Как работает правило буравчика. Направление тока и направление линий его магнитного поля (Зарицкий А.Н.). Закон правой руки для соленоида

12.12.2023

Для обозначения направления тока, магнитных линий и прочих физических значений в науке применяют правило левой руки и правило правой руки (закон буравчика или винта). Указанные методы на практике дают наиболее точные результаты. Рассмотрим более подробно каждый из них.

Правило Буравчика

Этоправило на практике достаточно удобно для определения такого значения магнитного поля, как направленность напряжённости. Использовать это правило возможно при условии, что к проводнику с током будет прямолинейно расположено магнитное поле. С его помощью можно без наличия специализированных приборов определить различные физические величины (момент сил, импульса, вектор магнитной индукции).

Это правило:

  • поясняет особенность электромагнетизма;
  • объясняет физику движения магнитных полей, сопутствующих ему.

Формулировка правила буравчика состоит в следующем: если буравчик с правой нарезкой вкручивается вдоль линии тока, то направление магнитного поля совпадает с направлением рукоятки этого буравчика.

Основным принципом, используемым в правиле винта, является выбор направленности для базисов и векторов . Зачастую на практике определено использовать правый базис. Левые базисы используются крайне редко, в случае когда использование правого неудобно или в целом нецелесообразно. Этот принцип также применим и на соленоиде.

Соленоидом называется катушка со вплотную привязанными витками. Главным требованием является протяжённость катушки, которая должна быть существенно больше, нежели её диаметр.

Кольца соленоида напоминают поле непрерывного магнита. Магнитная стрелка, находясь в свободном вращении и находясь рядом с проводником тока, будет образовывать поле и устремиться занимать вертикальную позицию, проходящую вдоль проводника.

В этом случае оно звучит так: если охватить соленоид таким образом, чтобы пальцы показывали на направленность тока в винтах, то выпяченный заглавный палец правой руки покажет направленность рядов магнитной индукции.

Различные толкования правила буравчика говорят о том, что все его описания приспосабливаются к различным случаям их применения.

Правило правой руки говорит о следующем : охватив элемент, который исследуется таким образом, чтобы пальцы сжатого кулака показывали вектор магнитных линий, при поступательном движении вдоль магнитных линий, заглавный отогнутый на 90 градусов сравнительно ладошки палец покажет направленность движения тока.

В случае когда дан движущийся проводник, принцип будет иметь следующую формулировку: разместить руку так, чтобы силовые линии поля вертикально вступали в ладонь; заглавный палец руки, выставленный вертикально, будет ориентировать направленность перемещения этого проводника, в этом случае четыре остальных выставленных пальца, будут иметь такую же направленность, как и индукционный ток.

Его применение присуще при расчёте катушек, в которых образуется влияние на ток, что влечёт за собой формирование при потребности противотока.

В реальной жизни также применимо следствие этого принципа: если размесить ладошку правой руки так, чтобы линии магнитного силового поля входили в эту ладошку, а пальцы навести на линию перемещения заряженных частиц по оттопыренному заглавному пальцу, то возможно обозначить, куда будет направляться линия данной силы, оказывающая смещающее влияние на проводник. Иными словами, силы, дающей возможность вращать момент силы на валу любого двигателя, работающего с помощью электрического тока.

Рассмотрим правило : если разместить левую ладошку так, что четыре остальные пальца показывают направленность тока, то в этом случае линии индукции будут поступать в ладошку под прямым углом, а отвёрнутый заглавный палец и покажет вектор существующей силы.

Имеется иное обозначение. Направленность силы Ампера и силы Лоренца должен указывать выставленный главный палец левой руки в том случае, если оставшиеся четыре пальца будут размещены в сторону передвижения положительно и отрицательно заряженных элементов электрического тока, и линии индукции образованного поля будут вертикально входить в ладошку. Это изобретение считается теоретическим и практическим объяснением способа работы двигателей и генераторов, работающих с помощью электрического тока.

Можно сделать вывод, что знание данных правил и умение их использовать на практике, позволяют создавать и придумывать электрические приборы и успешно работать с ними.

Видео

Это видео поможет вам лучше понять, что такое магнитное поле.

Что такое "Правило левой руки"? Ответ вы найдете в этом видео.

Магнитное поле - Сила Лоренца.

С момента создания электричества было проделано много научной работы в физике по изучению его характеристик, особенностей и влияния на окружающую среду. Правило буравчика внесло свой значимый след в изучение магнитного поля, закон правой руки для цилиндрической обмотки провода позволяет глубже понять процессы, проходящие в соленоиде, а правило левой руки характеризует силы, влияющие на проводник с током. Благодаря правой и левой руке, а также мнемоническим приемам можно с легкостью эти закономерности изучить и понять.

Принцип буравчика

Достаточно долгое время магнитные и электрические характеристики поля изучались физикой раздельно. Однако в 1820 году совершенно случайно датский ученый Ханс Христиан Эрстед обнаружил магнитные свойства провода с электричеством во время проведения лекции по физике в университете. Также была обнаружена зависимость ориентации магнитной стрелки от направления протекания тока в проводнике.

Проведенный опыт доказывает наличие поля с магнитными характеристиками вокруг провода с током, на которое реагирует намагниченная стрелка или компас. Ориентация протекания «переменки» заставляет поворачиваться стрелку компаса в противоположные стороны, сама стрелка расположена по касательной электромагнитного поля.

Для выявления ориентации электромагнитных потоков применяют правило буравчика, или закон правого винта, которое гласит, что, ввинчивая шуруп по курсу протекания электротока в шунте, путь верчения рукоятки задаст ориентацию ЭМ потоков фона «переменки».

Также возможно использовать правило Максвелла правой руки: когда отодвинутый палец правой руки ориентируется по курсу протекания электричества, то остальные сжатые пальцы покажут ориентацию электромагнитной области.

Пользуясь этими двумя принципами, будет получен одинаковый эффект, используемый для определения электромагнитных потоков.

Закон правой руки для соленоида

Рассмотренный принцип винта или закономерность Максвелла для правой руки применим для прямолинейного провода с током. Однако в электротехнике встречаются устройства, у которых проводник расположен не прямолинейно, и для него закон винта не применим. В первую очередь, это касается катушек индуктивности и соленоидов. Соленоид, как разновидность катушки индуктивности, представляет собой цилиндрическую обмотку провода, длина которого во много раз больше диаметра соленоида. Дроссель индуктивности отличается от соленоида лишь длиной самого проводника, который может быть в разы меньше.

Французский специалист по математике и физике А-М. Ампер, благодаря своим опытам, узнал и доказал, что при прохождении по дросселю индуктивности электротока указатели компаса у торцов цилиндрической обмотки провода разворачивались обратными концами вдоль невидимых потоков ЭМ поля. Такие опыты доказали, что около катушки индуктивности с током образовывается магнитное поле, и цилиндрическая обмотка проволоки формирует магнитные полюса. Электромагнитное поле, возбуждаемое электротоком цилиндрической обмотки проволоки, подобно магнитному полю постоянного магнита – конец цилиндрической обмотки провода, из которого выходят ЭМ потоки, отображает полюс, являющийся северным, а противоположный конец является южным.

Для распознавания магнитных полюсов и ориентации ЭМ линий в дросселе с током употребляют правило правой руки для соленоида. Оно сообщает о том, что, если взять данную катушку рукой, разместить пальцы ладони прямо по курсу протекания электронов в витках, большой палец, отодвинутый на девяносто градусов, задаст ориентацию электромагнитного фона в середине соленоида – его северный полюс. Соответственно, зная позицию магнитных полюсов цилиндрической обмотки проволоки, можно определить трассу протекания электронов в витках.

Закон левой руки

Ханс Христиан Эрстед после открытия явления магнитного поля вблизи шунта в кратчайшие сроки поделился своими результатами с большинством ученых Европы. В результате этого Ампер А.-М., пользуясь своими методами, спустя короткий отрезок времени явил общественности эксперимент по специфическому поведению двух параллельных шунтов с электротоком. Формулировка опыта доказывала, что параллельно размещенные провода, по которым протекает электричество в одном направлении, взаимно придвигаются друг к другу. Соответственно, такие шунты будут взаимно отталкиваться при условии, что протекающая в них «переменка» будет распределяться в разные стороны. Эти эксперименты легли в основу законов Ампера.

Испытания позволяют озвучить главные выводы:

  1. Постоянный магнит, проводник с «переменкой», электрически заряженная движущаяся частица имеют вокруг себя ЭМ область;
  2. Заряженная частица, движущаяся в этой области, поддается некоторому воздействию со стороны ЭМ фона;
  3. Электрическая «переменка» является ориентированным перемещением заряженных частиц, соответственно, электромагнитный фон воздействует на шунт с электричеством.

ЭМ фон влияет на шунт с «переменкой» неким давлением, называемым силой Ампера. Указанную характеристику можно определить формулой:

FA=IBΔlsinα, где:

  • FA – сила Ампера;
  • I – интенсивность электричества;
  • B – вектор магнитной индукции по модулю;
  • Δl – размер шунта;
  • α – угол между направлением В и курсом электричества в проводе.

При условии, что угол α – девяносто градусов, то данная сила наибольшая. Соответственно, если данный угол равен нулю, то и сила нулевая. Контур этой силы выявляется по закономерности левой руки.

Если изучить правило буравчика и правило левой руки, получите все ответы на формирование ЭМ полей и их влияние на проводники. Благодаря этим правилам, есть возможность рассчитывать индуктивности катушек и при необходимости формировать противотоки. В основе принципа построения электродвигателей лежат силы Ампера в целом и правило левой руки в частности.

Видео

Магнитное поле и его графическое изображениеПравило буравчика
Направление линий
магнитного поля тока связано с
направлением тока в проводнике.
Правило буравчика
если направление
поступательного движения
буравчика совпадает с
направлением тока в
проводнике, то направление
вращения ручки буравчика
совпадает с направлением
линий магнитного поля тока.
С помощью правила буравчика
по направлению тока можно
определить направлений линий
магнитного поля, создаваемого этим
током, а по направлению линий
магнитного поля –
направление тока, создающего
это поле.

Неоднородное и однородное магнитное поле

Проводник с током расположен

1.Направление электрического тока от нас
(в плоскость листа)
Линии магнитного
поля будут
направлены по
часовой стрелке

Правило буравчика

Проводник с током расположен
перпендикулярно плоскости листа:
2.Направление электрического тока на нас
(из плоскости листа)
Линии магнитного
поля будут
направлены против
часовой стрелки

Проводник с током расположен перпендикулярно плоскости листа: 1.Направление электрического тока от нас (в плоскость листа) Согласно прав

Правило правой руки
Для определения
направления линий магнитного
поля соленоида удобнее
пользоваться другим правилом,
которое иногда называют
правилом правой руки.
если обхватить соленоид
ладонью правой руки,
направив четыре пальца по
направлению тока в витках,
то отставленный большой
палец покажет направление
линий магнитного поля
внутри соленоида.

Проводник с током расположен перпендикулярно плоскости листа: 2.Направление электрического тока на нас (из плоскости листа) Согласно пра

Соленоид, как и магнит, имеет полюсы:
тот конец соленоида, из которого магнитные линии
выходят, называется северным полюсом, а тот, в
который входят - южным.
Зная направления тока в соленоиде, по
правилу правой руки можно определить
направление магнитных линий внутри него, а
значит, и его магнитные полюсы и наоборот.
Правило правой руки можно применять и для
определения направления линий магнитного поля
в центре одиночного витка
с током.

Правило правой руки

для
проводника с током
Если правую руку
расположить так,
чтобы большой палец
был направлен по
току, то остальные
четыре пальца
покажут направление
линии магнитной
индукции

1. Магнитное поле создается…
2.Что показывает картина магнитных линий?
3.Дайте характеристику однородного магнитного поля.
Выполнить чертеж.
4. Дайте характеристику неоднородного магнитного
поля. Выполнить чертеж.
5.Изобразите однородное магнитное поле в
зависимости от направления магнитных линий.
Поясните.
6. Объясните принцип действия правила буравчика.
7.Укажите два случая зависимости направления
магнитных линий от направления электрического тока.
8. Каким правилом следует воспользоваться для
определения направления магнитных линий
соленоида. В чем оно заключается?
9. Как определить полюсы соленоида?

Правило правой руки для проводника с током

Обнаружение магнитного поля
по его действию на
электрический ток.
Правило левой руки.

1. Магнитное поле создается… 2.Что показывает картина магнитных линий? 3.Дайте характеристику однородного магнитного поля. Выполнить черте

На всякий проводник с током,
помещенный в магнитное поле и
не совпадающий c его
магнитными линиями, это поле
действует с некоторой силой.

Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки.

Выводы:
Магнитное поле создаётся электрическим
током и обнаруживается по его действию
на электрический ток.
Направление тока в проводнике,
направление линий магнитного поля и
направление силы, действующей на
проводник, связаны между собой.

На всякий проводник с током, помещенный в магнитное поле и не совпадающий c его магнитными линиями, это поле действует с некоторой силой.

Правило левой руки
Направление силы,
действующей на проводник с
током в магнитном поле, можно
определить, пользуясь
правилом левой руки.
Если левую руку расположить
так, чтобы линии магнитного
поля входили в ладонь
перпендикулярно к ней, а четыре
пальца были направлены по
току. То отставленный на 900
большой палец покажет
направление действующей
на проводник силы.

Выводы:

За направление тока во внешней
цепи принято направление от «+»
к «–», т.е. против направления
движения электронов в цепи

Правило левой руки

Определение силы Ампера
Если левую руку расположить
так, чтобы вектор магнитной
индукции входил в ладонь, а
вытянутые пальцы были
направлены вдоль тока, то
отведенный большой палец
укажет направление действия
силы Ампера на проводник с
током.

За направление тока во внешней цепи принято направление от «+» к «–», т.е. против направления движения электронов в цепи

Правило левой руки можно применять
для определения направления силы, с
которой магнитное поле действует на
отдельно взятые движущиеся
заряженные частицы.

Определение силы Ампера

Сила, действующая на заряд
Если левую руку
расположить так, чтобы линии
магнитного поля входили в
ладонь перпендикулярно к ней,
а четыре пальца были
направлены по движению
положительно заряженной
частицы (или против движения
отрицательно заряженной), то
отставленный на 900 большой
палец покажет направление
действующей на частицу силы
Лоренца.

Правило левой руки можно применять для определения направления силы, с которой магнитное поле действует на отдельно взятые движущиеся зар

Пользуясь правилом левой руки
можно определить направление
тока, направление магнитных
линий, знак заряда движущейся
частицы.

Сила, действующая на заряд

Случай когда сила действия
магнитного поля на проводник с
током или движущуюся
заряженную частицу F=0

Пользуясь правилом левой руки можно определить направление тока, направление магнитных линий, знак заряда движущейся частицы.

Реши задачу:

Случай когда сила действия магнитного поля на проводник с током или движущуюся заряженную частицу F=0

Реши задачу:

Отрицательно заряженная частица,
движущаяся со скоростью v в магнитном
поле. Сделайте такой же рисунок в
тетради и укажите стрелочкой
направление силы, с которой поле
действует на частицу.
Магнитное поле действует с силой F на
частицу, движущуюся со скоростью v.
Определите знак заряда частицы.

Тому, кто выбрал электротехнику в качестве своей основной профессии, очень хорошо известны некоторые основные свойства электрического тока и сопутствующих ему магнитных полей. Одно из важнейших из них - это правило буравчика. С одной стороны довольно сложно назвать данное правило законом. Более правильно говорить, что речь идет об одном из фундаментальных свойств электромагнетизма.

Что же такое правило буравчика? Определение хотя и существует, но для более полного понимания стоит вспомнить основы электричества. Как известно еще из школьного курса физики, электрический ток является движением элементарных частиц, несущих электрический заряд по какому-либо проводящему материалу. Обычно оно сопоставляется с межатомным перемещением которые благодаря внешнему воздействию (к примеру, магнитному импульсу) получают порцию энергии, достаточную для покидания своей установившейся орбиты в атоме. Проведем мысленный эксперимент. Для этого нам понадобятся нагрузка, источник ЭДС и проводник (провод), соединяющий все элементы в единую замкнутую цепь.

Источник создает в проводнике направленное движение элементарных частиц. При этом еще в 19 веке было замечено, что вокруг такого проводника возникает которое вращается в том или ином направлении. Правило буравчика как раз и позволяет определить направление вращения. Пространственная конфигурация поля представляет собой своеобразную трубку, в центре которой располагается проводник. Казалось бы: какая разница, как ведет себя это генерируемое магнитное поле! Однако еще Ампер обратил внимание, что два проводника с током воздействуют друг на друга своими магнитными полями, отталкиваясь или притягиваясь друг к другу, в зависимости от направления вращения их полей. В дальнейшем на основании ряда проведенных экспериментов Ампер сформулировал и обосновал свой закон взаимодействия (кстати, он лежит в основе работы электродвигателей). Очевидно, что не зная правило буравчика, понять происходящие процессы весьма затруднительно.

В нашем примере известно - от «+» к «-». Знание направления позволяет легко использовать правило буравчика. Мысленно начинаем вкручивать буравчик со стандартной правой резьбой в проводник (вдоль его) так, чтобы получающееся было соосно с направлением протекания тока. В этом случае вращение рукоятки будет совпадать с вращением магнитного поля. Можно воспользоваться другим примером: вкручиваем обычным винт (болт, шуруп).

Указанное правило может быть использовано немного иначе (хотя основной смысл тот же): если мысленно обхватить правой рукой проводник с током так, чтобы четыре согнутых пальца указывали на направление, в котором вращается поле, тогда отогнутый большой палец будет указывать направление тока, протекающего через проводник. Соответственно, верно и обратное: зная направление тока, «обхватив» провод, можно узнать направление вектора вращения создаваемого магнитного поля. Данное правило активно используется при расчетах катушек индуктивности, в которых в зависимости от направления витков удается оказывать воздействие на протекающий ток (создавая, при необходимости, противоток).

Закон буравчика позволяет сформулировать следствие: если правую ладонь разместить таким образом, чтобы линии напряженности генерируемого магнитного поля входили в нее, а четыре выпрямленных пальца указывали на известное направление движения заряженных частиц в проводнике, то отогнутый под углом 90 градусов большой палец будет указывать на направление вектора силы, оказывающей на проводник смещающее воздействие. Кстати, именно эта сила создает на валу любого электродвигателя вращающий момент.

Как видно, способов использования вышеуказанного правила довольно много, поэтому основная «сложность» заключается в подборе каждым человеком понятного именно ему.

Это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Свойства стационарного магнитного поля

Постоянное (или стационарное) магнитное поле - это магнитное поле, неизменяющееся во времени.

1. Магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами.

2. Магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током.

3. Магнитное поле вихревое , т.е. не имеет источника.

Магнитные силы

Это силы, с которыми проводники с током действуют друг на друга.

..................

Магнитная индукция

Это силовая характеристика магнитного поля.

Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

Единица измерения магнитной индукции в системе СИ:

Линии магнитной индукции

Это линии, касательными к которой в любой её точке является вектор магнитной индукции.

Однородное магнитное поле - это магнитное поле, у которого в любой его точке вектор магнитной индукции неизменен по величине и направлению; наблюдается между пластинами плоского конденсатора, внутри соленоида (если его диаметр много меньше его длины) или внутри полосового магнита.

Магнитное поле прямого проводника с током:

Направление тока в проводнике на нас перпендикулярно плоскости листа,

Направление тока в проводнике от нас перпендикулярно плоскости листа.

Магнитное поле соленоида:

Магнитное поле полосового магнита:

Аналогично магнитному полю соленоида.

Свойства линий магнитной индукции

Имеют направление;
- непрерывны;
-замкнуты (т.е. магнитное поле является вихревым);
- не пересекаются;
- по их густоте судят о величине магнитной индукции.

Направление линий магнитной индукции

Определяется по правилу буравчика или по правилу правой руки.

Правило буравчика (в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Правило правой руки

(в основном для определения направления магнитных линий
внутри соленоида):

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Существуют другие возможные варианты применения правил буравчика и правой руки.

Сила Ампера

Это сила, с которой магнитное поле действует на проводник с током.

Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индуции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике.

Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.

Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю

Направление силы Ампера определяется по правилу левой руки :

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а 4 вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на проводник с током.

или

Действие магнитного поля на рамку с током



© dagexpo.ru, 2024
Стоматологический сайт