Как расширяется вселенная? Расширение вселенной

24.09.2019

Создано: 25.10.2013 , 10010 46

"Он сотворил землю силою Своею, утвердил вселенную мудростью Своею и разумом Своим распростер небеса "

Иеремия 10:12

В процессе развития науки многие ученые начали искать возможность исключить Бога из своих взглядов как Первопричину появления вселенной. В результате этого появилось много различных теорий возникновения вселенной, а также появления и развития живых организмов. Самыми популярными из них являются теория «Большого взрыва» и теория «Эволюции». В процессе обоснования теории «Большого взрыва» была создана одна из фундаментальных теорий эволюционистов - «Расширяющаяся вселенная». Данная теория говорит о том, что происходит расширение космического пространства в масштабах вселенной, которое наблюдается благодаря постепенному отдалению галактик одной от другой.

Давайте рассмотрим аргументы, которыми некоторые ученые пытаются доказать данную теорию. Ученые эволюционисты, в частности Стивен Хокинг, считают, что расширяющаяся вселенная является результатом Большого взрыва и что после взрыва было быстрое расширение вселенной, а потом оно замедлилось и сейчас это расширение медленное, но этот процесс продолжается. Они аргументируют это измерением скорости отдаления других галактик от нашей галактики с помощью эффекта Доплера, а также тем, что им известна скорость в процентном отношении, о чем Стивен Хокинг говорит: «Поэтому нам известно лишь то, что скорость расширения Вселенной составляет от 5 до 10% за миллиард лет.» (С.Хокинг «Кратчайшая история времени» пер.Л.Млодинов, стр.38). Однако здесь возникают вопросы: как данное процентное отношение было получено, а также кто и каким образом проводил данное исследование? Этого Стивен Хокинг не объясняет, но говорит об этом как о факте. Исследовав данный вопрос, мы получили информацию, что на сегодняшний день для измерения скорости отдаления галактик используют закон Хаббла, использующий теорию о «Красном смещении», которое в свою очередь основывается на Эффекте Доплера. Давайте посмотрим, что собой представляют данные понятия:

Закон Хаббла - закон, связывающий красное смещение галактик и расстояние до них линейным образом. Данный закон имеет вид: cz = H 0 D, где z - красное смещение галактики; H 0 - коэффициент пропорциональности, называемый "постоянная Хаббла"; D - расстояние до галактики. Одним из важнейших элементов для закона Хаббла является скорость света.

Красное смещение - сдвиг спектральных линий химических элементов в красную сторону. Есть мнение, что это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией, но чаще всего берется во внимание эффект Доплера. Это проще выражается тем, что чем дальше галактика, тем больше ее свет смещается в красную сторону.

Эффект Доплера - изменение частоты и длинны звуковых волн, регистрируемых приёмником, вызванное движением их источника в результате движения приёмника. Проще говоря, чем ближе объект, тем больше частота звуковых волн и наоборот чем дальше объект, тем меньше частота звуковых волн.

Однако существует ряд проблем с данными принципами измерения скорости отдаления галактик. Для закона Хаббла является проблемой оценка «постоянной Хаббла», так как помимо скорости отдаления галактик, они обладают еще собственной скоростью, что приводит к тому, что закон Хаббла плохо выполняется, или совсем не выполняется для объектов, находящихся на расстоянии ближе 10-15 млн. световых лет. Закон Хаббла плохо выполняется также для галактик на очень больших расстояниях (в миллиарды св. лет), которым соответствует величина красного смещения больше 1. Расстояния до объектов с таким большим красным смещением теряют однозначность, поскольку зависят от принимаемой модели Вселенной и от того, к какому моменту времени они отнесены. В качестве меры расстояния в этом случае обычно используется только красное смещение. Таким образом, получается, что определить скорость отдаления далеких галактик практически является невозможным и определяется только той моделью вселенной, которую принимает исследователь. Это говорит о том, что каждый верит в свою субъективную скорость отдаления галактик.

Также нужно сказать, что невозможно измерить расстояние к дальним галактикам относительно их сияния или красного смещения. Этому мешают некоторые факты, а именно, что скорость света не постоянная и изменяется, причем эти изменения идут в сторону замедления. В 1987 году в отчете Станфордского научно-исследовательского института австралийские математики Тревор Норман и Барри Сеттерфилд постулировали, что в прошлом произошло большое снижение скорости света (B. Setterfield, The Velocity of Light and the Age of the Universe .). В1987 году нижегородский физик-теоретик В.С. Троицкий постулировал, что со временем произошло громадное снижение скорости света. Доктор Троицкий говорил о снижении скорости света в 10 миллионов раз по сравнению с ее нынешним значением (V.S. Troitskii, Physical Constants and Evolution of the Universe , Astrophysics and Space Science 139(1987): 389-411.). В 1998 году физики-теоретики лондонского Импириал-колледжа Альбрехт и Жоао Магейжу также постулировали уменьшение скорости света. 15 ноября 1998 года газета «Лондон таймс» напечатала статью «Скорость света – самая высокая во вселенной – снижается» (The speed of light - the fastest thing in the universe - is getting slower , The London Times, Nov. 15, 1998.). Относительно этого нужно сказать, что на скорость света влияет много факторов, например, химические элементы через которые проходит свет, а также температура, которую они имеют, потому как через одни элементы свет проходит медленней, а через другие намного быстрее, что и было доказано экспериментально. Так 18 февраля 1999 года в весьма уважаемом (и на 100% эволюционистском) научном журнале «Nature» была опубликована научная статья с подробным описанием эксперимента, в котором скорость света удалось уменьшить до 17 метров в секунду, то есть до каких-то 60 километров в час. Это значит, что за ним можно было наблюдать как за едущим по улице автомобилем. Этот эксперимент был поставлен датским физиком Лене Хау и международной группой ученых из Гарвардского и Стенфордского университетов. Они пропускали свет через пары натрия, охлажденные до невероятно низких температур, измеряемых нанокельвинами (то есть, миллиардными долями кельвина; это практически абсолютный ноль, который по определению равен -273,160C). В зависимости от точной температуры паров скорость света была снижена до значений в интервале 117 км/час – 61 км/час; то есть, по существу, до 1/20.000.000-ной от обычной скорости света (L.V. Hau, S.E. Harris, Science News, March 27, p. 207, 1999.).

В июле 2000 года ученые из исследовательского института NEC в Прингстоне сообщили об ускорении ими света до скорости, превышающей скорость света! Их эксперимент был опубликован в британском журнале «Nature». Они направили лазерный луч на стеклянную камеру, содержащую пары цезия. В результате энергетического обмена между фотонами лазерного луча и атомами цезия возник луч, скорость которого на выходе из камеры была выше скорости входного луча. Считается, что свет распространяется с максимальной скоростью в вакууме, где отсутствует сопротивление, и медленнее в любой другой среде из-за дополнительного сопротивления. Например, всем известно, что в воде свет распространяется медленнее, чем в воздухе. В описанном выше эксперименте полученныйлуч вышел из камеры с парами цезия еще до того, как полностью вошел в нее. Эта разница была очень интересной. Лазерный луч перепрыгнул на 18 метров вперед от того места, где должен был быть. По идее, это можно было расценить как следствие, предшествующее причине, но это не совсем верно. Существует и научная область, изучающая сверхсветовое распространение импульсов. Правильная интерпретация этого исследования такова: скорость света непостоянна, и свет можно ускорить подобно любому другому физическому объекту во вселенной при наличии нужных условий и подходящего источника энергии. Ученые получили вещество из энергии без потерь; ускорили свет до скорости, превышающей ныне принятую скорость света.

Относительно красног о смещения нужно сказать, что никто с точностью не может сказать причину появления красного смещения и сколько раз преломляется свет, доходя до земли, а это в свою очередь делает нелепой основу для измерения расстояний с помощью красного смещения. Также изменение скорости света опровергает все существующие предположения расстояния к дальним галактикам и нивелирует метод измерения данного расстояния по красному смещению. Еще нужно сказать, что применение эффекта Доплера к свету является чисто теоретическим, а учитывая, что скорость света меняется, то это вдвойне усложняет применение данного эффекта к свету. Все это говорит, что метод определения расстояния к дальним галактикам по красному смещению и тем более аргументирование того, что вселенная расширяется, просто являются не научным подходом и обманом. Давайте подумаем, даже если нам будет известна скорость отдаления галактик, то невозможно утверждать, что происходит расширение пространства вселенной. Никто не может сказать, происходит ли вообще подобное расширение. Движение планет и галактик во вселенной не говорит об изменении самого пространства, а ведь согласно теории Большого взрыва пространство появилось в результате большого взрыва и расширяется. Это утверждение не является научным, так как никто не нашел край вселенной и тем более не измерил расстояние до него.

Исследуя теорию "Большого взрыва" мы наталкиваемся на еще одно не исследованное и недоказанное явление, но о котором говорят как о факте, а именно о «черной материи». Посмотрим, что об этом говорит Стивен Хокинг: «Наша и другие галактики должны содержать большое количество некой «темной материи», которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря ее гравитационному воздействию на орбиты звезд в галактиках. Возможно, лучшим свидетельством существования темной материи являются орбиты звезд на периферии спиральных галактик, подобных Млечному Пути. Эти звезды обращаются вокруг своих галактик слишком быстро, чтобы их могло удерживать на орбите притяжение одних только видимых звезд галактики» (С.Хокинг «Кратчайшая история времени» пер.Л.Млодинов, стр.38). Мы хотим подчеркнуть, что о «черной материи» говорится так: «которую мы не можем наблюдать непосредственно», это свидетельствует о том, что фактов существования данной материи нет, но непонятное для эволюционистов поведение галактик во вселенной заставляет их верить в существование чего-то, но сами не знают чего. Интересным также представляется утверждение: «фактически количество темной материи во Вселенной значительно превышает количество обычного вещества» . Данное утверждение говорит о количестве «темной материи», но возникает вопрос, как и каким методом, это количество определили в условиях, когда невозможно наблюдать и исследовать данную «материю»? Можно сказать, что было взято неизвестно что и получено количество этого, непонятно каким образом. То, что ученым непонятно как звезды спиральных галактик держатся на своей орбите, при высокой скорости, не означает существование призрачной «материи», которую никто не видел и не мог непосредственно наблюдать.

Современная наука находится в невыгодном положении относительно своих фантазий о большом взрыве. Так заключением в размышлениях о существовании различных материй Стивен Хокинг говорит: «Нельзя, однако, исключать существования других, еще не известных нам форм материи, распределенных почти равномерно повсюду во Вселенной, что могло бы повысить ее среднюю плотность. Например, существуют элементарные частицы, называемые нейтрино, которые очень слабо взаимодействуют с веществом и которые чрезвычайно трудно обнаружить» (С.Хокинг «Кратчайшая история времени» пер.Л.Млодинов, стр.38) . Это показывает всю беспомощность современной науки в попытке доказать, что вселенная возникла сама по себе без Творца. Если частицы не найдены, тогда нельзя на этом строить научные доводы, так как вероятность, что другие формы материи не существуют больше чем вероятность их существования.

Как бы там ни было, движение галактик, планет и других космических тел не говорит о расширении пространства вселенной, так как подобное движение не имеет ничего общего с определением расширения пространства. Например, если в одной комнате находится два человека и один отдаляется от другого, то это не говорит о том, что комната расширяется, а говорит о том, что есть пространство, в котором возможно двигаться. Аналогично и в данной ситуации, происходит движение галактик в космическом пространстве, однако это не говорит об изменении космического пространства. Также абсолютно невозможно доказать, что самые далекие галактики находятся на краю вселенной и за ними нет еще каких-либо галактик, а это в свою очередь говорит о том, что край вселенной не найден.

Таким образом, у нас есть все факты для утверждения, что на сегодняшний день не существует доказательств расширения вселенной, а это в свою очередь подтверждает несостоятельность теории "Большого взрыва".

Вселенная расширяется. Но в некотором смысле расширение пока непосредственно не наблюдается: теоретики строят различные модели, позволяющие описать его, но мы не видим, как космические объекты в реальном времени становятся всё дальше и дальше.

Необходимо значительно увеличить точность наблюдений, а с существующей техникой нам придётся ждать века или по крайней мере десятилетия, чтобы накопить данные, иллюстрирующие этот процесс.

Для построения модели, демонстрирующей расширение Вселенной, обычно сравнивают расширяющуюся Вселенную с надувающимся воздушным шаром. При этом мы допускаем, что вся "область наблюдения" доступна нам целиком и в одно мгновение. На самом деле, чем более далёкую галактику мы наблюдаем, тем больше времени нужно её свету для того, чтобы попасть на сетчатку нашего глаза. Следовательно, в момент испускания этого света галактика как бы находилась на поверхности "менее надутого" шара. Самые далёкие из наблюдаемых нами галактик видны в те времена, когда "шарик" был совсем маленьким. Таким образом, вследствие конечности скорости света мы видим сильно искажённую картину окружающего нас мира.

Особенностью этой модели расширяющейся Вселенной является как бы некий "взгляд со стороны". Мы как бы смотрим из "лишнего" измерения, да ещё вдобавок видим всё сразу, наблюдая процессы по единым "космическим часам", то есть разом охватываем всю Вселенную, получая информацию с бесконечной скоростью. Этот "взгляд бога" недоступен обычному наблюдателю.

Мы находимся на Земле, внутри Вселенной. Сигналы приходят к нам с конечной скоростью - со скоростью света. Поэтому мы видим удалённые объекты такими, какими они были в далёком прошлом. В астрономии красное смещение - сдвиг спектра в красную сторону. Это явление может быть выражением эффекта Доплера, гравитационного красного смещения или их комбинаций. В смещение линий в галактических спектрах вносит вклад как космологическое красное смещение, вызванное расширением пространства Вселенной, так и красное (или фиолетовое) смещение, связанное с эффектом Доплера вследствие собственного движения галактик.

После открытия красного смещения в спектрах удалённых галактик предположили, что оно вызвано чем-то вроде "утомления от долгой поездки": некий неизвестный процесс вынуждает фотоны терять энергию по мере удаления от источника света и поэтому "краснеть".

Но эта гипотеза не согласуется с наблюдениями. Например, когда звезда взрывается как сверхновая, она вспыхивает, а затем тускнеет. У сверхновых типа 1а, используемых для определения расстояний до галактик, угасание длится примерно две недели. За этот период времени излучается определённое количество фотонов. Гипотеза "усталости" говорит, что за время пути они потеряют энергию, но наблюдатель всё равно увидит поток фотонов длительностью в две недели. В расширяющемся же пространстве "растягиваются" не только сами фотоны (за счёт чего они теряют энергию), но и их поток. Поэтому, чтобы все они "добрались" до Земли, требуется более двух недель.

В космологии две проблемы с расстоянием: всё расположено очень далеко друг от друга и быстро движется. Пока свет дойдёт от источника до наблюдателя, их удалённость сильно изменится. При этом расстояние до объектов "прямо сейчас" не поддается прямому измерению, так как эта процедура занимает конечное (и, вообще говоря, довольно большое) время, связанное с распространением сигнала: мы просто не видим далёкие объекты такими, каковы они в данный момент. Это всё усложняет, поскольку, пользуясь бытовым опытом, мы привыкли представлять себе всё "таким, какое оно сейчас". В космологии расстояния и скорости "прямо сейчас" мы можем только рассчитать в рамках определённой модели или же получить их каким-то "окольным путём", но не с помощью современных методов наблюдения.

Поскольку Вселенная расширяется, её наблюдаемая область сейчас имеет радиус больше 14 млрд световых лет. Пока свет путешествует, пространство, которое он пересекает, расширяется. К моменту, когда он достигает нас, расстояние до испустившей его галактики становится больше, чем просто вычисленное по времени "путешествия" фотонов (приблизительно второе).

Многие люди помнят события вчерашнего дня лучше, чем позавчерашнего, а недельной давности - вообще не помнят. Зато некоторые воспоминания детства и юности для них сияют, как будто всё это случилось вчера. Если мы возьмём галактику типа нашей, то окажется, что вплоть до некоторого расстояния (а, глядя на далёкие объекты, мы смотрим в прошлое!) она будет выглядеть всё меньше и меньше. Но потом - о чудо! - видимый размер начнёт увеличиваться. Это происходит потому, что свет наблюдаемой галактики был испущен в эпоху молодости Вселенной, когда мы находились гораздо ближе. Соответственно, угловое расстояние до далёких объектов меняется таким же причудливым образом. Угол между лучами света не меняется при распространении в "плоской" вселенной. Поэтому угловое расстояние до космического объекта зависит только от того, как далеко он находился в момент излучения.

Собственное расстояние - физическое расстояние между объектами. Оно изменяется в соответствии с расширением Вселенной. Расстояние, о котором обычно говорится во всех статьях, новостях, равно пути света, пройденному от источник с момента излучения. Оно примерно равно собственному на сравнительно небольших расстояниях, где за время распространения сигнала Вселенная не успела заметно расшириться. Сопутствующие координаты привязаны к координатной сетке, расширяющейся вместе с расширением Вселенной. Относительно неё положение объектов остаётся неизменным, при этом собственные расстояния между ними увеличиваются в соответствии с изменением масштабного фактора. Важно, что угловое расстояние равно собственному расстоянию в момент испускания излучения.

До сих пор горизонт поднимался как "линия, где земля сходится с небом". По мере совершенствования наших представлений о Вселенной в лексиконе ученых начали появляться всё новые и новые "горизонты", достичь которые не представляется возможным (хотя бы потому, что максимально возможная скорость в нашем мире ограничена скоростью света). Горизонт частиц - расширяющаяся сфера, радиус которой определяется расстоянием до самого далёкого источника, в принципе наблюдаемого в данный момент времени (речь идёт о собственном расстоянии до объекта в момент приёма фотона, а не в момент излучения). Такой горизонт нельзя определить как скорость света, умноженную на время после начала расширения, так как, пока фотон летит, вселенная расширяется. Но если мы говорим о частицах как о галактиках, которые возникли в какой-то не слишком ранний момент эволюции вселенной, то такой горизонт будет и в ускоряющихся моделях. Есть он и в нашей Вселенной. Расстояние до горизонта событий - это расстояние (в настоящий момент) до частицы, до которой может дойти наш световой сигнал, посланный прямо сейчас. Мы наблюдаем галактики на красном смещении около 1,8. Свет от таких галактик идёт к нам 10 млрд лет.

В момент излучения они находились от нас в 5,7 млрд световых лет (собственное расстояние на момент излучения). Сейчас до них 16,1 млрд световых лет (собственное расстояние в данный момент), и сигнал, посланный нами к ним, никогда их не достигнет, если динамика Вселенной в будущем принципиально не изменится. И наоборот, мы никогда не увидим события, происходящие в них сейчас.

Получается, что расстояние до горизонта событий соответствует расстоянию до таких галактик в данный момент, но мы-то видим их сейчас такими, какими они были в далёком прошлом! В этом смысле мы не увидим горизонт событий, но можем сказать, что его положение соответствует современному положению галактик, наблюдаемых нами на красном смещении 1,8. Согласно закону Хаббла, скорость удаления далёких объектов прямо пропорциональна расстояниям до них. Здесь речь идёт о скорости изменения собственного расстояния в настоящий момент.

Расстояние, на котором скорость удаления равняется световой, называется "сферой Хаббла". Есть источники, которые и в момент излучения, и в настоящий момент находятся за её пределами, то есть их скорость убегания выше световой и тогда, и сейчас.

В современной космологической модели (с вкладом тёмной энергии около 70%) все наблюдаемые источники с красным смещением, превышающим примерно 1,5, в настоящий момент удаляются от нас быстрее скорости света. То есть относительные скорости точек, находящихся друг от друга на больших расстояниях, не ограничиваются скоростями света.

В гипотетической стационарной вселенной с началом во времени горизонт частиц, представляет собой сферу, расширяющуюся со скоростью света. Если через 5 млрд лет после "сотворения" этого мира в какой-нибудь из галактик появится наблюдатель, для него этот горизонт частиц окажется сферой радиусом в 5 млрд световых лет. Ещё через миллиард лет её радиус составит 6 млрд световых лет и т.д.

Представим себе первый фотон, излученный в "момент ноль". К его скорости движения, равной скорости света, добавляется ещё скорость расширения пространства. За время существования Вселенной этот фотон удалился от места его испускания на расстояние 46 млрд световых лет (примерно 13,7 млрд световых лет он пролетел "самостоятельно", остальное - за счёт расширения Вселенной). Таким образом, без учёта скорости расширения ему понадобилось бы 46 млрд лет для преодоления такого расстояния. Реликтовое излучение возникло, когда Вселенной было 380 тыс. лет. Сопутствующее красное смещение равно 1089. Сегодня собственное расстояние до источника, испустившего это излучение, - почти 46 млрд световых лет.

Наблюдатель может видеть лишь конечную часть своего мира. Нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Если пространство и дальше будет расширяться с ускорением, то и в сколь угодно отдалённом будущем нельзя будет проверить, как выглядит Вселенная за горизонтом частиц. А наши телескопы не могут "заглянуть" в эпоху, когда космическое пространство было заполнено плазмой и не содержало свободных фотонов.

По материалу Сергея Попова и Алексея Топоренского подготовил Сергей РЯБОШАПКО, г. Самара

НА ГЛАВНУЮ

В истории познания окружающего нас мира четко прослеживается общее направление - постепенное признание неисчерпаемости природы, ее бесконечности во всех отношениях. Вселенная бесконечна в пространстве и во времени, и если отбросить идеи И. Ньютона о "первом толчке", то такого рода мировоззрение можно считать вполне материалистическим. Ньютоновская Вселенная утверждала, что пространство есть вместилище всех небесных тел, с движением и массой которых оно никак не связано; Вселенная всегда одна и та же, т. е. стационарна, хотя в ней постоянно происходит гибель и рождение миров.

Казалось бы, небо ньютоновской космологии обещало быть безоблачным. Однако очень скоро пришлось убедиться в обратном. В течение XIX в. обнаружились три противоречия, которые были сформулированы в форме трех парадоксов, названных космологическими. Они, казалось, подрывали представление о бесконечности Вселенной.


Фотометрический парадокс. Если Вселенная бесконечна и звезды в ней распределены равномерно, то по любому направлению мы должны видеть какую-нибудь звезду. В этом случае фон неба был бы ослепительно ярким, как Солнце.

Гравитационный парадокс. Если Вселенная бесконечна и звезды равномерно занимают ее пространство, то сила тяготения в каждой его точке должна быть бесконечно велика, а стало быть, бесконечно велики были бы и относительные ускорения космических тел, чего, как известно, нет.

Термодинамический парадокс. По второму закону термодинамики все физические процессы во Вселенной в конечном счете сводятся к выделению теплоты, которая необратимо рассеивается в мировом пространстве. Рано или поздно все тела остынут до температуры абсолютного нуля, движение прекратится и наступит навсегда "тепловая смерть". Вселенная имела начало, и ее ждет неизбежный конец.

Первая четверть XX в. прошла в томительном ожидании развязки. Никто, разумеется, не хотел отрицать бесконечность Вселенной, но, с другой стороны, никому не удавалось устранить космологические парадоксы стационарной Вселенной. Лишь гений Альберта Эйнштейна внес новую струю в космологические споры.



Ньютоновская классическая физика, как уже говорилось, рассматривала пространство как вместилище тел. Никакого взаимодействия между телами и пространством по Ньютону и быть не могло.

В 1916 г. А. Эйнштейн опубликовал основы общей теории относительности. Одна из главных ее идей состоит в том, что материальные тела, в особенности большой массы, заметно искривляют пространство. Из-за этого, например, луч света, проходящий вблизи Солнца, изменяет первоначальное направление.

Представим себе теперь, что во всей наблюдаемой нами части Вселенной материя равномерно "размазана" в пространстве и в любой его точке действуют одни и те же законы. При некоторой средней плотности космического вещества выделенная ограниченная часть Вселенной не только искривит пространство, но


даже замкнет его "на себя". Вселенная (точнее, выделенная ее часть) превратится в замкнутый мир, напоминающий обычную сферу. Но только это будет четырехмерная сфера, или гиперсфера, представить себе которую мы, трехмерные существа, не в состоянии. Однако, мысля по аналогии, мы легко разберемся в некоторых свойствах гиперсферы. Она, как и обычная сфера, имеет конечный объем, заключающий в себе конечную массу вещества. Если в мировом пространстве лететь все время в одном направлении, то через некоторое число миллиардов лет можно попасть в исходную точку.

Идею о возможности замкнутости Вселенной впервые высказал А. Эйнштейн. В 1922 г. советский математик А. А. Фридман доказал, что "замкнутая Вселенная" Эйнштейна никак не может быть статичной. В любом случае ее пространство или расширяется, или сжимается со всем своим содержимым.

В 1929 г. американский астроном Э. Хаббл открыл замечательную закономерность: линии в спектрах подавляющего большинства галактик смещены к красному концу, причем смещение тел тем больше, чем дальше от нас находится галактика. Это интересное явление называется красным смещением. Объяснив красное смещение эффектом Доплера, т. е. изменением длины волны света в связи с движением источника, ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Конечно, галактики не разлетаются во все стороны от нашей Галактики, которая не занимает никакого особого положения в Метагалактике, а происходит взаимное удаление всех галактик. Это означает, что наблюдатель, находящийся в любой галактике, мог бы, подобно нам, обнаружить красное смещение, ему казалось бы, что от него удаляются все галактики. Таким образом, Метагалактика нестационарна. Открытие расширения Метагалактики свидетельствует о том, что Метагалактика в прошлом была не такой, как сейчас, и иной станет в будущем, т. е. Метагалактика эволюционирует.

По красному смещению определены скорости удаления галактик. У многих галактик они очень велики, соизмеримы со скоростью света. Самыми большими скоростями, иногда превы-


шающими 250 тыс. км/с, обладают некоторые квазары, считающиеся самыми удаленными от нас объектами Метагалактики.

Закон, согласно которому красное смещение (а значит, и скорость удаления галактик) возрастает пропорционально расстоянию от галактик (закон Хаббла), можно записать в виде: v - Нr, где v - лучевая скорость галактики; r - расстояние до нее; Н - постоянная Хаббла. По современным оценкам, значение Н заключено в пределах:

Следовательно, наблюдаемый темп расширения Метагалактики таков, что галактики, разделенные расстоянием 1 Мпк (3 10 19 км), удаляются друг от друга со скоростью от 50 до 100 км/с. Если скорость удаления галактики известна, то можно вычислить расстояние до далеких галактик.

Итак, мы живем в расширяющейся Метагалактике. Это явление имеет свои особенности. Расширение Метагалактики проявляется только на уровне скоплений и сверхскоплений галактик, т. е. систем, элементами которых являются галактики. Другая особенность расширения Метагалактики заключается в том, что не существует центра, от которого разбегаются галактики.

Расширение Метагалактики - самое грандиозное из известных в настоящее время явлений природы. Правильное его истолкование имеет исключительно большое мировоззренческое значение. Не случайно в объяснении причины этого явления резко проявилось коренное отличие философских взглядов ученых. Некоторые из них, отождествляя Метагалактику со всей Вселенной, пытаются доказать, что расширение Метагалактики подтверждает религиозное о сверхъестественном, божественном происхождении Вселенной. Однако во Вселенной известны естественные процессы, которые в прошлом могли вызвать наблюдаемое расширение. По всей вероятности, это взрывы. Их масштабы поражают нас уже при изучении отдельных видов галактик. Можно представить, что расширение Метагалактики


также началось с явления, напоминающего колоссальный взрыв вещества, обладавшего огромной температурой и плотностью.

Так как Вселенная расширяется, естественно думать, что раньше она была меньше и когда-то все пространство было сжато в сверхплотную материальную точку. Это был момент так называемой сингулярности, который уравнениями современной физики описан быть не может. По неизвестным причинам произошел процесс, подобный взрыву, и с тех пор Вселенная начала "расширяться". Процессы, происходящие при этом, объясняются теорией горячей Вселенной.

В 1965 г. американские ученые А. Пензиас и Р. Вильсон нашли экспериментальное доказательство пребывания Вселенной в сверхплотном и горячем состоянии, т. е. реликтовое излучение. Оказалось, что космическое пространство заполнено электромагнитными волнами, являющимися посланцами той древней эпохи развития Вселенной, когда еще не было никаких звезд, галактик, туманностей. Реликтовое излучение пронизывает все пространство, все галактики, оно участвует в расширении Метагалактики. Реликтовое электромагнитное излучение находится в радиодиапазоне с длинами волн от 0,06 см до 60 см. Распределение энергии похоже на спектр абсолютно черного тела температурой 2,7 К. Плотность энергии реликтового излучения равна 4 10 -13 эрг/см 3 , максимум излучения приходится на 1,1 мм. При этом само излучение имеет характер некоторого фона, ибо заполняет все пространство и совершенно изотропно. Оно является свидетелем начального состояния Вселенной.

Очень важно, что, хотя это открытие было сделано случайно при изучении космических радиопомех, существование реликтового излучения было предсказано теоретиками. Одним из первых предсказал это излучение Д. Гамов, разрабатывая теорию происхождения химических элементов, возникших в первые минуты после Большого взрыва. Предсказание существования реликтового излучения и обнаружение его в космическом пространстве - еще один убедительный пример познаваемости мира и его закономерностей.


Во всех развитых динамических космологических моделях утверждается идея о расширении Вселенной из некоторого сверхплотного и сверхгорячего состояния, называемого сингулярным. Американский астрофизик Д. Гамов пришел к концепции Большого взрыва и горячей Вселенной на ранних этапах ее эволюции. Анализ проблем начальной стадии эволюции Вселенной оказался возможным благодаря новым представлениям о природе вакуума. Космологическое решение, полученное В. де Ситтером для вакуума (r ~ е Ht), показало, что экспоненциальное расширение неустойчиво: оно не может продолжаться неограниченно долго. Через сравнительно малый промежуток времени экспоненциальное расширение прекращается, в вакууме происходит фазовый переход, в процессе которого энергия вакуума переходит в обычное вещество и кинетическую энергию расширения Вселенной. Большой взрыв был 15-20 млрд лет назад.

Согласно стандартной модели горячей Вселенной сверхплотная материя после Большого взрыва начала расширяться и постепенно охлаждаться. По мере расширения произошли фазовые переходы, в результате которых выделились физические силы взаимодействия материальных тел. При экспериментальных значениях таких основных физических параметров, как плотность и температура (р ~ 10 96 кг/м 3 и Т ~ 10 32 К), на начальном этапе расширения Вселенной различие между элементарными частицами и четырьмя типами физических взаимодействий практически отсутствует. Оно начинает проявляться когда уменьшается температура и начинается дифференциация материи.

Таким образом, современные представления об истории возникновения нашей Метагалактики основываются на пяти важных экспериментальных наблюдениях:

1. Исследование спектральных линий звезд показывает, что Метагалактика в среднем обладает единым химическим составом. Преобладают водород и гелий.

2. В спектрах элементов далеких галактик обнаруживается систематическое смещение красной части спектра. Величина


этого смещения возрастает по мере удаления галактик от наблюдателя.

3. Измерения радиоволн, приходящих из космоса в сантиметровом и миллиметровом диапазонах, указывают на то, что космическое пространство равномерно и изотропно заполнено слабым радиоизлучением. Спектральная характеристика этого так называемого фонового излучения соответствует излучению абсолютно черного тела при температуре около 2,7 градуса Кельвина.

4. По астрономическим наблюдениям, крупномасштабное распределение галактик соответствует постоянной плотности массы, составляющей, по современным оценкам, по крайней мере 0,3 бариона на каждый кубический метр.

5. Анализ процессов радиоактивного распада в метеоритах показывает, что некоторые из этих компонентов должны были возникнуть от 14 до 24 миллиардов лет назад.

материал из книги Стивена Хокинга и Леонарда Млодинова "Кратчайшая история времени"

Эффект Доплера

В 1920-е годы, когда астрономы начали изучать спектры звезд в других галактиках, было обнаружено нечто очень интересное: это оказались те же самые характерные наборы отсутствующих цветов, что и у звезд в нашей собственной галактике, но все они были смещены к красному концу спектра, причем в одинаковой пропорции. Физикам смещение цвета или частоты известно как эффект Доплера.

Мы все знакомы с тем, как это явление воздействует на звук. Прислушайтесь к звуку проезжающего мимо вас автомобиля. Когда он приближается, звук его двигателя или гудка кажется выше, а когда машина уже проехала мимо и стала удаляться, звук понижается. Полицейский автомобиль, едущий к нам со скоростью сто километров в час, развивает примерно десятую долю скорости звука. Звук его сирены представляет собой волну, чередование гребней и впадин. Напомним, что расстояние между ближайшими гребнями (или впадинами) называется длиной волны. Чем меньше длина волны, тем большее число колебаний достигает нашего уха каждую секунду и тем выше тон, или частота, звука.

Эффект Доплера вызван тем, что приближающийся автомобиль, испуская каждый следующий гребень звуковой волны, будет находиться все ближе к нам, и в результате расстояния между гребнями окажутся меньше, чем если бы машина стояла на месте. Это означает, что длины приходящих к нам волн становятся меньше, а их частота – выше. И наоборот, если автомобиль удаляется, длина улавливаемых нами волн становится больше, а их частота – ниже. И чем быстрее перемещается автомобиль, тем сильнее проявляется эффект Доплера, что позволяет использовать его для измерения скорости.

Когда источник, испускающий волны, движется по направлению к наблюдателю, длина волн уменьшается. При удалении источника она, напротив, увеличивается. Это и называют эффектом Доплера.

Свет и радиоволны ведут себя подобным же образом. Полиция использует эффект Доплера для определения скорости автомобилей путем измерения длины волны отраженного от них радиосигнала. Свет представляет собой колебания, или волны, электромагнитного поля. Длина волны видимого света чрезвычайно мала – от сорока до восьмидесяти миллионных долей метра. Человеческий глаз воспринимает световые волны разной длины как различные цвета, причем наибольшую длину имеют волны, соответствующие красному концу спектра, а наименьшую – относящиеся к синему концу. Теперь представьте себе источник света, находящийся на постоянном расстоянии от нас, например звезду, испускающую световые волны определенной длины. Длина регистрируемых волн будет такой же, как у испускаемых. Но предположим теперь, что источник света начал отдаляться от нас. Как и в случае со звуком, это приведет к увеличению длины волны света, а значит, спектр сместится в сторону красного конца.

Расширение Вселенной

Доказав существование других галактик, Хаббл в последующие годы занимался определением расстояний до них и наблюдением их спектров. В то время многие предполагали, что галактики движутся беспорядочно, и ожидали, что число спектров, смещенных в синюю сторону, будет примерно таким же, как число смещенных в красную. Поэтому полной неожиданностью стало открытие того, что спектры большинства галактик демонстрируют красное смещение – почти все звездные системы удаляются от нас! Еще более удивительным оказался факт, обнаруженный Хабблом и обнародованный в 1929 году: величина красного смещения галактик не случайна, а прямо пропорциональна их удаленности от нас. Другими словами, чем дальше от нас галактика, тем быстрее она удаляется! Отсюда вытекало, что Вселенная не может быть статичной, неизменной в размерах, как считалось ранее. В действительности она расширяется: расстояние между галактиками постоянно растет.

Осознание того, что Вселенная расширяется, произвело настоящую революцию в умах, одну из величайших в двадцатом столетии. Когда оглядываешься назад, может показаться удивительным, что никто не додумался до этого раньше. Ньютон и другие великие умы должны были понять, что статическая Вселенная была бы нестабильна. Даже если в некоторый момент она оказалась бы неподвижной, взаимное притяжение звезд и галактик быстро привело бы к ее сжатию. Даже если бы Вселенная относительно медленно расширялась, гравитация в конечном счете положила бы конец ее расширению и вызвала бы сжатие. Однако, если скорость расширения Вселенной больше некоторой критической отметки, гравитация никогда не сможет его остановить и Вселенная продолжит расширяться вечно.

Здесь просматривается отдаленное сходство с ракетой, поднимающейся с поверхности Земли. При относительно низкой скорости тяготение в конце концов остановит ракету и она начнет падать на Землю. С другой стороны, если скорость ракеты выше критической (больше 11,2 километра в секунду), тяготение не может удержать ее и она навсегда покидает Землю.

В 1965 году два американских физика, Арно Пензиас и Роберт Вильсон из «Белл телефон лабораторис» в Нью-Джерси, отлаживали очень чувствительный микроволновый приемник. (Микроволнами называют излучение с длиной волны около сантиметра.) Пензиаса и Вильсона беспокоило, что приемник регистрировал больший уровень шума, чем ожидалось. Они обнаружили на антенне птичий помет и устранили другие потенциальные причины сбоев, но скоро исчерпали все возможные источники помех. Шум отличался тем, что регистрировался круглые сутки в течение всего года независимо от вращения Земли вокруг своей оси и ее обращения вокруг Солнца. Так как движение Земли направляло приемник в различные сектора космоса, Пензиас и Вильсон заключили, что шум приходит из-за пределов Солнечной системы и даже из-за пределов Галактики. Казалось, он шел в равной мере со всех сторон космоса. Теперь мы знаем, что, куда бы ни был направлен приемник, этот шум остается постоянным, не считая ничтожно малых вариаций. Так Пензиас и Вильсон случайно наткнулись на поразительный пример о том, что Вселенная одинакова во всех направлениях.

Каково происхождение этого космического фонового шума? Примерно в то же время, когда Пензиас и Вильсон исследовали загадочный шум в приемнике, два американских физика из Принстонского университета, Боб Дик и Джим Пиблс, тоже заинтересовались микроволнами. Они изучали предположение Георгия (Джорджа) Гамова о том, что на ранних стадиях развития Вселенная была очень плотной и добела раскаленной. Дик и Пиблс полагали, что если это правда, то мы должны иметь возможность наблюдать свечение ранней Вселенной, поскольку свет от очень далеких областей нашего мира приходит к нам только сейчас. Однако вследствие расширения Вселенной этот свет должен быть столь сильно смещен в красный конец спектра, что превратится из видимого излучения в микроволновое. Дик и Пиблс как раз готовились к поискам этого излучения, когда Пензиас и Вильсон, услышав об их работе, поняли, что уже нашли его. За эту находку Пензиас и Вильсон были в 1978 году удостоены Нобелевской премии (что кажется несколько несправедливым в отношении Дика и Пиблса, не говоря уже о Гамове).

На первый взгляд тот факт, что Вселенная выглядит одинаково в любом направлении, свидетельствует о том, что мы занимаем в ней какое-то особенное место. В частности, может показаться, что раз все галактики удаляются от нас, то мы должны находиться в центре Вселенной. Есть, однако, другое объяснение этого феномена: Вселенная может выглядеть одинаково во всех направлениях также и при взгляде из любой другой галактики.

Все галактики удаляются друг от друга. Это напоминает расползание цветных пятен на поверхности надуваемого воздушного шара. С ростом размеров шара увеличиваются и расстояния между любыми двумя пятнами, но при этом ни одно из пятен нельзя считать центром расширения. Более того, если радиус воздушного шара постоянно растет, то чем дальше друг от друга находятся пятна на его поверхности, тем быстрее они будут удаляться при расширении. Допустим, что радиус воздушного шара удваивается каждую секунду. Тогда два пятна, разделенные первоначально расстоянием в один сантиметр, через секунду окажутся уже на расстоянии двух сантиметров друг от друга (если измерять вдоль поверхности воздушного шара), так что их относительная скорость составит один сантиметр в секунду. С другой стороны, пара пятен, которые были отделены десятью сантиметрами, через секунду после начала расширения разойдутся на двадцать сантиметров, так что их относительная скорость будет десять сантиметров в секунду. Скорость, с которой любые две галактики удаляются друг от друга, пропорциональна расстоянию между ними. Тем самым красное смещение галактики должно быть прямо пропорционально ее удаленности от нас – это та самая зависимость, которую позднее обнаружил Хаббл. Российскому физику и математику Александру Фридману в 1922 году удалось предложить удачную модель и предвосхитить результаты наблюдений Хаббла, его работа оставалась почти неизвестной на Западе, пока в 1935 году аналогичная модель не была предложена американским физиком Говардом Робертсоном и британским математиком Артуром Уокером уже по следам открытого Хабблом расширения Вселенной.

Вследствие расширения Вселенной галактики удаляются друг от друга. С течением времени расстояние между далекими звездными островами увеличивается сильнее, чем между близкими галактиками, подобно тому как это происходит с пятнами на раздувающемся воздушном шаре. Поэтому наблюдателю из любой галактики скорость удаления другой галактики кажется тем больше, чем дальше она расположена.

Три типа расширения Вселенной

Первый класс решений (тот, который нашел Фридман) предполагает, что расширение Вселенной происходит достаточно медленно, так что притяжение между галактиками постепенно замедляет и в конечном счете останавливает его. После этого галактики начинают сближаться, а Вселенная – сжиматься. В соответствии со вторым классом решений Вселенная расширяется настолько быстро, что гравитация лишь немного замедлит разбегание галактик, но никогда не сможет остановить его. Наконец, есть третье решение, согласно которому Вселенная расширяется как раз с такой скоростью, чтобы только избежать схлопывания. Со временем скорость разлета галактик становится все меньше и меньше, но никогда не достигает нуля.

Удивительная особенность первой модели Фридмана – то, что в ней Вселенная не бесконечна в пространстве, но при этом нигде в пространстве нет никаких границ. Гравитация настолько сильна, что пространство свернуто и замыкается на себя. Это до некоторой степени схоже с поверхностью Земли, которая тоже конечна, но не имеет границ. Если двигаться по поверхности Земли в определенном направлении, то никогда не натолкнешься на непреодолимый барьер или край света, но в конце концов вернешься туда, откуда начал путь. В первой модели Фридмана пространство устроено точно так же, но в трех измерениях, а не в двух, как в случае поверхности Земли. Идея о том, что можно обогнуть Вселенную и вернуться к исходной точке, хороша для научной фантастики, но не имеет практического значения, поскольку, как можно доказать, Вселенная сожмется в точку прежде, чем путешественник вернется в к началу своего пути. Вселенная настолько велика, что нужно двигаться быстрее света, чтобы успеть закончить странствие там, где вы его начали, а такие скорости запрещены (теорией относительности). Во второй модели Фридмана пространство также искривлено, но иным образом. И только в третьей модели крупномасштабная геометрия Вселенной плоская (хотя пространство искривляется в окрестности массивных тел).

Какая из моделей Фридмана описывает нашу Вселенную? Остановится ли когда-нибудь расширение Вселенной, и сменится ли оно сжатием, или Вселенная будет расширяться вечно?

Оказалось, что ответить на этот вопрос труднее, чем поначалу представлялось ученым. Его решение зависит главным образом от двух вещей – наблюдаемой ныне скорости расширения Вселенной и ее сегодняшней средней плотности (количества материи, приходящегося на единицу объема пространства). Чем выше текущая скорость расширения, тем большая гравитация, а значит, и плотность вещества, требуется, чтобы остановить расширение. Если средняя плотность выше некоторого критического значения (определяемого скоростью расширения), то гравитационное притяжение материи сможет остановить расширение Вселенной и заставить ее сжиматься. Такое поведение Вселенной отвечает первой модели Фридмана. Если средняя плотность меньше критического значения, тогда гравитационное притяжение не остановит расширения и Вселенная будет расширяться вечно – как во второй фридмановской модели. Наконец, если средняя плотность Вселенной в точности равна критическому значению, расширение Вселенной будет вечно замедляться, все ближе подходя к статическому состоянию, но никогда не достигая его. Этот сценарий соответствует третьей модели Фридмана.

Так какая же модель верна? Мы можем определить нынешние темпы расширения Вселенной, если измерим скорость удаления от нас других галактик, используя эффект Доплера. Это можно сделать очень точно. Однако расстояния до галактик известны не очень хорошо, поскольку мы можем измерять их только косвенно. Поэтому нам известно лишь то, что скорость расширения Вселенной составляет от 5 до 10% за миллиард лет. Еще более расплывчаты наши знания о нынешней средней плотности Вселенной. Так, если мы сложим массы всех видимых звезд в нашей и других галактиках, сумма будет меньше сотой доли того, что требуется для остановки расширения Вселенной, даже при самой низкой оценке скорости расширения.

Но это далеко не все. Наша и другие галактики должны содержать большое количество некой «темной материи», которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря ее гравитационному воздействию на орбиты звезд в галактиках. Возможно, лучшим свидетельством существования темной материи являются орбиты звезд на периферии спиральных галактик, подобных Млечному Пути. Эти звезды обращаются вокруг своих галактик слишком быстро, чтобы их могло удерживать на орбите притяжение одних только видимых звезд галактики. Кроме того, большинство галактик входят в состав скоплений, и мы можем аналогичным образом сделать вывод о присутствии темной материи между галактиками в этих скоплениях по ее влиянию на движение галактик. Фактически количество темной материи во Вселенной значительно превышает количество обычного вещества. Если учесть всю темную материю, мы получим приблизительно десятую часть от той массы, которая необходима для остановки расширения.

Нельзя, однако, исключать существования других, еще не известных нам форм материи, распределенных почти равномерно повсюду во Вселенной, что могло бы повысить ее среднюю плотность. Например, существуют элементарные частицы, называемые нейтрино, которые очень слабо взаимодействуют с веществом и которые чрезвычайно трудно обнаружить.

За последние несколько лет разные группы исследователей изучали мельчайшую рябь того микроволнового фона, который обнаружили Пензиас и Вильсон. Размер этой ряби может служить индикатором крупномасштабной структуры Вселенной. Ее характер, похоже, указывает, что Вселенная все-таки плоская (как в третьей модели Фридмана)! Но поскольку суммарного количества обычной и темной материи для этого недостаточно, физики постулировали существование другой, пока не обнаруженной, субстанции – темной энергии.

И словно для того, чтобы еще больше усложнить проблему, недавние наблюдения показали, что расширение Вселенной не замедляется, а ускоряется . Вопреки всем моделям Фридмана! Это очень странно, поскольку присутствие в пространстве вещества – высокой или низкой плотности – может только замедлять расширение. Ведь гравитация всегда действует как сила притяжения. Ускорение космологического расширения – это все равно что бомба, которая собирает, а не рассеивает энергию после взрыва. Какая сила ответственна за ускоряющееся расширение космоса? Ни у кого нет надежного ответа на этот вопрос. Однако, возможно, Эйнштейн все-таки был прав, когда ввел в свои уравнения космологическую постоянную (и соответствующий ей эффект антигравитации).

Расширение Вселенной могло быть предсказано в любой момент в девятнадцатом или восемнадцатом веке и даже в конце семнадцатого столетия. Однако вера в статическую Вселенную была столь сильна, что заблуждение сохраняло власть над умами до начала двадцатого столетия. Даже Эйнштейн был настолько уверен в статичности Вселенной, что в 1915 году внес специальную поправку в общую теорию относительности, искусственно добавив в уравнения особый член, получивший название космологической постоянной, который обеспечивал статичность Вселенной.

Космологическая постоянная проявлялась как действие некой новой силы – «антигравитации», которая, в отличие от других сил, не имела никакого определенного источника, а просто была неотъемлемым свойством, присущим самой ткани пространства-времени. Под влиянием этой силы пространство-время обнаруживало врожденную тенденцию к расширению. Подбирая величину космологической постоянной, Эйнштейн мог варьировать силу данной тенденции. С ее помощью он сумел в точности уравновесить взаимное притяжение всей существующей материи и получить в результате статическую Вселенную.

Позже Эйнштейн отверг идею космологической постоянной, признав ее своей «самой большой ошибкой». Как мы скоро убедимся, сегодня есть причины полагать, что в конце концов Эйнштейн мог все же быть прав, вводя космологическую постоянную. Но Эйнштейна, должно быть, более всего удручало то, что он позволил своей вере в неподвижную Вселенную перечеркнуть вывод о том, что Вселенная должна расширяться, предсказанный его же собственной теорией. Кажется, только один человек разглядел это следствие общей теории относительности и принял его всерьез. Пока Эйнштейн и другие физики искали, как избежать нестатичности Вселенной, российский физик и математик Александр Фридман, наоборот, настаивал на том, что она расширяется.

Фридман сделал относительно Вселенной два очень простых предположения: что она одинаково выглядит, в каком бы направлении мы ни смотрели, и что данное положение верно, независимо от того, из какой точки Вселенной мы смотрим. Опираясь на эти две идеи и решив уравнения общей теории относительности, он доказал, что Вселенная не может быть статической. Таким образом, в 1922 году, за несколько лет до открытия Эдвина Хаббла, Фридман в точности предсказал расширение Вселенной!

Столетия назад христианская церковь признала бы его еретическим, так как церковная доктрина постулировала, что мы занимаем особое место в центре мироздания. Но сегодня мы принимаем это предположение Фридмана по едва ли не противоположной причине, из своего рода скромности: нам показалось бы совершенно удивительным, если бы Вселенная выглядела одинаково во всех направлениях только для нас, но не для других наблюдателей во Вселенной!

Всего лишь сто лет назад ученые обнаружили, что наше Мироздание стремительно увеличивается в размерах.

Еще сто лет назад представления о Вселенной базировались на ньютоновской механике и евклидовой геометрии. Даже немногие ученые, такие как Лобачевский и Гаусс, допускавшие (только как гипотезу!) физическую реальность неевклидовой геометрии, считали космическое пространство вечным и неизменным

В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности. Сам Клиффорд до этого не дожил — он умер от туберкулеза в возрасте 34 лет за 11 дней до рождения Альберта Эйнштейна.

Красное смещение

Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Исходя из формулы оптической версии эффекта Допплера, выведенной в 1848 году французским физиком Арманом Физо, можно вычислить величину радиальной скорости звезды. Подобные наблюдения позволяют отследить движение космического объекта.


Еще сто лет назад представления о Вселенной базировались на ньютоновской механике и евклидовой геометрии. Даже немногие ученые, такие как Лобачевский и Гаусс, допускавшие (только как гипотезу!) физическую реальность неевклидовой геометрии, считали космическое пространство вечным и неизменным. Из-за расширения Вселенной судить о расстоянии до далеких галактик непросто. Свет, дошедший через 13 млрд лет от галактики A1689-zD1 в 3,35 млрд световых лет от нас (А), «краснеет» и ослабевает по мере преодоления расширяющегося пространства, а сама галактика удаляется (B). Он будет нести информацию о дистанции в красном смещении (13 млрд св. лет), в угловом размере (3,5 млрд св. лет), в интенсивности (263 млрд св. лет), тогда как реальное расстояние составляет 30 млрд св. лет.

Четверть века спустя эту возможность по‑новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. С сентября по декабрь 1913 года Слайфер занимался туманностью Андромеды и с помощью формулы Допплера-Физо пришел к выводу, что она ежесекундно приближается к Земле на 300 км.

В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро).

Слайфер не стремился к славе и не пропагандировал свои результаты. Поэтому они стали известны в астрономических кругах, лишь когда на них обратил внимание знаменитый британский астрофизик Артур Эддингтон.


В 1924 году он опубликовал монографию по теории относительности, куда включил перечень найденных Слайфером радиальных скоростей 41 туманности. Там присутствовала все та же четверка туманностей с голубым смещением, в то время как у остальных 37 спектральные линии были сдвинуты в красную сторону. Их радиальные скорости варьировали в пределах 150 — 1800 км/с и в среднем в 25 раз превышали известные к тому времени скорости звезд Млечного Пути. Это наводило на мысль, что туманности участвуют в иных движениях, нежели «классические» светила.

Космические острова

В начале 1920-х годов большинство астрономов полагало, что спиральные туманности расположены на периферии Млечного Пути, а за его пределами уже нет ничего, кроме пустого темного пространства. Правда, еще в XVIII веке некоторые ученые видели в туманностях гигантские звездные скопления (Иммануил Кант назвал их островными вселенными). Однако эта гипотеза не пользовалась популярностью, поскольку достоверно определить расстояния до туманностей никак не получалось.

Эту задачу решил Эдвин Хаббл, работавший на 100-дюймовом телескопе-рефлекторе калифорнийской обсерватории Маунт-Вилсон. В 1923—1924 годах он обнаружил, что туманность Андромеды состоит из множества светящихся объектов, среди которых есть переменные звезды семейства цефеид. Тогда уже было известно, что период изменения их видимого блеска связан с абсолютной светимостью, и поэтому цефеиды пригодны для калибровки космических дистанций. С их помощью Хаббл оценил расстояние до Андромеды в 285 000 парсек (по современным данным, оно составляет 800 000 парсек). Диаметр Млечного Пути тогда полагали приблизительно равным 100 000 парсек (в действительности он втрое меньше). Отсюда следовало, что Андромеду и Млечный Путь необходимо считать независимыми звездными скоплениями. Вскоре Хаббл идентифицировал еще две самостоятельные галактики, чем окончательно подтвердил гипотезу «островных вселенных».


Справедливости ради стоит отметить, что за два года до Хаббла расстояние до Андромеды вычислил эстонский астроном Эрнст Опик, чей результат — 450000 парсек — был ближе к правильному. Однако он использовал ряд теоретических соображений, которые не были так же убедительны, как прямые наблюдения Хаббла.

К 1926 году Хаббл провел статистический анализ наблюдений четырех сотен «внегалактических туманностей» (этим термином он пользовался еще долго, избегая называть их галактиками) и предложил формулу, позволяющую связать расстояние до туманности с ее видимой яркостью. Несмотря на огромные погрешности этого метода, новые данные подтверждали, что туманности распределены в пространстве более или менее равномерно и находятся далеко за границами Млечного Пути. Теперь уже не приходилось сомневаться, что космос не замыкается на нашей Галактике и ее ближайших соседях.

Модельеры космоса

Эддингтон заинтересовался результатами Слайфера еще до окончательного выяснения природы спиральных туманностей. К этому времени уже существовала космологическая модель, в определенном смысле предсказывавшая эффект, выявленный Слайфером. Эддингтон много размышлял о ней и, естественно, не упустил случая придать наблюдениям аризонского астронома космологическое звучание.

Современная теоретическая космология началась в 1917 году двумя революционными статьями, представившими модели Вселенной, построенные на основе общей теории относительности. Одну из них написал сам Эйнштейн, другую — голландский астроном Виллем де Ситтер.

Законы Хаббла

Эдвин Хаббл эмпирически выявил примерную пропорциональность красных смещений и галактических дистанций, которую он с помощью формулы Допплера-Физо превратил в пропорциональность между скоростями и расстояниями. Так что мы имеем здесь дело с двумя различными закономерностями.
Хаббл не знал, как они связаны друг с другом, но что об этом говорит сегодняшняя наука?
Как показал еще Леметр, линейная корреляция между космологическими (вызванными расширением Вселенной) красными смещениями и дистанциями отнюдь не абсолютна. На практике она хорошо соблюдается лишь для смещений, меньших 0,1. Так что эмпирический закон Хаббла не точный, а приближенный, да и формула Допплера-Физо справедлива только для небольших смещений спектра.
А вот теоретический закон, связывающий радиальную скорость далеких объектов с расстоянием до них (с коэффициентом пропорциональности в виде параметра Хаббла V=Hd), справедлив для любых красных смещений. Однако фигурирующая в нем скорость V — вовсе не скорость физических сигналов или реальных тел в физическом пространстве. Это скорость возрастания дистанций между галактиками и галактическими скоплениями, которое обусловлено расширением Вселенной. Мы бы смогли ее измерить только в том случае, если были бы в состоянии останавливать расширение Вселенной, мгновенно протягивать мерные ленты между галактиками, считывать расстояния между ними и делить их на промежутки времени между измерениями. Естественно, что законы физики этого не позволяют. Поэтому космологи предпочитают использовать параметр Хаббла H в другой формуле, где фигурирует масштабный фактор Вселенной, который как раз и описывает степень ее расширения в различные космические эпохи (поскольку этот параметр изменяется со временем, его современное значение обозначают H0). Вселенная сейчас расширяется с ускорением, так что величина хаббловского параметра возрастает.
Измеряя космологические красные смещения, мы получаем информацию о степени расширения пространства. Свет галактики, пришедший к нам с космологическим красным смещением z, покинул ее, когда все космологические дистанции были в 1+z раз меньшими, нежели в нашу эпоху. Получить об этой галактике дополнительные сведения, такие как ее нынешняя дистанция или скорость удаления от Млечного Пути, можно лишь с помощью конкретной космологической модели. Например, в модели Эйнштейна — де Ситтера галактика с z = 5 отдаляется от нас со скоростью, равной 1,1 с (скорости света). А вот если сделать распространенную ошибку и просто уравнять V/c и z, то эта скорость окажется впятеро больше световой. Расхождение, как видим, нешуточное.
Зависимость скорости далеких объектов от красного смещения согласно СТО, ОТО (зависит от модели и времени, кривая показывает настоящее время и текущую модель). При малых смещениях зависимость линейная.

Эйнштейн в духе времени считал, что Вселенная как целое статична (он пытался сделать ее еще и бесконечной в пространстве, но не смог найти корректные граничные условия для своих уравнений). В итоге он построил модель замкнутой Вселенной, пространство которой обладает постоянной положительной кривизной (и поэтому она имеет постоянный конечный радиус). Время в этой Вселенной, напротив, течет по‑ньютоновски, в одном направлении и с одинаковой скоростью. Пространство-время этой модели искривлено за счет пространственной компоненты, в то время как временная никак не деформирована. Статичность этого мира обеспечивает специальный «вкладыш» в основное уравнение, препятствующий гравитационному схлопыванию и тем самым действующий как вездесущее антигравитационное поле. Его интенсивность пропорциональна особой константе, которую Эйнштейн назвал универсальной (сейчас ее называют космологической постоянной).


Космологическая модель Леметра, описывающая расширение Вселенной, намного опередила свое время. Вселенная Леметра начинается с Большого взрыва, после которого расширение сначала замедляется, а затем начинает ускоряться.

Эйнштейновская модель позволила вычислить размер Вселенной, общее количество материи и даже значение космологической постоянной. Для этого нужна лишь средняя плотность космического вещества, которую, в принципе, можно определить из наблюдений. Не случайно этой моделью восхищался Эддингтон и использовал на практике Хаббл. Однако ее губит неустойчивость, которую Эйнштейн просто не заметил: при малейшем отклонении радиуса от равновесного значения эйнштейновский мир либо расширяется, либо претерпевает гравитационный коллапс. Поэтому к реальной Вселенной такая модель отношения не имеет.

Пустой мир

Де Ситтер тоже построил, как он сам считал, статичный мир постоянной кривизны, но не положительной, а отрицательной. В нем присутствует эйнштейновская космологическая константа, но зато полностью отсутствует материя. При введении пробных частиц сколь угодно малой массы они разбегаются и уходят в бесконечность. Кроме того, время на периферии вселенной де Ситтера течет медленней, нежели в ее центре. Из-за этого с больших расстояний световые волны приходят с красным смещением, даже если их источник неподвижен относительно наблюдателя. Поэтому в 1920-е годы Эддингтон и другие астрономы задались вопросом: не имеет ли модель де Ситтера чего-нибудь общего с реальностью, отраженной в наблюдениях Слайфера?


Эти подозрения подтвердились, хоть и в ином плане. Статичность вселенной де Ситтера оказалась мнимой, поскольку была связана с неудачным выбором координатной системы. После исправления этой ошибки пространство де Ситтера оказалось плоским, евклидовым, но нестатичным. Благодаря антигравитационной космологической константе оно расширяется, сохраняя при этом нулевую кривизну. Из-за этого расширения длины волн фотонов возрастают, что и влечет за собой предсказанный де Ситтером сдвиг спектральных линий. Стоит отметить, что именно так сегодня объясняют космологическое красное смещение далеких галактик.

От статистики к динамике

История открыто нестатичных космологических теорий начинается с двух работ советского физика Александра Фридмана, опубликованных в немецком журнале Zeitschrift fur Physik в 1922 и 1924 годах. Фридман просчитал модели вселенных с переменной во времени положительной и отрицательной кривизной, которые стали золотым фондом теоретической космологии. Однако современники эти работы почти не заметили (Эйнштейн сначала даже счел первую статью Фридмана математически ошибочной). Сам Фридман полагал, что астрономия еще не обладает арсеналом наблюдений, позволяющим решить, какая из космологических моделей более соответствует реальности, и потому ограничился чистой математикой. Возможно, он действовал бы иначе, если бы ознакомился с результатами Слайфера, однако этого не случилось.


По-другому мыслил крупнейший космолог первой половины XX века Жорж Леметр. На родине, в Бельгии, он защитил диссертацию по математике, а затем в середине 1920-х изучал астрономию — в Кембридже под руководством Эддингтона и в Гарвардcкой обсерватории у Харлоу Шепли (во время пребывания в США, где он подготовил вторую диссертацию в МIT, он познакомился со Слайфером и Хабблом). Еще в 1925 году Леметру впервые удалось показать, что статичность модели де Ситтера мнимая. По возвращении на родину в качестве профессора Лувенского университета Леметр построил первую модель расширяющейся вселенной, обладающую четким астрономическим обоснованием. Без преувеличения, эта работа стала революционным прорывом в науке о космосе.

Вселенская революция

В своей модели Леметр сохранил космологическую константу с эйнштейновским численным значением. Поэтому его вселенная начинается статичным состоянием, но со временем из-за флуктуаций вступает на путь постоянного расширения с возрастающей скоростью. На этой стадии она сохраняет положительную кривизну, которая уменьшается по мере роста радиуса. Леметр включил в состав своей вселенной не только вещество, но и электромагнитное излучение. Этого не сделали ни Эйнштейн, ни де Ситтер, чьи работы были Леметру известны, ни Фридман, о котором он тогда ничего не знал.

Сопутствующие координаты

В космологических вычислениях удобно пользоваться сопутствующими координатными системами, которые расширяются в унисон с расширением Вселенной. В идеализированной модели, где галактики и галактические кластеры не участвуют ни в каких собственных движениях, их сопутствующие координаты не меняются. А вот дистанция между двумя объектами в данный момент времени равна их постоянной дистанции в сопутствующих координатах, умноженной на величину масштабного фактора для этого момента. Такую ситуацию легко проиллюстрировать на надувном глобусе: широта и долгота каждой точки не меняются, а расстояние между любой парой точек увеличивается с ростом радиуса.
Использование сопутствующих координат помогает осознать глубокие различия между космологией расширяющейся Вселенной, специальной теорией относительности и ньютоновской физикой. Так, в ньютоновской механике все движения относительны, и абсолютная неподвижность не имеет физического смысла. Напротив, в космологии неподвижность в сопутствующих координатах абсолютна и в принципе может быть подтверждена наблюдениями. Специальная теория относительности описывает процессы в пространстве-времени, из которого можно с помощью преобразований Лоренца бесконечным числом способов вычленять пространственные и временные компоненты. Космологическое пространство-время, напротив, естественно распадается на искривленное расширяющееся пространство и единое космическое время. При этом скорость разбегания далеких галактик может многократно превышать скорость света.

Леметр еще в США предположил, что красные смещения далеких галактик возникают из-за расширения пространства, которое «растягивает» световые волны. Теперь же он доказал это математически. Он также продемонстрировал, что небольшие (много меньшие единицы) красные смещения пропорциональны расстояниям до источника света, причем коэффициент пропорциональности зависит только от времени и несет информацию о текущем темпе расширения Вселенной. Поскольку из формулы Допплера-Физо следовало, что радиальная скорость галактики пропорциональна красному смещению, Леметр пришел к выводу, что эта скорость также пропорциональна ее удаленности. Проанализировав скорости и дистанции 42 галактик из списка Хаббла и приняв во внимание внутригалактическую скорость Солнца, он установил значения коэффициентов пропорциональности.

Незамеченная работа

Свою работу Леметр опубликовал в 1927 году на французском языке в малочитаемом журнале «Анналы Брюссельского научного общества». Считают, что это послужило основной причиной, из-за которой она поначалу осталась практически незамеченной (даже его учителем Эддингтоном). Правда, осенью того же года Леметр смог обсудить свои выводы с Эйнштейном и узнал от него о результатах Фридмана. У создателя ОТО не было технических возражений, однако он решительно не поверил в физическую реальность леметровской модели (подобно тому, как раньше не принял фридмановские выводы).


Графики Хаббла

Между тем в конце 1920-х годов Хаббл и Хьюмасон выявили линейную корреляцию между расстояниями до 24 галактик и их радиальными скоростями, вычисленными (в основном еще Слайфером) по красным смещениям. Хаббл сделал из этого вывод о прямой пропорциональности радиальной скорости галактики расстоянию до нее. Коэффициент этой пропорциональности сейчас обозначают H0 и называют параметром Хаббла (по последним данным, он немного превышает 70 (км/с)/мегапарсек).

Статья Хаббла с графиком линейной зависимости между галактическими скоростями и дистанциями была опубликована в начале 1929 года. Годом ранее молодой американский математик Хауард Робертсон вслед за Леметром вывел эту зависимость из модели расширяющейся Вселенной, о чем Хаббл, возможно, знал. Однако в его знаменитой статье эта модель ни прямо, ни косвенно не упоминалась. Позднее Хаббл высказывал сомнения, что фигурирующие в его формуле скорости реально описывают движения галактик в космическом пространстве, однако всегда воздерживался от их конкретной интерпретации. Смысл своего открытия он видел в демонстрации пропорциональности галактических расстояний и красных смещений, остальное предоставлял теоретикам. Поэтому при всем уважении к Хабблу считать его первооткрывателем расширения Вселенной нет никаких оснований.


И все-таки она расширяется!

Тем не менее Хаббл подготовил почву для признания расширения Вселенной и модели Леметра. Уже в 1930 году ей воздали должное такие мэтры космологии, как Эддингтон и де Ситтер; немногим позже ученые заметили и по достоинству оценили работы Фридмана. В 1931 году с подачи Эддингтона Леметр перевел на английский свою статью (с небольшими купюрами) для «Ежемесячных известий Королевского астрономического общества». В этом же году Эйнштейн согласился с выводами Леметра, а годом позже совместно с де Ситтером построил модель расширяющейся Вселенной с плоским пространством и искривленным временем. Эта модель из-за своей простоты долгое время была очень популярна среди космологов.

В том же 1931 году Леметр опубликовал краткое (и без всякой математики) описание еще одной модели Вселенной, объединявшей в себе космологию и квантовую механику. В этой модели начальным моментом выступает взрыв первичного атома (Леметр также называл его квантом), породивший и пространство, и время. Поскольку тяготение тормозит расширение новорожденной Вселенной, его скорость уменьшается — не исключено, что почти до нуля. Позднее Леметр ввел в свою модель космологическую постоянную, заставившую Вселенную со временем перейти в устойчивый режим ускоряющегося расширения. Так что он предвосхитил и идею Большого взрыва, и современные космологические модели, учитывающие присутствие темной энергии. А в 1933 году он отождествил космологическую постоянную с плотностью энергии вакуума, о чем до того никто еще не додумался. Просто удивительно, насколько этот ученый, безусловно достойный титула первооткрывателя расширения Вселенной, опередил свое время!



© dagexpo.ru, 2024
Стоматологический сайт