задачей в плане решения вопросов уровня доз, методов фракционирования, назначения сроков операции. Для нанесения серьезных повреждений опухолевым клеткам необходимо подведение высоких туморицидных доз, что увеличивает риск послеоперационных осложнений, так как в зону облучения попадают здоровые ткани. В то же время операция должна быть проведена вскоре после окончания облучения, так как выжившие клетки могут начать размножаться - это будет клон жизнеспособных радиорезистентных клеток.

Поскольку преимущества проведения предоперационного облучения в определенных клинических ситуациях доказаны по увеличению показателей выживаемости больных, уменьшению числа рецидивов, необходимо четко соблюдать принципы проведения такого лечения. В настоящее время предоперационное облучение проводят укрупненными фракциями при дневном дроблении дозы, используются схемы динамического фракционирования, что позволяет провести предоперационное облучение в короткие сроки с интенсивным воздействием на опухоль с относительным щажением окружающих тканей. Операцию назначают через 3-5 дней после интенсивно-концентрированного облучения, через 14 дней после облучения с использованием схемы динамического фракционирования. Если предоперационное облучение проводят по классической схеме в дозе 40 Гр, приходится назначать операцию через 21-28 дней после стихания лучевых реакций.

Послеоперационное облучение проводятся в качестве дополнительного воздействия на остатки опухоли после нерадикальных операций, а также для уничтожения субклинических очагов и возможных метастазов в регионарных лимфатических узлах. В тех случаях, когда операция является первым этапом противоопухолевого лечения, даже при радикальном удалении опухоли, облучение ложа удаленной опухоли и путей регионарного мета-

стазирования, а также всего органа может существенно повысить результаты лечения. Следует стремиться к началу проведения послеоперационного облучения не позднее чем через 3-4 нед после операции.

При интраоперационном облучении больного, находящегося под наркозом, подвергают однократному интенсивному лучевому воздействию через открытое операционное поле. Применение такого облучения, при котором здоровые ткани просто механически отодвигаются из зоны предполагаемого облучения, позволяет повысить избирательность лучевого воздействия при местно распространенных новообразованиях. С учетом биологической эффективности подведение однократных доз от 15 до 40 Гр эквивалентны 60 Гр и более при классическом фракционировании. Еще в 1994 г. на V Международном симпозиуме в Лионе при обсуждении проблем, связанных с интраоперационным облучением, были приняты рекомендации об использовании 20 Гр в качестве максимальной дозы для снижения риска лучевых повреждений и возможности проведения в дальнейшем при необходимости дополнительного наружного облучения.

Лучевую терапию чаще всего применяют в качестве воздействия на патологический очаг (опухоль) и области регионарного метастазирования. Иногда используют системную лучевую терапию - тотальное и субтотальное облучение с паллиативной или симптоматической целью при генерализации процесса. Системная лучевая терапия позволяет добиться регресса очагов поражения у пациентов с резистентностью к химиопрепаратам.



© dagexpo.ru, 2024
Стоматологический сайт