Гепатоцит гистология. Гепатоциты — удивительные клетки. Как распознать болезнь

17.07.2019

Гепатоцит - основная структурная клетка паренхимы печени человека и животных. Гепатоциты составляют около 60% всех клеток печени, но поскольку они больше других клетки печени, то их масса составляет 80% общей массы печени. По подсчетам, количество гепатоцитов составляет около 300 миллиардов.

Гистологический препарат тканей печени человека, окраска гематоксилином и эозином

Структура

Гепатоциты имеют вид полигональной клетки диаметром 13-30 микрометров. Средний объем гепатоцита составляет 3,4 x 10 -9 см 3. Гепатоцит имеет 6 или более поверхностей, и два полюса: синусоидальный, который ориентирован в направлении печеночных синусовидных капилляров и покрытые ворсинками; и желчный или билиарный, расположенных между двумя синусоидальными поверхностями и формируют стенку желчных канальцев. Через синусоидальный полюс проходит всасывания различных веществ из крови, а через билиарный полюс проходит желчь и другие веществ, производимых в гепатоцитах, в просвет желчных канальцев. Гепатоцит ограничен двухконтурной белково-липидной плазматической мембраной, имеет высокую ферментативную активность, в том числе содержит ферменты, которые катализируют активный транспорт ионов и молекул через мембрану как внутрь клетки, так и из клетки. У желчных канальцев клеточные мембраны гепатоцитов связанные плотным соединением. Между гепатоцитами и стенкой печеночных синусоидальных капилляров размещен пространство Диссе, почти полностью заполнен микроворсинками гепатоцитов. Своими латеральными поверхностями гепатоциты образуют печеночные балки, из которых состоят сегменты и доли печени.

Синусоидальный капилляр и гепатоцит на электронно-микроскопическом снимке печени крысы.

В центральной части гепатоцита размещено ядро диаметром от 7 до 16 микрометров, с одним или двумя ядрышками. Около 75% гепатоцитов имеют одно ядро, причем 70% от общего их количества является тетраплоидной, около 2% от общего количества является октаплоиднимы; а 25% от общего количества гепатоцитов являются двухъядерными. В гепатоцитах хорошо развитый эндоплазматический ретикулум, как гранулярная эндоплазматическая система, так и агранулярная эндоплазматическая система. В гранулярном эндоплазматический ретикулум размещено большое количество рибосом, в агранулярного эндоплазматическом ретикулуме рибосомы отсутствуют. В гепатоцитах хорошо развитый комплекс Гольджи (до 50 комплексов). По разным подсчетам, в гепатоцитах содержатся от 800 до 2000 митохондрий. Кроме перечисленных органелл, в цитоплазме гепатоцита содержатся лизосомы, пероксисомы, дольки гликогена, капли липидов и филаментозни структуры.

Функции

Основной функцией гепатоцита является секреция желчи, которая включает в себя захват, переработку и выведение компонентов желчи в желчные капилляры. Этот механизм пока не изучен до конца. Одной из составляющих синтеза желчи является конъюгация гидрофобного токсического билирубина с помощью фермента глюкуронилтрансферазы к водорастворимого нетоксичного глюкуронил билирубина, который выделяется в желчь. Для предупреждения попадания желчи в кровь желчные канальцы закрываются так называемыми замыкающими поясками - непроникающими плотными соединениями, которые проходят вдоль них, а как дополнение к ним крае канальцев укрепляют так называемые пояса слияния.

Другой важной функцией гепатоцитов является участие в обмене глюкозы. При увеличении поступления глюкозы в кровь гепатоциты под влиянием инсулина проводят переработку избытка глюкозы в гликоген, который откладывается в виде зерен в цитоплазме гепатоцитов. При недостатке глюкозы под действием фермента глюкозо-6-фосфатазы гликоген в гепатоцитах метаболизируется до глюкозы. гепатоциты также обеспечивают синтез глюкозы из других химических соединений, в частности липидов и аминокислот путем сложных ферментных преобразований, который носит название глюконеогенез.

Важную роль играют гепатоциты и в синтезе белков. Гепатоциты синтезируют альбумины, большую часть глобулинов, фибриноген, а также большую часть других белков, участвующих в свертывании крови. Гепатоциты не производят лишь иммуноглобулинов, которые производят плазматические клетки. Белки в гепатоцитах синтезируются в эндоплазматическом ретикулуме, и через комплекс Гольджи проходят в свободной поверхности клетки, откуда выделяются с помощью механизма экзоцитоза. В гепатоцитах преимущественно также происходит дезаминирование аминокислот с образованием мочевины, которая позже транспортируется почек и выводится ими из организма.

Значительная роль гепатоцитов также в обмене липидов и липопротеинов. Гепатоциты участвуют в удалении крупнейших липопротеидных частиц - ХМ - из крови после приема жирной пищи, позже в гепатоцитах под влиянием ферментов осуществляется синтез мелких частиц липопротеинов и преобразования их в пре-Р-липопротеины, а позже в Р-липопротеины, и другие более мелкие, структурные соединения клеток, в частности холестерин и фосфолипиды. В гепатоцитах также происходит накопление резервов лидидив в виде триглицеридов. В гепатоцитах происходит также накопление витаминов, особенно витамина A, которое в основном происходит в так называемых клетках Ито.

Важную роль играют гепатоциты также и в удалении токсичных веществ, которые попадают в организм извне или образующиеся в процессе метаболизма. Эта роль клеток печени обеспечивается ферментами микросомального окисления и происходит преимущественно в специальных образованиях - микросомах. Гепатоциты обеспечивают преобразования, в частности, аммиака, этанола, стероидных гормонов, а также лекарственных средств и других химических веществ, которые попадают в организм из разных источников.

Регенерация

Продолжительность жизни гепатоцита составляет от 200 до 400 дней, однако, несмотря на низкую скорость обновления клеток, печень обладает высокой способностью к регенерации. В частности, в экспериментах на животных при удалении до 75% объема печени она восстанавливает свои нормальные размеры течение нескольких дней. Правда, в восстановленной после хирургического удаления ткани печени меньше гепатоцитов, и больше соединительнотканных элементов. Механизм регенерации печени не исследован до конца. Долгое время считалось, что в печени отсутствуют стволовые клетки, а регенерация проходит на внутриклеточном уровне, а также за счет митоза полиплоидных гепатоцитов. Однако более поздними исследованиями в печени обнаружены стволовые клетки, которые расположены недалеко венозных сосудов в дольками печени, которые имеют способность к активному делению, а при повреждении печени перемещаются в пораженные участки. Некоторое время считалось, что активное размножение этих стволовых клеток может привести к возникновению рака печени, однако по данным последних исследований, это предположение не подтвердилось. Пока неясным остается механизм прекращения деления клеток, а именно, почему на этапе, когда достигнута предыдущий показатель массы органа, то деление клеток останавливается. На данный момент выдвинуто предположение о регуляции этого процесса определенными белковыми соединениями, в частности трансформирующий фактор роста.

Важнейшее значение печени в обмене веществ в первую очередь определяется тем, что она является как бы большой промежуточной станцией между портальным и общим кругом кровообращения. Более 70% крови в печень человека поступает через воротную вену, остальная часть крови попадает в печень через печеночную артерию. Кровь воротной вены омывает всасывающую поверхность кишечника, и в результате (кроме липидов, транспорт которых в основном осуществляется через лимфатическую систему) большая часть веществ, всасывающихся в кишечнике, проходит через печень (рис. 120).

Таким образом, печень прежде всего функционирует как первичный регулятор содержания в крови веществ, поступающих в организм с пищей. Доказательством справедливости данного положения является следующий общеизвестный факт: несмотря на то что всасывание питательных веществ из кишечника в кровь происходит прерывисто, непостоянно, в связи с чем в портальном круге кровообращения может наблюдаться временами более высокая или более низкая концентрация, например, таких веществ, как глюкоза, аминокислоты и др., в общем же круге кровообращения изменения в концентрации указанных соединений незначительны. Все это подтверждает важную роль печени в поддержании постоянства внутренней среды организма. Печень выполняет также крайне важную экскреторную функцию, теснейшим образом связанную с ее детоксикационной функцией.

В целом же без преувеличения можно сказать, что в организме, пожалуй, нет путей обмена веществ, которые прямо или косвенно не контролировались бы печенью, в связи с чем многие важные функции печени уже обсуждены в соответствующих главах учебника. Поэтому в данной главе будет сделана попытка дать обобщающие представления о роли печени в обмене веществ целостного организма.

СТРУКТУРА И ХИМИЧЕСКИЙ СОСТАВ ПЕЧЕНИ

У взрослого здорового человека масса печени составляет в среднем 1,5 кг. Ряд исследователей считают, что эту величину следует рассматривать как нижнюю границу нормальной при диапазоне колебаний в пределах 20-60 г на 1 кг массы тела.

Основой морфологического строения печени является печеночная долька, диаметр которой равен 0,5-2,0 мм. В печени приблизительно 500 000 этих долек. В свою очередь печеночная долька содержит сотни тысяч печеночных клеток - гепатоцитов; диаметр их 14-20 мкм.

Гепатоцит построен чрезвычайно сложно. Сложность начинается с мембраны, которая имеет микроворсинки, увеличивающие ее контакт с так называемыми синусоидами, содержащими портальную (венозную) и артериальную кровь.

Как уже отмечалось, печень получает кровь из воротной вены и из печеночной артерии, а отводится кровь через печеночные вены. Концевые ветви воротной вены (vv. interlobularis), расширяясь, образуют синусоиды (рис. 121), в которых скорость кровообращения сравнительно низка (из этих синусоидов кровь затем через v. centralis попадает в печеночные вены). Стенка синусоидов состоит из синцития эндотелиальных клеток (так называемых купферовских звездчатых клеток). Купферовские клетки по своему количеству являются наиболее значительной составной частью ретикулоэндотелиальной системы и составляют приблизительно 30% всех клеточных элементов печени человека. Печеночная артерия разветвляется в интралобулярные артериолы, которые или на периферии, или в центре печеночных долек вливаются в синусоиды. Поэтому каждый синусоид содержит как портальную, так и артериальную кровь. Между эндотелием синусоидов и печеночными клетками в норме не существует преформированной щели. При гипоксии повышается проницаемость эндотелия синусоидов и между синусоидами и печеночными клетками возникает содержащее белок "пространство Диссе" (см. рис. 121). Желчные капилляры расположены между печеночными клетками, образуя сеть густых анастомозов. Стабильность печеночной структуры обеспечивается также соединительнотканным волокнистым остовом. При некоторых патологических процессах (циррозы) относительное содержание в печени соединительнотканных элементов (в основном коллагена) увеличивается, что может привести к сдавлению кровеносных сосудов, а также к нарушению оттока желчи. Особенно при циррозах страдает портальное кровообращение.

В табл. 42 представлены некоторые данные о химическом составе печени в норме.

Как видно из табл. 42, около 70% массы печени составляет вода. Однако следует помнить, что масса печени и ее состав подвержены значительным колебаниям как в норме, так и особенно при патологических состояниях. Например, при отеках количество воды может составлять до 80% массы печени, а при избыточном отложении жира количество воды в печени может снизиться до 55%. Более половины сухого остатка печени приходится на долю белков, причем примерно 90% из них - на долю глобулинов. Печень также богата различными ферментами. Около 5% массы печени составляют липиды: нейтральные жиры, фосфолипиды, холестерин и др. При выраженном ожирении содержание липидов может достигать 20% от массы органа, а при жировом перерождении печени количество липидов в этом органе может составлять 50% от сырой массы.

В печени может содержаться 150-200 г гликогена. Как правило, при тяжелых паренхиматозных поражениях печени количество гликогена в ней уменьшается. Напротив, при некоторых гликогенозах содержание гликогена может достигать 20% и более от массы печени.

Разнообразен и минеральный состав печени. Количество железа, меди, марганца, никеля и некоторых других элементов превышает их содержание в других органах и тканях. Ниже будет рассмотрена роль печени в разных видах обмена веществ.

РОЛЬ ПЕЧЕНИ В УГЛЕВОДНОМ ОБМЕНЕ

Основная роль печени в углеводном обмене заключается прежде всего в обеспечении постоянства концентрации глюкозы в крови. Это достигается регуляцией соотношения между синтезом и распадом гликогена, депонируемого в печени.

Синтез гликогена в печени и его регуляция в основном аналогичны тем процессам, которые протекают в других органах и тканях, в частности в мышечной ткани. Синтез гликогена из глюкозы обеспечивает в норме временный резерв углеводов, необходимый для поддержания концентрации глюкозы в крови в тех случаях, когда ее содержание значительно уменьшается (например, у человека это происходит при недостаточном поступлении углеводов с пищей или в период ночного "голодания").

Говоря об утилизации глюкозы печенью, необходимо подчеркнуть важную роль фермента глюкокиназы в этом процессе. Глюкокиназа, подобно гексокиназе, катализирует фосфорилирование глюкозы с образованием глюкозо-6-фосфата (см. Синтез гликогена). При этом активность глюкокиназы в печени почти в 10 раз превышает активность гексокиназы. Важное различие между этими двумя ферментами заключается в том, что глюкокиназа в противоположность гексокиназе имеет высокое значение K m для глюкозы и не ингибируется глюкозо-6-фосфатом.

После приема пищи содержание глюкозы в воротной вене резко возрастает; в тех же пределах увеличивается и внутрипеченочная концентрация сахара (При всасывании сахара из кишечника содержание глюкозы в крови воротной вены может повышаться до 20 ммоль/л, а в периферической крови ее содержится не более 5 ммоль/л (90 мг/100 мл).) . Повышение концентрации глюкозы в печени вызывает существенное увеличение активности глюкокиназы и автоматически увеличивает поглощение глюкозы печенью (образовавшийся глюкозо-6-фосфат либо затрачивается на синтез гликогена, либо расщепляется).

Считают, что основная роль расщепления глюкозы в печени сводится прежде всего к запасанию метаболитов-предшественников, необходимых для биосинтеза жирных кислот и глицерина, и в меньшей степени к окислению до СО 2 и Н 2 0. Синтезированные в печени триглицериды в норме выделяются в кровь в составе липопротеидов и транспортируются в жировую ткань для более "постоянного" хранения.

С помощью пентозофосфатного пути в печени образуется НАДФН 2 , используемый для восстановительных реакций в процессах синтеза жирных кислот, холестерина и других стероидов. Кроме того, в ходе пентозофосфатного пути генерируются пентозофосфаты, необходимые для синтеза нуклеиновых кислот.

Наряду с утилизацией глюкозы в печени, естественно, происходит и ее образование. Непосредственным источником глюкозы в печени служит гликоген. Распад гликогена в печени в основном происходит фосфоролитическим путем. В регуляции скорости гликогенолиза в печени большое значение имеет система циклических нуклеотидов (см. Распад гликогена и освобождение глюкозы). Кроме того, глюкоза в печени образуется также в процессе глюконеогенеза. Глюконеогенез в организме в основном протекает в печени и корковом веществе почек.

Основными субстратами глюконеогенеза служат лактат, глицерин и аминокислоты. Принято считать, что почти все аминокислоты, за исключением лейцина, могут пополнять пул предшественников глюконеогенеза.

При оценке углеводной функции печени необходимо иметь в виду, что соотношение между процессами утилизации и образования глюкозы регулируется прежде всего нейрогуморальным путем при участии желез внутренней секреции. Как видно из приведенных данных, центральную роль в превращениях углеводов и саморегуляции углеводного обмена в печени играет глюкозо-6-фосфат. Он резко тормозит фосфоролитическое расщепление гликогена, активирует ферментативный перенос глюкозы с уридиндифосфоглюкозы на молекулу синтезирующегося гликогена, является субстратом для дальнейших гликолитических превращений, а также окисления глюкозы, в том числе по пентозофосфатному пути. Наконец, расщепление глюкозо-6-фосфата фосфатазой обеспечивает поступление в кровь свободной глюкозы, доставляемой током крови во все органы и ткани:

Рассматривая промежуточный обмен углеводов в печени, необходимо также остановиться на превращениях фруктозы и галактозы. Поступающая в печень фруктоза может фосфорилироваться в положении 6 во фруктозо-6-фосфат под действием гексокиназы, обладающей относительной специфичностью и катализирующей фосфорилирование, кроме глюкозы и фруктозы, еще и маннозы. Однако в печени существует и другой путь: фруктоза способна фосфорилироваться при участии и более специфичного фермента - кетогексокиназы. В результате образуется фруктозо-1-фосфат. Эта реакция не блокируется глюкозой. Далее фруктозо-1-фосфат под действием специфической кетозо-1-фосфатальдолазы расщепляется на две триозы: диоксиацетонфосфат и глицериновый альдегид (глицеральдегид). (Активность кетозо-1-фосфатальдолазы в сыворотке (плазме) крови резко увеличивается при заболеваниях печени, что является важным диагностическим тестом.) Под влиянием соответствующей киназы (триозокиназы) и при участии АТФ глицериновый альдегид подвергается фосфорилированию до 3-фосфоглицеринового альдегида. Образовавшийся 3-фосфоглицериновый альдегид (в последний легко переходит и диоксиацетонфосфат) подвергается обычным превращениям, в том числе с образованием в качестве промежуточного продукта пировиноградной кислоты.

Что же касается галактозы, то в печени она сначала фосфорилируется при участии АТФ и фермента галактокиназы с образованием галактозо-1-фосфата. Далее в печени имеются два пути метаболизма галактозо-1-фосфата с образованием УДФ-галактозы. Первый путь предусматривает участие фермента гексозо-1-фосфат-уридилилтрансферазы, второй - связан с ферментом галактозо- 1-фосфат-уридилилтрансферазой.

В норме в печени новорожденных гексозо-1-фосфат-уридилилтрансфераза содержится в больших количествах, а галактозо-1-фосфат-уридилилтрансфераза - в следовых. Наследственная утрата первого фермента приводит к галактоземии - заболеванию, для которого характерны умственная отсталость и катаракта хрусталика. В этом случае печень новорожденных теряет способность метаболизировать D-галактозу, входящую в состав лактозы молока.

РОЛЬ ПЕЧЕНИ В ОБМЕНЕ ЛИПИДОВ

Ферментативные системы печени способны катализировать все или подавляющее большинство реакций метаболизма липидов. Совокупность этих реакций лежит в основе таких процессов, как синтез высших жирных кислот, триглицеридов, фосфолипидов, холестерина и его эфиров, а также липолиз триглицеридов, окисление жирных кислот, образование ацетоновых (кетоновых) тел и т. д.

Напомним, что ферментативные реакции синтеза триглицеридов в печени и жировой ткани сходны. А именно, КоА-производные жирной кислоты с длинной цепью взаимодействуют с глицерол-3-фосфатом с образованием фосфатидной кислоты, которая затем гидролизуется до диглицерида.

Путем присоединения к образовавшемуся диглицериду еще одной молекулы КоА-производного жирной кислоты образуется триглицерид. Синтезированные в печени триглицериды либо остаются в печени, либо секретируются в кровь в форме липопротеидов. Секреция происходит с известной задержкой (у человека - 1-3 ч). Задержка секреции, вероятно, соответствует времени, необходимому для образования липопротеидов.

Как уже отмечалось, основным местом образования плазменных пре-β-липопротеидов (липопротеидов очень низкой плотности - ЛПОНП) и α-липопротеидов (липопротеидов высокой плотности - ЛПВП) является печень. К сожалению, пока нет точных данных о последовательности сборки липопротеидных частиц в гепатоцитах, не говоря уже о механизмах этого процесса.

У человека основная масса β-липопротеидов (липопротеидов низкой плотности - ЛПНП) образуется в плазме крови из пре-β-липопротеидов (ЛПОНП) при действии липопротеидлипазы. В ходе этого процесса образуются сначала промежуточные короткоживущие липопротеиды (ПрЛП). Через стадию образования промежуточных липопротеидов формируются частицы, обедненные триглицеридами и обогащенные холестерином, т. е. образуются β-липопротеиды (рис. 122).

При высоком содержании жирных кислот в плазме их поглощение печенью возрастает, усиливается синтез триглицеридов, а также окисление жирных кислот, что может привести к повышенному образованию кетоновых тел.

Следует подчеркнуть, что кетоновые тела образуются в печени в ходе так называемого β-гидрокси-β-метилглутарил-КоА пути. Прежние представления о том, что кетоновые тела являются промежуточными продуктами окисления жирных кислот в печени, оказались ошибочными [Ньюсхолм Э., Старт К., 1977]. Установлено, что β-гидроксибутирил-КоА, образующийся в печени при β-окислении жирных кислот, имеет L-конфигурацию, в то время как β-гидроксибутират (кетоновое тело), обнаруживаемый в крови, представляет D-изомер (именно этот изомер синтезируется в печени в результате расщепления β-гидрокси-β-метилглутарил-КоА). Из печени кетоновые тела током крови доставляются в ткани и органы (мышцы, почки, мозг и др.), где они быстро окисляются при участии соответствующих ферментов. В самой же ткани печени кетоновые тела не окисляются, т. е. в этом плане по сравнению с другими тканями печень является исключением.

В печени происходит как интенсивный распад фосфолипидов, так и их синтез. Помимо глицерина и жирных кислот, которые входят в состав нейтральных жиров, для синтеза фосфолипидов необходимы неорганические фосфаты и азотистые основания, в частности холин для синтеза фосфатидилхолина. Неорганические фосфаты в печени имеются в достаточном количестве. Другое дело - холин. При недостаточном образовании или недостаточном поступлении его в печень синтез фосфолипидов из компонентов нейтрального жира становится либо невозможным либо резко снижается, и нейтральный жир отлагается в печени. В этом случае говорят о жировой инфильтрации печени, которая может затем перейти в ее жировую дистрофию. Иными словами, синтез фосфолипидов лимитируется количеством азотистых оснований, т. е. для синтеза фосфатидов необходимы либо холин, либо соединения, которые могут являться донорами метальных групп и участвовать в образовании холина (например, метионин). Последние соединения получили название липотропных веществ. Отсюда становится ясным, почему при жировой инфильтрации печени весьма полезен творог, содержащий белок казеин, в составе которого имеется большое количество остатков аминокислоты метионина.

Перейдем к рассмотрению роли печени в обмене стероидов, в частности холестерина. Часть холестерина поступает в организм с пищей, но значительно большее количество его синтезируется в печени из ацетил-КоА. Биосинтез холестерина в печени подавляется экзогенным холестерином, т. е. получаемым с пищей.

Таким образом, биосинтез холестерина в печени регулируется по принципу отрицательной обратной связи. Чем больше холестерина поступает с пищей, тем меньше его синтезируется в печени и наоборот. Принято считать, что действие экзогенного холестерина на биосинтез его в печени связано с торможением β-гидрокси-β-метилглутарил-КоА-редуктазной реакции:

Часть синтезированного в печени холестерина выделяется из организма совместно с желчью, другая часть превращается в желчные кислоты. Часть холестерина используется в других органах для синтеза стероидных гормонов и других соединений.

В печени холестерин может взаимодействовать с жирными кислотами (в виде ацил-КоА) с образованием эфиров холестерина.

Синтезированные в печени эфиры холестерина поступают в кровь, в которой содержится также определенное количество свободного холестерина. В норме отношение содержания эфиров холестерина и свободного холестерина равно 0,5-0,7. При паренхиматозных поражениях печени синтетическая активность ее клеток ослаблена, в связи с чем концентрация холестерина, особенно эфиров холестерина, в плазме крови снижается. В этом случае указанный коэффициент понижается до 0,3-0,4, причем прогрессирующее его снижение является неблагоприятным прогностическим признаком.

РОЛЬ ПЕЧЕНИ В БЕЛКОВОМ ОБМЕНЕ

Печень играет центральную роль в обмене белков. Она выполняет следующие основные функции: синтез специфических белков плазмы; образование мочевины и мочевой кислоты; синтез холина и креатина; переаминирование и дезаминирование аминокислот, что весьма важно для взаимных превращений аминокислот, а также для процесса глюконеогенеза и образования кетоновых тел. Все альбумины плазмы, 75-90% α-глобулинов и 50% β-глобулинов, синтезируется гепатоцитами. (Печень здорового человека может ежедневно синтезировать 13-18 г альбуминов.) Лишь γ-глобулины продуцируются не гепатоцитами, а ретикулоэндотелиальной системой, к которой относятся звездчатые ретикулоэндотелиоциты (купферовские клетки печени). В основном же γ-глобулины образуются вне печени. Печень является единственным органом, где синтезируются такие важные для организма белки, как протромбин, фибриноген, проконвертин и проакцелерин.

В связи с изложенным при заболеваниях печени определение фракционного состава белков плазмы (или сыворотки) крови нередко представляет интерес как в диагностическом, так и в прогностическом плане. Известно, что патологический процесс в гепатоцитах резко снижает их синтетические возможности; в результате содержание альбуминов в плазме крови резко падает, что может привести к снижению онкотического давления плазмы крови, развитию отеков, а затем асцита. Отмечено, что при циррозах печени, протекающих с явлениями асцита, содержание альбуминов в сыворотке крови на 20% ниже, чем при циррозах без асцита.

Нарушение синтеза ряда белковых факторов системы свертывания крови при тяжелых заболеваниях печени может приводить к геморрагическим явлениям.

При поражениях печени нарушается также процес дезаминирования аминокислот, что приводит к увеличению их концентрации в крови и моче. Так, если в норме количество аминоазота в сыворотке крови составляет примерно 2,9-4,3 ммоль/л, то при тяжелых заболеваниях печени (атрофические процессы) концентрация аминокислот в крови увеличивается до 21 ммоль/л, что приводит к аминоацидурии. Например, при острой атрофии печени содержание тирозина в суточном количестве мочи может достигать 2 г.

В организме образование мочевины в основном происходит в печенн. Синтез мочевины связан с затратой довольно значительного количества энергии (на образование 1 моль мочевины расходуется 3 моль АТФ). При заболеваниях печени, когда количество АТФ в гепатоцитах уменьшено, синтез мочевины нарушается. Показательно в этих случаях определение в сыворотке отношения азота мочевины к аминоазоту. В норме это отношение равно 2:1, а при тяжелом поражении печени оно становится 1:1.

Большая часть мочевой кислоты у человека также образуется в печени. Печень очень богата ферментом ксантиноксидазой, при участии которого гидроксипурины (гипоксантин и ксантин) превращаются в мочевую кислоту. Нельзя забывать о роли печени и в синтезе креатина. Имеется два источника, обусловливающих нахождение креатина в организме. Существует экзогенный креатин, т. е. креатин пищевых продуктов (мясо, печень и др.), и эндогенный креатин, образующийся в процессе синтеза в тканях. Синтез креатина в основном происходит в печени (в синтезе участвуют три аминокислоты: аргинин, глицин и метионин), откуда он с током крови поступает в мышечную ткань. Здесь креатин, фосфорилируясь, превращается в креатинфосфат, а уже из последнего образуется креатинин.

ДЕТОКСИКАЦИЯ РАЗЛИЧНЫХ ВЕЩЕСТВ В ПЕЧЕНИ

Чужеродные вещества в печени нередко превращаются в менее токсичные, а подчас индифферентные вещестза. По-видимому, только в этом смысле можно говорить об "обезвреживании" их в печени. Происходит это путем окисления, восстановления, метилирования, ацетилирования и конъюгации с теми или иными веществами. Необходимо заметить, что в печени осуществляют окисление, восстановление и гидролиз чужеродных соединений в основном микросомальные ферменты.

В печени широко представлены также "защитные" синтезы, например синтез мочевины, в результате которого обезвреживается весьма токсичный аммиак . В результате гнилостных процессов, протекающих в кишечнике, из тирозина образуются фенол и крезол, а из триптофана - скатол и индол. Эти вещества всасываются и с током крови поступают в печень, где механизм их обезвреживания заключается в образовании парных соединений с серной или глюкуроновой кислотой.

Обезвреживание фенола, крезола, скатола и индола в печени происходит в результате взаимодействия этих соединений не со свободными серной и глюкуроновой кислотами, а с их так называемыми активными формами: 3"-фосфоаденозин-5"-фосфосульфатом (ФАФС) и уридиндифосфоглюкуроновой кислотой (УДФГК). (Индол и скатол, прежде чем вступить во взаимодействие с ФАФС или УДФГК, окисляются в соединения, содержащие гидроксильную группу (индоксил и скатоксил). Поэтому парными соединениями будут скатоксилсерная кислота или соответственно скатоксилглюкуроновая кислота.)

Глюкуроновая кислота участвует не только в обезвреживании продуктов гниения белковых веществ, образовавшихся в кишечнике, но и в связывании ряда других токсических соединений, образующихся в процессе обмена в тканях. В частности, свободный, или непрямой, билирубин, обладающий значительной токсичностью, в печени взаимодействует с глюкуроновой кислотой, образуя моно- и диглюкурониды билирубина. Нормальным метаболитом является и гиппуровая кислота, образующаяся в печени из бензойной кислоты и глицина (В почках также может происходить синтез гиппуровой кислоты.) .

Учитывая, что синтез гиппуровой кислоты у человека протекает преимущественно в печени, в клинической практике довольно часто для выяснения антитоксической функции печени применяли пробу Квика (при нормальной функциональной способности почек). Проба заключается в нагрузке бензоатом натрия с последующим определением в моче образовавшейся гиппуровой кислоты. При паренхиматозных поражениях печени синтез гиппуровой кислоты затруднен.

В печени широко представлены процессы метилирования. Так, перед выделением с мочой амид никотиновой кислоты (витамин РР) метилируется в печени; в результате образуется N-метилникотинамид. Наряду с метилированием интенсивно протекают и процессы ацетилирования (В печени содержание кофермента ацетилирования (HS-KoA) в 20 раз превышает его концентрацию в мышечной ткани.) . В частности, в печени ацетилированию подвергаются различные сульфаниламидные препараты.

Примером обезвреживания токсических продуктов в печени путем восстановления является превращение нитробензола в парааминофенол. Многие ароматические углеводороды обезвреживаются путем окисления с образованием соответствующих карбоновых кислот.

Печень также принимает активное участие в инактивации различных гормонов. В результате попадания гормонов с током крови в печень активность их в большинстве случаев ослабляется или полностью утрачивается. Так, стероидные гормоны, подвергаясь микросомальному окислению, инактивируются, превращаясь затем в соответствующие глюкурониды и сульфаты. Под влиянием аминооксидаз в печени происходит окисление катехоламинов и т. д. В целом же, скорее всего, это физиологический процесс.

Как видно из приведенных примеров, печень способна инактивировать ряд сильнодействующих физиологических и чужеродных (токсических) веществ.

РОЛЬ ПЕЧЕНИ В ПИГМЕНТНОМ ОБМЕНЕ

В данном разделе речь пойдет лишь о гемохромогенных пигментах, которые образуются в организме при распаде гемоглобина (в значительно меньшей степени при распаде миоглобина, цитохромов и др.) Распад гемоглобина протекает в клетках ретикулоэндотелиальной системы, в частности в звездчатых ретикулоэндотелиоцитах (купферовские клетки печени), а также в гистиоцитах соединительной ткани любого органа.

Как уже отмечалось, начальным этапом распада гемоглобина является разрыв одного метинового мостика с образованием вердоглобина. В дальнейшем от молекулы вердоглобина отщепляются атом железа и белок глобин. В результате образуется биливердин, который представляет собой цепочку из четырех пиррольных колец, связанных метановыми мостиками. Затем биливердин, восстанавливаясь, превращается в билирубин - пигмент, выделяемый с желчью и поэтому называемый желчным пигментом (см. Распад гемоглобина в тканях (образование желчных пигментов)). Образовавшийся билирубин называется непрямым билирубином. Он нерастворим в воде, дает непрямую реакцию с диазореактивом, т. е. реакция получается только после предварительной обработки спиртом. По-видимому, правильнее этот билирубин называть свободным, или неконъюгированным, билирубином.

В печени билирубин соединяется (конъюгирует) с глюкуроновой кислотой. Эта реакция катализируется ферментом УДФ - глюкуронилтрансферазой. При этом глюкуроновая кислота вступает в реакцию в активной форме, т. е. в виде уридиндифосфоглюкуроновой кислоты. Образующийся глюкуроиид билирубина получил название прямого билирубина (конъюгированного билирубина). Он растворим в воде и дает прямую реакцию с диазореактивом. Большая часть билирубина соединяется с двумя молекулами глюкуроновой кислоты, образуя диглюкуронид билирубина.

Образовавшийся в печени прямой билирубин вместе с очень небольшой частью непрямого билирубина выводится с желчью в тонкий кишечник. Здесь от прямого билирубина отщепляется глюкуроновая кислота и происходит его восстановление с последовательным образованием мезобилирубина и мезобилиногена (уробилиногена). Принято считать, что около 10% билирубина восстанавливается до мезобилиногена на пути в тонкий кишечник, т. е. во внепеченочных желчцых путях и желчном пузыре. Из тонкого кишечника часть образовавшегося мезобилиногена (уробилиногена) резорбируется через кишечную стенку, попадает в v. portae и током крови переносится в печень, где расщепляется полностью до ди- и трипирролов. Таким образом, в норме в общий круг кровообращения и в мочу мезобилиноген (уробилиноген) не попадает.

Основное количество мезобилиногена из тонкого кишечника поступает в толстый кишечник, где восстанавливается до стеркобилиногена при участии анаэробной микрофлоры. Образовавшийся стеркобилиноген в нижних отделах толстого кишечника (в основном в прямой кишке) окисляется до стеркобилина и выделяется с калом. Лишь небольшая часть стеркобилиногена всасывается в нижних участках толстого кишечника в систему нижней полой вены (попадает сначала в vv. haemorrhoidalis) и в дальнейшем выводится почками с мочой. Следовательно, в норме моча человека содержит следы стеркобилиногена (за сутки его выделяется с мочой 1-4 мг). К сожалению, до последнего времени в клинической практике стеркобилиноген, содержащийся в нормальной моче, продолжают называть уробилиногеном. Это неверно. На рис. 123 схематично показаны пути образования уробилиногеновых тел в организме человека.

Определение в клинике содержания общего билирубина и его фракций, а также уробилиногеновых тел имеет важное значение при дифференциальной диагностике желтух различной этиологии. При гемолитической желтухе гипербилирубинемия возникает в основном в результате образования непрямого (свободного) билирубина. Вследствие усиленного гемолиза происходит интенсивное образование в ретикулоэндотелиальной системе непрямого билирубина из разрушающегося гемоглобина. Печень оказывается неспособной образовать столь большое количество билирубин-глюкуронидов, что приводит к накоплению непрямого билирубина в крови и тканях (рис. 124). Известно, что непрямой билирубин не проходит через почечный порог, поэтому билирубин в моче при гемолитической желтухе, как правило, не определяется.

При паренхиматозной желтухе наступает деструкция печеночных клеток, нарушается экскреция прямого билирубина в желчные капилляры и он попадает непосредственно в кровь, где содержание его значительно увеличивается. Кроме того, снижается способность печеночных клеток синтезировать билирубин-глюкурониды; вследствие этого количество непрямого билирубина в сыворотке крови также увеличивается. Поражение гепатоцитов сопровождается нарушением их способности разрушать до ди- и трипирролов всосавшийся из тонкого кишечника мезо-билиноген (уробилиноген). Последний попадает в большой круг кровообращения и выделяется почками с мочой.

При обтурационной желтухе нарушено желчевыделение, что приводит к резкому увеличению содержания прямого билирубина в крови. Несколько повышается в крови концентрация и непрямого билирубина. Резко снижается содержание стеркобилиногена (стеркобилина) в кале. Полная обтурация желчного протока сопровождается отсутствием желчных пигментов в кале (ахолический стул). Характерные изменения лабораторных показателей пигментного обмена при различных желтухах представлены в табл. 43.

Таблица 43. Дифференциальная диагностика различных типов желтух [по Генри, 1969]
Желтуха Моча Кал Кровь
билирубин уро- билиноген стерко- билиноген прямой билирубин непрямой билирубин отношение прямого билирубина к общему билирубину
Гемолитическая не определяется снижено или норма повышено норма повышено 0,20
Паренхиматозная определяется повышено норма или снижено повышено повышено 0,20-0,70
Обтурационная определяется снижено или норма резко снижено повышено повышено 0,50

ЖЕЛЧЬ

Желчь - жидкий секрет желтовато-коричневого цвета, отделяемый печеночными клетками. В сутки у человека образуется 500-700 мл желчи (10 мл на кг массы тела). Желчеобразование происходит непрерывно, хотя интенсивность этого процесса на протяжении суток резко колеблется. Вне пищеварения печеночная желчь переходит в желчный пузырь, где происходит ее сгущение в результате всасывания воды и электролитов. Относительная плотность печеночной желчи 1,01, а пузырной - 1,04. Концентрация основных компонентов в пузырной желчи в 5-10 раз выше, чем в печеночной (табл. 44).

Таблица 44. Содержание основных компонентов желчи человека
Компоненты Печеночная желчь Пузырная желчь
Вода, % 97,4 86,65
Плотные вещества, %: 2,6 13,35
желчнокислые соли 1,03 9,14
пигменты и муцин 0,53 2,98
холестерин 0,06 0,26
жирные кислоты и липиды 0,14 0,32
неорганические соли 0,84 0,65
Ионы, ммоль/л:
катионы:
Na + 145 130
К + 5 9
Са 2+ 2,5 6
анионы:
Cl - 100 75
СlO 3 - 28 10

Предполагают, что образование желчи начинается с активной секреции гепатоцитами воды, желчных кислот и билирубина, в результате которой в желчных канальцах появляется так называемая первичная желчь. Последняя, проходя по желчным ходам, вступает в контакт с плазмой крови, в результате чего между желчью и плазмой устанавливается равновесие электролитов, т. е. в образовании желчи принимают участие в основном два механизма - фильтрация и секреция.

В печеночной желчи можно выделить две группы веществ. Первая группа - это те вещества, которые присутствуют в желчи в количествах, мало отличающихся от их концентрации в плазме крови (например, Na + , К + , креатинин и др.), что в какой-то мере служит доказательством наличия фильтрационного механизма. Ко второй группе относятся соединения, концентрация которых в печеночной желчи во много раз превышает их содержание в плазме крови (билирубин, желчные кислоты и др.), что свидетельствует о наличии секреторного механизма. В последне время появляется все больше данных о преимущественной роли активной секреции в механизме желчеобразования.

Как уже указывалось, холестерин, подобно высшим жирным кислотам, представляет собой нерастворимое в воде соединение, которое удерживается в желчи в растворенном состоянии лишь благодаря присутствию в ней солей желчных кислот и фосфатидилхолина. При недостатке желчных кислот холестерин выпадает в осадок, способствуя образованию камней.

Обычно камни имеют внутреннее ядро, состоящее из белка и окрашенное желчным пигментом. Чаще всего встречаются камни, у которых ядро окружено чередующимися слоями холестерина и билирубината кальция. Такие камни содержат до 80% холестерина.

Интенсивное образование камней имеет место при застое желчи и наличии инфекции. При застое желчи встречаются камни, содержащие 90-95% холестерина. В случае наличия инфекции могут образовываться камни, состоящие из билирубината кальция. Принято считать, что присутствие бактерий сопровождается увеличением β-глюкуронидазной активности желчи, что приводит к расщеплению конъюгатов билирубина, и освобождающийся билирубин служит субстратом для образования камней.

В желчи обнаружен целый ряд ферментов, из которых особо следует отметить щелочную фосфатазу печеночного происхождения. При нарушении оттока желчи активность данного фермента в сыворотке крови возрастает. Заметим, что в сыворотке крови имеется также щелочная фосфатаза костного происхождения, т. е. синтезируемая остеобластами. Это другая изоформа щелочной фосфатазы, активность которой увеличивается в сыворотке крови при поражении костей.

В 1833 г. Кирнан ввёл понятие о дольках печени как основе её архитектоники. Он описал чётко очерченные дольки пирамидальной формы, состо­ящие из центрально расположенной печёночной вены и периферически расположенных порталь­ных трактов, содержащих жёлчный проток, ветви воротной вены и печёночной артерии. Между эти­ми двумя системами располагаются балки гепато­цитов и содержащие кровь синусоиды.

С помощью стереоскопической реконструкции и сканирующей электронной микроскопии пока­зано, что печень человека состоит из столбиков гепатоцитов, отходящих от центральной вены, в правильном порядке чередующихся с синусоида­ми (рис. 1-9).

Ткань печени пронизана двумя системами кана­лов - портальными трактами и печёночными цент­ральными каналами, которые расположены таким образом, что не касаются друг друга; расстояние между ними составляет 0,5 мм (рис. 1-10). Эти си­стемы каналов расположены перпендикулярно друг другу. Синусоиды распределяются неравномерно, обычно проходя перпендикулярно линии, соеди­няющей центральные вены. Кровь из терминаль­ных ветвей воротной вены попадает в синусоиды; при этом направление кровотока определяется более высоким давлением в воротной вене по срав­нению с центральной.

Центральные печёночные каналы содержат истоки печёночной вены. Они окружены пограничной пла­стинкой печёночных клеток.

Портальные триады (синонимы: портальные тракты, глиссонова капсула) содержат терминаль­ные ветви воротной вены, печёночную артериолу и жёлчный проток с небольшим количеством круг­лых клеток и соединительной ткани (рис. 1-11). Они окружены пограничной пластинкой печёноч­ных клеток.

Анатомическое деление печени проводят по функциональному принципу. Согласно традицион­ным представлениям, структурная единица пече­ни состоит из центральной печёночной вены и ок­ружающих её гепатоцитов. Однако Раппапорт предлагает выделять ряд функциональных ацинусов, в центре каждого из которых лежит порталь­ная триада с терминальными ветвями портальной вены, печёночной артерии и жёлчного протока - зона 1 (рис. 1-12 и 1-13). Ацинусы расположены веерообразно, в основном перпендикулярно по от­ношению к терминальным печёночным венам со­седних ацинусов. Периферические, хуже кровоснабжаемые отделы ацинусов, прилежащие к тер­минальным печёночным венам (зона 3), наиболее страдают от повреждения (вирусного, токсическо­го или аноксического). В этой зоне локализуются мостовидные некрозы. Области, расположенные ближе к оси, образованной приносящими сосуда­ми и жёлчными протоками, более жизнеспособ­ны, и позднее в них может начаться регенерация печёночных клеток. Вклад каждой из зон ацинуса в регенерацию гепатоцитов зависит от локализа­ции повреждения .

Рис. 1-9. Структура печени человека в норме.

Рис. 1-10. Гистологическое строение пе­чени в норме. Н - терминальная печё­ночная вена; Р - портальный тракт. Ок­раска гематоксилином и эозином, х60. См. также цветную иллюстрацию на с. 767.

Рис. 1-11. Портальный тракт в норме. А - печёночная артерия; Ж - жёлчный про­ток. В - портальная вена. Окраска гематоксилином и эозином. См. также цветную иллюстрацию на с. 767.

Печёночные клетки (гепатоциты) составляют око­ло 60% массы печени. Они имеют полигональную форму и диаметр, равный приблизительно 30 мкм. Это одноядерные, реже многоядерные клетки, ко­торые делятся путём митоза. Продолжительность жизни гепатоцитов у экспериментальных животных составляет около 150 дней. Гепатоцит граничит с синусоидом и пространством Диссе, с жёлчным канальцем и соседними гепатоцитами. Базальной мембраны у гепатоцитов нет.

Синусоиды выстланы эндотелиальными клетка­ми. К синусоидам относятся фагоцитирующие клет­ки ретикулоэндотелиальной системы (клетки Купфера), звёздчатые клетки, также называемые жирозапасающими, клетками Ито или липоцитами.

В каждом миллиграмме нормальной печени че­ловека содержится приблизительно 202 10 3 клеток, из которых 171 10 3 являются паренхиматозными и 31 10 3 - литоральными (синусоидальные, в том числе клетки Купфера).

Пространством Диссе называется тканевое про­странство между гепатоцитами и синусоидальными эндотелиальными клетками. В перисинусоидальной соединительной ткани проходят лимфатические сосуды, которые на всём протяжении выстланы эндотелием. Тканевая жидкость просачивается через эндотелий в лимфатические сосуды.

Рис. 1-12. Функциональный ацинус (по Раппапорту). Зона 1 примыкает к входной (портальной) системе. Зона 3 примы­кает к выводящей (печёночной) системе.

Ветви печёночной артериолы образуют сплетение вокруг жёлчных протоков и впадают в синусои­дальную сеть на различных её уровнях. Они снаб­жают кровью структуры, расположенные в порталь­ных трактах. Прямых анастомозов между печёноч­ной артерией и воротной веной нет.

Экскреторная система печени начинается с жёлч­ных канальцев (см. рис. 13-2 и 13-3). Они не имеют стенок, а являются просто углублениями на контак­тирующих поверхностях гепатоцитов (см. рис. 13-1), которые покрыты микроворсинками. Плазмати­ческая мембрана пронизана микрофиламентами, образующими поддерживающий цитоскелет (см. рис. 13-2). Поверхность канальцев отделена от ос­тальной межклеточной поверхности соединитель­ными комплексами, состоящими из плотных кон­тактов, щелевых контактов и десмосом. Внутридоль­ковая сеть канальцев дренируется в тонкостенные терминальные жёлчные протоки или дуктулы (холангиолы, канальцы Геринга), выстланные куби­ческим эпителием. Они заканчиваются в более круп­ных (междольковых) жёлчных протоках, расположен­ных в портальных трактах. Последние разделяются на мелкие (диаметром менее 100 мкм), средние (±100 мкм) и крупные (более 100 мкм).

Рис. 1-13. Кровоснабжение простого ацинуса печени, зональное расположение кле­ток и микроциркуляторное периферичес­кое русло. Ацинус занимает примыкающие секторы соседних шестиугольных полей. Зоны 1, 2 и 3 соответственно представля­ют области, снабжаемые кровью с I, II и III степенью содержания кислорода и пи­тательных веществ. В центре этих зон находятся терминальные ветви принося­щих сосудов, жёлчных протоков, лимфа­тических сосудов и нервов (PS ), а сами зоны простираются до треугольных пор­тальных полей, из которых выходят эти ветви. Зона 3 оказывается на периферии микроциркуляторного русла ацинуса, по­скольку её клетки так же удалены от аф­ферентных сосудов своего ацинуса, как и от сосудов соседнего ацинуса. Перивенулярная область образуется наиболее уда­лёнными от портальной триады частями зоны 3 нескольких прилежащих ацину-сов. При повреждении этих зон повреж­дённая область приобретает вид морской звезды (затемнённая область вокруг тер­минальной печёночной венулы, располо­женной в её центре - ЦПВ). 1, 2, 3 - зоны микроциркуляции; Г, 2", 3" - зоны соседнего ацинуса .


Поверхность гепатоцитов ровная, за исключени­ем нескольких участков прикрепления (десмосом). Из них в просвет жёлчных канальцев выдаются рав­номерно расположенные микроворсинки одинако­вых размеров. На поверхности, обращённой к си­нусоиду, располагаются микроворсинки разной дли­ны и диаметра, проникающие в перисинусоидальное тканевое пространство. Наличие микроворсинок свидетельствует об активной секреции или абсорб­ции (в основном жидкости).

Ядро содержит дезоксирибонуклеопротеин. Пе­чень человека после полового созревания содер­жит тетраплоидные ядра, а в возрасте 20 лет - также октоплоидные ядра. Считается, что повы­шенная полиплоидность свидетельствует о пред­раковом состоянии. В хроматиновой сети обнару­живаются одно или два ядрышка. Ядро имеет двой­ной контур и содержит поры, обеспечивающие обмен с окружающей цитоплазмой.

Митохондрии также имеют двойную мембрану, внутренний слой которой образует складки, или кристы. Внутри митохондрий протекает огромное количество процессов, в частности окислительное фосфорилирование, при которых происходит ос­вобождение энергии. В митохондриях содержится много ферментов, в том числе участвующих в цикле лимонной кислоты и бета-окислении жирных кис­лот. Энергия, высвобождающаяся в этих циклах, затем запасается в виде АДФ. Здесь протекает так­же синтез гема.

Шероховатая эндоплазматическая сеть (ШЭС) выглядит как ряд пластинок, на которых распола­гаются рибосомы. При световой микроскопии они окрашиваются базофильно. В них синтезируются специфические белки, особенно альбумин, белки свёртывающей системы крови и ферменты. При этом рибосомы могут сворачиваться в спираль, образуя полисомы. В ШЭС синтезируется Г-6-Фаза. Из свободных жирных кислот синтезируются три­глицериды, которые в виде липопротеидных комп­лексов секретируются путём экзоцитоза. ШЭС мо­жет участвовать в глюкогенезе.

Рис. 1-14. Органеллы гепатоцита.

Гладкая эндоплазматическая сеть (ГЭС) образует тубулы и везикулы. Она содержит микросомы и является местом конъюгации билирубина, деток­сикации многих лекарств и других токсичных ве­ществ (система Р450). Здесь синтезируются стерои­ды, в том числе холестерин и первичные жёлчные кислоты, которые конъюгируют с аминокислотами глицином и таурином. Индукторы ферментов, на­пример фенобарбитал, увеличивают размеры ГЭС.

Пероксисомы располагаются поблизости от ГЭС и гранул гликогена. Их функция неизвестна.

Лизосомы - плотные тельца, примыкающие к жёлчным канальцам. Они содержат гидролитичес­кие ферменты, при выделении которых клетка разрушается. Вероятно, они выполняют функцию внутриклеточной очистки от разрушенных орга­нелл, срок жизни которых уже истёк. В них от­кладываются ферритин, липофусцин, жёлчный пигмент и медь. Внутри них можно наблюдать пиноцитозные вакуоли. Некоторые плотные тель­ца, расположенные около канальцев, называются микротельцами.

Аппарат Гольджи состоит из системы цистерн и пузырьков, которые также лежат около канальцев. Его можно назвать «складом веществ», предназна­ченных для экскреции в жёлчь. В целом эта груп­па органелл - лизосомы, микротельца и аппарат Гольджи - обеспечивает секвестрирование любых веществ, которые были поглощены и должны быть удалены, секретрированы или сохранены для ме­таболических процессов в цитоплазме. Аппарат Гольджи, лизосомы и канальцы подвергаются осо­бенно выраженным изменениям при холестазе (см. главу 13).

Рис. 1-15. Электронно-микроскопическая картина части нормального гепатоцита. Я - ядро; Яд - ядрышко; М - митохондрии; Ш - шероховатая эндоплазматическая сеть; Г - гранулы гликогена; mb - микроворсинки во внутри­клеточном пространстве; Л - лизосомы; МП - межкле­точное пространство.

Цитоплазма содержит гранулы гликогена, ли­пиды и тонкие волокна.

Цитоскелет, поддерживающий форму гепато­цита, состоит из микротрубочек, микрофиламен­тов и промежуточных филаментов . Микро­трубочки содержат тубулин и обеспечивают пере­мещение органелл и везикул, а также секрецию белков плазмы. Микрофиламенты состоят из ак­тина, способны к сокращению и играют важную роль в обеспечении целостности и моторики ка­нальцев, тока жёлчи. Длинные ветвящиеся фила­менты, состоящие из цитокератинов, называют промежуточными филаментами . Они соеди­няют плазматическую мембрану с перинуклеарной областью и обеспечивают стабильность и простран­ственную организацию гепатоцитов.

Синусоидальные клетки

Синусоидальные клетки (эндотелиальные клет­ки, клетки Купфера, звёздчатые и ямочные клет­ки) вместе с обращённым в просвет синусоида участком гепатоцитов образуют функциональную и гистологическую единицу .

Эндотелиальные клетки выстилают синусоиды и содержат фенестры, образующие ступенчатый ба­рьер между синусоидом и пространством Диссе (рис. 1-16). Клетки Купфера прикреплены к эндотелию.

Звёздчатые клетки печени располагаются в про­странстве Диссе между гепатоцитами и эндотели­альными клетками (рис. 1-17). Пространство Дис­се содержит тканевую жидкость, оттекающую да­лее в лимфатические сосуды портальных зон. При нарастании синусоидального давления выработка лимфы в пространстве Диссе увеличивается, что играет роль в образовании асцита при нарушении венозного оттока из печени.

Клетка Купфера содержит специфические мем­бранные рецепторы для лигандов, включая фраг­мент Fc иммуноглобулина и компонент С3b ком­племента, которые играют важную роль в пред­ставлении антигена.

Клетки Купфера активируются при генерали­зованных инфекциях или травмах. Они специфи­чески поглощают эндотоксин и в ответ вырабаты­вают ряд факторов, например фактор некроза опу­холи, интерлейкины, коллагеназу и лизосомальные гидролазы. Эти факторы усиливают ощущение дискомфорта и недомогания. Токсическое действие эндотоксина, таким образом, обусловлено продуктами секреции клеток Купфера, поскольку сам по себе он нетоксичен.

Рис. 1-16. Электронная микрофотография синусоида, на которой видны фенестры (Ф), образующие ситовидные пластинки (С). П - паренхиматозная клетка; Д - пространство Диссе; М - микроворсин­ки; Э - эндотелиальная клетка.

Рис. 1-17. Электронная микрофотогра­фия звёздчатой клетки печени. Видны характерные жировые капли (Ж). С - просвет синусоида; Д - пространство Диссе. П - паренхиматозная клетка. К - жёлчный каналец. Я - ядро. М - мито­хондрия, х 12 000.

Клетка Купфера секретирует также метаболи­ты арахидоновой кислоты, в том числе простаг­ландины .

Клетка Купфера имеет специфические мемб­ранные рецепторы к инсулину, глюкагону и ли­попротеинам. Углеводный рецептор N-ацетилгликозамина, маннозы и галактозы может служить посредником в пиноцитозе некоторых гликопро­теинов, особенно лизосомальных гидролаз. Кроме того, он опосредует поглощение иммунных комп­лексов, содержащих IgM .

В печени плода клетки Купфера выполняют эритробластоидную функцию. Распознавание и скорость эндоцитоза клетками Купфера зависят отопсонинов, фибронектина плазмы, иммуногло­булинов и тафтсина - естественного иммуномодуляторного пептида . Коллагенизация про­странства Диссе приводит к снижению поступле­ния в гепатоцит субстратов, связанных с белком .

Ямочные клетки. Это очень подвижные лимфо­циты - естественные киллеры, прикреплённые к обращённой в просвет синусоида поверхности эн­дотелия . Их микроворсинки или псевдоподии проникают сквозь эндотелиальную выстилку, со­единяясь с микроворсинками паренхиматозных клеток в пространстве Диссе. Эти клетки живут недолго и обновляются за счёт лимфоцитов цир­кулирующей крови, дифференцирующихся в си­нусоидах . В них обнаруживаются характер­ные гранулы и пузырьки с палочками в центре. Ямочные клетки обладают спонтанной цитоток­сичностью по отношению к опухолевым и инфи­цированным вирусом гепатоцитам.

Взаимодействия синусоидальных клеток

Между клетками Купфера и эндотелиальными клетками, как и между клетками синусоидов и гепатоцитами, происходит сложное взаимодей­ствие. Активация клеток Купфера липополиса­харидами подавляет поглощение гиалуроновой кислоты эндотелиальными клетками. Этот эффект, возможно, опосредуется лейкотриенами . Об­разованные клетками синусоидов цитокины могут как стимулировать, так и подавлять пролифера­цию гепатоцитов .

Внеклеточный матрикс

Внеклеточный матрикс становится видимым только при заболеваниях печени. В пространстве Диссе можно обнаружить все главные компоненты базальной мембраны, в том числе коллаген типа IV, ламинин, гепарансульфат, протогликан и фиб­ронектин . Все клетки, образующие синусоид, могут участвовать и в образовании матрикса. Мат­рикс, находящийся в пространстве Диссе, влияет на функцию гепатоцитов, изменяя экспрессию тка­неспецифических генов, например гена альбумина, а также количество и порозность синусоидальных фенестраций . Это может иметь значение для регенерации печени.


Нарушение микроциркуляции печени при патологии

При заболеваниях печени, например при алкоголь­ном поражении, может нарушаться микроциркуля­ция печени из-за коллагенизации пространства Дис­се, образования базальной мембраны под эндотели­ем и изменения его фенестрированности . Все эти процессы наиболее выражены в зоне 3. Они приводят к потере питательных веществ, предназначен­ных для гепатоцитов, и к развитию портальной ги­пертензии.

Адгезивные молекулы

При воспалении в печени часто обнаруживается инфильтрация лимфоцитами. Рецепторы на поверх­ности лимфоцитов, антиген, ассоциированный с функцией лейкоцитов (LFA -1), и молекулы меж­клеточной адгезии (ICAM -1 и ICAM -2) взаимо­действуют между собой. В норме ICAM-1 эксп­рессируется в основном на клетках, выстилающих синусоиды, и в незначительной степени - на пор­тальном и печёночном эндотелии (рис. 1-18) . При реакциях отторжения трансплантата выявле­на индукция ICAM-1 в эпителии жёлчных путей, эндотелии сосудов и в перивенулярных гепатоци­тах. Экспрессия этих молекул адгезии на клетках жёлчных протоков показана при первичном били­арном циррозе и первичном склерозирующем хо­лангите .

Функциональная неоднородность

Функции клеток, расположенных в периферичес­кой зоне кровообращения ацинуса, примыкающей к терминальным печёночным венам (зона 3), отли­чаются от функции клеток, примыкающих к тер­минальным печёночным артериям и портальным венам (зона 1; см. рис. 1-12 и 1-13; табл. 1-1) }

© dagexpo.ru, 2024
Стоматологический сайт