Как считать площадь треугольника по трем сторонам. Как найти площадь треугольника. Формулы треугольника

20.10.2019

Инструкция

Стороны и углы считаются основными элементами а . Треугольник полностью определяется любой из следующих своих основных элементов: либо тремя сторонами, либо одной стороной и двумя углами, либо двумя сторонами и углом между ними. Для существования треугольника , задаваемого тремя сторонами a, b, c, необходимо и достаточно выполнение неравенств, называемых неравенствами треугольника :
a+b > c,
a+c > b,
b+c > a.

Для построения треугольника по трем сторонам a, b, c, необходимо из точки С отрезка СВ=a как из провести циркулем окружность радиусом b. Затем аналогичным образом провести из точки B окружность радиусом равным стороне c. Точка их пересечения A – третья вершина искомого треугольника ABC, где АВ=c, CB=a, CA=b - стороны треугольника . Задача имеет , если стороны a, b, c, удовлетворяют неравенствам треугольника указанным в шаге 1.

Площадь S, построенного таким образом треугольника ABC с известными сторонами a, b, c, вычисляется по формуле Герона:
S=v(p(p-a)(p-b)(p-c)),
где a, b, c – стороны треугольника , p – полупериметр.
p = (a+b+c)/2

Если треугольник является равносторонним, то есть все его стороны равны (a=b=c).Площадь треугольника вычисляется по формуле:
S=(a^2 v3)/4

Если треугольник является прямоугольным, то есть один из его углов равен 90°, а стороны, его образующие, катетами, третья сторона гипотенузой. В данном случае площадь равняется произведению катетов, деленному на два.
S=ab/2

Чтобы найти площадь треугольника , можно воспользоваться одной из многочисленных формул. Формулу выбирайте в зависимости от того, какие данные уже известны.

Вам понадобится

  • знание формул для нахождения площади треугольника

Инструкция

Если вы знаете величину одной из сторон и величину высоты, опущенной на эту сторону из противолежащего ей угла, то можно найти площадь по следующей : S = a*h/2, где S - площадь треугольника, a - одна из сторон треугольника, а h - высота, к стороне a.

Существует известная для определения площади треугольника, если известны три его стороны. Она формулой Герона. Для упрощения ее записи вводят промежуточную величину - полупериметр: p = (a+b+c)/2, где a, b, c - . Тогда формула Герона следующим образом: S = (p(p-a)(p-b)(p-c))^½, ^ возведение в степень.

Предположим, что вам известна одна из сторон треугольника и три угла. Тогда легко найти площадь треугольника: S = a²sinα sinγ / (2sinβ), где β - угол, противолежащий стороне a, а α и γ - прилежащие к стороне углы.

Видео по теме

Обратите внимание

Самая общая формула, которая подходит для всех случаев - это формула Герона.

Источники:

Совет 3: Как найти по трем сторонам площадь треугольника

Поиск площади треугольника - одна из самых распространенных задач школьной планиметрии. Знания трех сторон треугольника достаточно для определения площади любого треугольника. В частных случаях и равностороннего треугольников достаточно знать длины двух и одной стороны соответственно.

Вам понадобится

  • длины сторон треугольников, формула Герона, теорема косинусов

Инструкция

Формула Герона для площади треугольника следующим образом: S = sqrt(p(p-a)(p-b)(p-c)). Если расписать полупериметр p, то получится: S = sqrt(((a+b+c)/2)((b+c-a)/2)((a+c-b)/2)((a+b-c)/2)) = (sqrt((a+b+c)(a+b-c)(a+c-b)(b+c-a)))/4.

Можно вывести формулу для площади треугольника и из соображений, например, применив теорему косинусов.

По теореме косинусов AC^2 = (AB^2)+(BC^2)-2*AB*BC*cos(ABC). Используя введенные обозначения, эти можно также в виде: b^2 = (a^2)+(c^2)-2a*c*cos(ABC). Отсюда, cos(ABC) = ((a^2)+(c^2)-(b^2))/(2*a*c)

Площадь треугольника находится также по формуле S = a*c*sin(ABC)/2 через две стороны и угол между ними. Синус угла ABC можно выразить через его с помощью основного тригонометрического тождества: sin(ABC) = sqrt(1-((cos(ABC))^2). Подставляя синус в формулу для площади и расписывая его, можно прийти к формуле для площади треугольника ABC.

Видео по теме

Для проведения ремонтных работ бывает необходимо измерить площадь стен. Так проще рассчитать необходимое количество краски или обоев. Для измерений лучше всего воспользоваться рулеткой или сантиметровой лентой. Замеры следует проводить уже после того, как стены были выровнены.

Вам понадобится

  • -рулетка;
  • -стремянка.

Инструкция

Чтобы посчитать площадь стен, вам необходимо знать точную высоту потолков, а также произвести замеры длины по полу. Делается это следующим образом: возьмите сантиметр, проложите его над плинтусом. Обычно сантиметра для всей длины не хватает, поэтому закрепите его в углу, затем размотайте на максимальную длину. В этой точке поставьте отметку карандашом, запишите полученный результат и дальнейшее измерение проводите тем же образом, начиная с последней точки замера.

Стандартная потолков в типовых - 2 метра 80 сантиметров, 3 метра и 3 метра 20 сантиметров, в зависимости от дома. Если дом был построен до 50-х годов, то, скорее всего, реальная высота несколько ниже указанной. Если вы вычисляете площадь для ремонтных работ, то небольшой запас не повредит - считайте, исходя из стандарта. Если все же необходимо знать реальную высоту - проведите замеры . Принцип аналогичен измерению длины, но потребуется стремянка.

Перемножьте полученные показатели - это и есть площадь вашей стены . Правда, при покрасочных работах или для необходимо вычесть площадь дверных и оконных проемов. Для этого проложите сантиметр вдоль проема. Если речь идет о двери, которую вы впоследствии собираетесь менять, то проводите со снятой дверной коробкой, учитывая только площадь непосредственно самого проема. Площадь окна высчитывается по периметру его рамы. После того, как площадь окна и дверного проема высчитана, вычтите результат из общей полученной площади комнаты.

Учтите, что замеры длины и ширины комнаты проводить вдвоем, так легче зафиксировать сантиметр или рулетку и, соответственно, получить более точный результат. Проводите один и тот же замер несколько раз, чтобы убедиться в точности полученных цифр.

Видео по теме

Нахождение объема треугольника действительно нетривиальная задача. Дело в том, что треугольник - двухмерная фигура, т.е. он целиком лежит в одной плоскости, а это значит, что у него попросту нет объема. Разумеется нельзя найти то, чего не существует. Но не будем опускать руки! Можно принять следующее допущение - объем двухмерной фигуры, это ее площадь. Площадь треугольника мы и будем искать.

Вам понадобится

  • лист бумаги, карандаш, линейка, калькулятор

Инструкция

Начертите на листе бумаги при помощи линейки и карандаша. Внимательно рассмотрев треугольник, вы сможете убедиться, что у него действительно нет , так как он нарисован на плоскости. Подпишите стороны треугольника: пусть одна сторона будет стороной "а", другая - стороной "b", и третья - стороной "c". Подпишите вершины треугольника буквами "А", "B" и "C".

Измерьте линейкой любую сторону треугольника и запишите получившийся результат. После этого восстановите перпендикуляр к измеренной стороне из противоположной ей вершины, такой перпендикуляр будет высотой треугольника. В случае, представленном на рисунке, перпендикуляр "h" восстановлен к стороне "c" из вершины "A". Измерьте получившуюся высоту линейкой и запишите результат измерения.

Может случиться, что вам будет сложно восстановить точный перпендикуляр. В этом случае вам следует воспользоваться другой формулой. Измерьте все стороны треугольника линейкой. После этого подсчитайте полупериметр треугольника "p", сложив получившиеся длины сторон и разделив их сумму пополам. Имея в своем распоряжении значение полупериметра, вы можете по формуле Герона. Для этого необходимо извлечь квадратный корень из следующего : p(p-a)(p-b)(p-c).

Вы получили искомую величину площади треугольника. Задача нахождения объема треугольника не решена, но как говорилось выше, объема не . Вы можете найти объем , которая по сути треугольником в трехмерном мире. Если представить, что наш первоначальный треугольник стал трехмерной пирамидой, то объем такой пирамиды будет произведению длины ее основания на полученную нами площадь треугольника.

Обратите внимание

Подсчеты будут тем точнее, чем тщательнее вы будете производить измерения

Источники:

  • Калькулятор “Все во все” - портал по справочным величинам
  • объем треугольника в 2019

Три точки, однозначно определяющие треугольник в Декартовой системе координат - это его вершины. Зная их положение относительно каждой из координатных осей можно вычислить любые параметры этой плоской фигуры, включая и ограничиваемую ее периметром площадь . Это можно сделать несколькими способами.

Инструкция

Используйте формулу Герона для расчета площади треугольника . В ней задействованы размеры трех сторон фигуры, поэтому вычисления начините с . Длина каждой стороны должна быть равна корню из суммы квадратов длин ее проекций на координатные оси. Если обозначить координаты A(X₁,Y₁,Z₁), B(X₂,Y₂,Z₂) и C(X₃,Y₃,Z₃), длины их сторон можно выразить так: AB = √((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²), BC = √((X₂-X₃)² + (Y₂-Y₃)² + (Z₂-Z₃)²), AC = √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²).

Для упрощения расчетов введите вспомогательную переменную - полупериметр (Р). Из , что это половина суммы длин всех сторон: Р = ½*(AB+BC+AC) = ½*(√((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²) + √((X₂-X₃)² + (Y₂-Y₃)² + (Z₂-Z₃)²) + √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²).

Треугольник - это одна из самых распространенных геометрических фигур, с которой мы знакомимся уже в начальной школе. С вопросом, как найти площадь треугольника, сталкивается каждый школьник на уроках геометрии. Так, какие же особенности нахождения площади данной фигуры можно выделить? В данной статье мы рассмотрим основные формулы, необходимые для выполнения такого задания, а также разберем виды треугольников.

Виды треугольников

Найти площадь треугольника можно абсолютно разными способами, потому что в геометрии выделяется не один вид фигур, содержащих три угла. К таким видам относятся:

  • Тупоугольный.
  • Равносторонний (правильный).
  • Прямоугольный треугольник.
  • Равнобедренный.

Рассмотрим подробнее каждый из существующих типов треугольников.

Такая геометрическая фигура считается наиболее распространенной при решении геометрических задач. Когда возникает необходимость начертить произвольный треугольник, на помощь приходит именно этот вариант.

В остроугольном треугольнике, как понятно по названию, все углы острые и в сумме составляют 180°.

Такой треугольник также очень распространен, однако встречается несколько реже остроугольного. Например, при решении треугольников (т. е. известно несколько его сторон и углов и нужно найти оставшиеся элементы) иногда требуется определить, является угол тупым или нет. Косинус - это отрицательное число.

В величина одного из углов превышает 90°, поэтому оставшиеся два угла могут принимать маленькие значения (например, 15° или вовсе 3°).

Чтобы найти площадь треугольника данного типа, необходимо знать некоторые нюансы, о которых мы поговорим дальше.

Правильный и равнобедренный треугольники

Правильным многоугольником называется фигура, включающаяся в себя n углов, у которой все стороны и углы равны. Таким и является правильный треугольник. Так как сумма всех углов треугольника составляет 180°, то каждый из трех углов равен 60°.

Правильный треугольник, благодаря его свойству, также называют равносторонней фигурой.

Стоит также отметить, что в правильный треугольник можно вписать только одну окружность и около него можно описать только одну окружность, причем их центры расположены в одной точке.

Помимо равностороннего типа, можно также выделить равнобедренный треугольник, несильно от него отличающийся. В таком треугольнике две стороны и два угла равны между собой, а третья сторона (к которой прилегают равные углы) является основанием.

На рисунке показан равнобедренный треугольник DEF, углы D и F которого равны, а DF является основанием.

Прямоугольный треугольник

Прямоугольный треугольник назван так потому, что один из его углов прямой, то есть равен 90°. Другие же два угла в сумме составляют 90°.

Самая большая сторона такого треугольника, лежащая против угла в 90° является гипотенузой, остальные же две его стороны - это катеты. Для данного типа треугольников применима теорема Пифагора:

Сумма квадратов длин катетов равна квадрату длины гипотенузы.

На рисунке изображен прямоугольный треугольник BAC с гипотенузой AC и катетами AB и BC.

Чтобы найти площадь треугольника с прямым углом, нужно знать числовые значения его катетов.

Перейдем к формулам нахождения площади данной фигуры.

Основные формулы нахождения площади

В геометрии можно выделить две формулы, которые подходят для нахождения площади большинства видов треугольников, а именно для остроугольного, тупоугольного, правильного и равнобедренного треугольников. Разберем каждую из них.

По стороне и высоте

Данная формула является универсальной для нахождения площади, рассматриваемой нами фигуры. Для этого достаточно знать длину стороны и длину проведенной к ней высоты. Сама формула (половина произведения основания на высоту) выглядит следующим образом:

где A - сторона данного треугольника, а H - высота треугольника.

Например, чтобы найти площадь остроугольного треугольника ACB, нужно умножить его сторону AB на высоту CD и разделить получившееся значение на два.

Однако не всегда бывает легко найти площадь треугольника таким способом. Например, чтобы воспользоваться этой формулой для тупоугольного треугольника, необходимо продолжить одну из его сторон и только после этого провести к ней высоту.

На практике данная формула применяется чаще остальных.

По двум сторонам и углу

Данная формула, как и предыдущая подходит для большинства треугольников и по своему смыслу является следствием формулы нахождения площади по стороне и высоте треугольника. То есть рассматриваемую формулу можно легко вывести из предыдущей. Ее формулировка выглядит так:

S = ½*sinO*A*B,

где A и B - это стороны треугольника, а O - угол между сторонами A и B.

Напомним, что синус угла можно посмотреть в специальной таблице, названной в честь выдающегося советского математика В. М. Брадиса.

А теперь перейдем к другим формулам, подходящим только для исключительных видов треугольников.

Площадь прямоугольного треугольника

Помимо универсальной формулы, включающей в себя необходимость проводить высоту в треугольнике, площадь треугольника, содержащего прямой угол, можно найти по его катетам.

Так, площадь треугольника, содержащего прямой угол, - это половина произведения его катетов, или:

где a и b - катеты прямоугольного треугольника.

Правильный треугольник

Данный вид геометрических фигур отличается тем, что его площадь можно найти при указанной величине лишь одной его стороны (так как все стороны правильного треугольника равны). Итак, встретившись с задачей «найти площадь треугольника, когда стороны равны», нужно воспользоваться следующей формулой:

S = A 2 *√3 / 4,

где A - это сторона равностороннего треугольника.

Формула Герона

Последний вариант для нахождения площади треугольника - это формула Герона. Для того чтобы ею воспользоваться, необходимо знать длины трех сторон фигуры. Формула Герона выглядит так:

S = √p·(p - a)·(p - b)·(p - c),

где a, b и c - это стороны данного треугольника.

Иногда в задаче дано: «площадь правильного треугольника - найти длину его стороны». В данном случае нужно воспользоваться уже известной нам формулой нахождения площади правильного треугольника и вывести из нее значение стороны (или ее квадрата):

A 2 = 4S / √3.

Экзаменационные задачи

В задачах ГИА по математике встречаются множество формул. Помимо этого, достаточно часто необходимо найти площадь треугольника на клетчатой бумаге.

В данном случае удобнее всего провести высоту к одной из сторон фигуры, определить по клеткам ее длину и воспользоваться универсальной формулой для нахождения площади:

Итак, после изучения представленных в статье формул, у вас не возникнут проблемы при нахождении площади треугольника любого вида.

Площадь треугольника - формулы и примеры решения задач

Ниже приведены формулы нахождения площади произвольного треугольника которые подойдут для нахождения площади любого треугольника, независимо от его свойств, углов или размеров. Формулы представлены в виде картинки, здесь же приведены пояснения по применению или обоснованию их правильности. Также на отдельном рисунке указаны соответствия буквенных обозначений в формулах и графических обозначений на чертеже.

Примечание . Если же треугольник обладает особыми свойствами (равнобедренный, прямоугольный, равносторонний), можно использовать формулы, приведенные ниже, а также дополнительно специальные, верные только для треугольников с данными свойствами, формулы:

  • "Формулы площади равностороннего треугольника"

Формулы площади треугольника

Пояснения к формулам :
a, b, c - длины сторон треугольника, площадь которого мы хотим найти
r - радиус вписанной в треугольник окружности
R - радиус описанной вокруг треугольника окружности
h - высота треугольника, опущенная на сторону
p - полупериметр треугольника, 1/2 суммы его сторон (периметра)
α - угол, противолежащий стороне a треугольника
β - угол, противолежащий стороне b треугольника
γ - угол, противолежащий стороне c треугольника
h a , h b , h c - высота треугольника, опущенная на сторону a , b , c

Обратите внимание, что приведенные обозначения соответствуют рисунку, который находится выше, чтобы при решении реальной задачи по геометрии Вам визуально было легче подставить в нужные места формулы правильные значения.

  • Площадь треугольника равна половине произведения высоты треугольника на длину стороны на которую эта высота опущена (Формула 1). Правильность этой формулы можно понять логически. Высота, опущенная на основание, разобьет произвольный треугольник на два прямоугольных. Если достроить каждый из них до прямоугольника с размерами b и h, то, очевидно, площадь данных треугольников будет равна ровно половине площади прямоугольника (Sпр = bh)
  • Площадь треугольника равна половине произведения двух его сторон на синус угла между ними (Формула 2) (см. пример решения задачи с использованием этой формулы ниже). Несмотря на то, что она кажется непохожей на предыдущую, она легко может быть в нее преобразована. Если из угла B опустить высоту на сторону b, окажется, что произведение стороны a на синус угла γ по свойствам синуса в прямоугольном треугольнике равно проведенной нами высоте треугольника, что и даст нам предыдущую формулу
  • Площадь произвольного треугольника может быть найдена через произведение половины радиуса вписанной в него окружности на сумму длин всех его сторон (Формула 3), проще говоря, нужно полупериметр треугольника умножить на радиус вписанной окружности (так легче запомнить)
  • Площадь произвольного треугольника можно найти, разделив произведение всех его сторон на 4 радиуса описанной вокруг него окружности (Формула 4)
  • Формула 5 представляет собой нахождение площади треугольника через длины его сторон и его полупериметр (половину суммы всех его сторон)
  • Формула Герона (6) - это представление той же самой формулы без использования понятия полупериметра, только через длины сторон
  • Площадь произвольного треугольника равна произведению квадрата стороны треугольника на синусы прилежащих к этой стороне углов деленного на двойной синус противолежащего этой стороне угла (Формула 7)
  • Площадь произвольного треугольника можно найти как произведение двух квадратов описанной вокруг него окружности на синусы каждого из его углов. (Формула 8)
  • Если известна длина одной стороны и величины двух прилежащих к ней углов, то площадь треугольника может быть найдена как квадрат этой стороны, деленный на двойную сумму котангенсов этих углов (Формула 9)
  • Если известна только длина каждой из высот треугольника (Формула 10), то площадь такого треугольника обратно пропорциональна длинам этих высот, как по Формуле Герона
  • Формула 11 позволяет вычислить площадь треугольника по координатам его вершин , которые заданы в виде значений (x;y) для каждой из вершин. Обратите внимание, что получившееся значение необходимо взять по модулю, так как координаты отдельных (или даже всех) вершин могут находиться в области отрицательных значений

Примечание . Далее приведены примеры решения задач по геометрии на нахождение площади треугольника. Если Вам необходимо решить задачу по геометрии, похожей на которую здесь нет - пишите об этом в форуме. В решениях вместо символа "квадратный корень" может применяться функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение . Иногда для простых подкоренных выражений может использоваться символ

Задача. Найти площадь по двум сторонам и углу между ними

Стороны треугольника равны 5 и 6 см. Угол между ними составляет 60 градусов. Найдите площадь треугольника .

Решение .

Для решения этой задачи используем формулу номер два из теоретической части урока.
Площадь треугольника может быть найдена через длины двух сторон и синус угла межу ними и будет равна
S=1/2 ab sin γ

Поскольку все необходимые данные для решения (согласно формуле) у нас имеются, нам остается только подставить значения из условия задачи в формулу:
S = 1/2 * 5 * 6 * sin 60

В таблице значений тригонометрических функций найдем и подставим в выражение значение синуса 60 градусов . Он будет равен корню из трех на два.
S = 15 √3 / 2

Ответ : 7,5 √3 (в зависимости от требований преподавателя, вероятно, можно оставить и 15 √3/2)

Задача. Найти площадь равностороннего треугольника

Найти площадь равностороннего треугольника со стороной 3см.

Решение .

Площадь треугольника можно найти по формуле Герона:

S = 1/4 sqrt((a + b + c)(b + c - a)(a + c - b)(a + b -c))

Поскольку a = b = c формула площади равностороннего треугольника примет вид:

S = √3 / 4 * a 2

S = √3 / 4 * 3 2

Ответ : 9 √3 / 4.

Задача. Изменение площади при изменении длины сторон

Во сколько раз увеличится площадь треугольника, если стороны увеличить в 4 раза?

Решение .

Поскольку размеры сторон треугольника нам неизвестны, то для решения задачи будем считать, что длины сторон соответственно равны произвольным числам a, b, c. Тогда для того, чтобы ответить на вопрос задачи, найдем площадь данного треугольника, а потом найдем площадь треугольника, стороны которого в четыре раза больше. Соотношение площадей этих треугольников и даст нам ответ на задачу.

Далее приведем текстовое пояснение решения задачи по шагам. Однако, в самом конце, это же самое решение приведено в более удобном для восприятия графическом виде. Желающие могут сразу опуститься вниз решения.

Для решения используем формулу Герона (см. выше в теоретической части урока). Выглядит она следующим образом:

S = 1/4 sqrt((a + b + c)(b + c - a)(a + c - b)(a + b -c))
(см. первую строку рисунка внизу)

Длины сторон произвольного треугольника заданы переменными a, b, c.
Если стороны увеличить в 4 раза, то площадь нового треугольника с составит:

S 2 = 1/4 sqrt((4a + 4b + 4c)(4b + 4c - 4a)(4a + 4c - 4b)(4a + 4b -4c))
(см. вторую строку на рисунке внизу)

Как видно, 4 - общий множитель, который можно вынести за скобки из всех четырех выражений по общим правилам математики.
Тогда

S 2 = 1/4 sqrt(4 * 4 * 4 * 4 (a + b + c)(b + c - a)(a + c - b)(a + b -c)) - на третьей строке рисунка
S 2 = 1/4 sqrt(256 (a + b + c)(b + c - a)(a + c - b)(a + b -c)) - четвертая строка

Из числа 256 прекрасно извлекается квадратный корень, поэтому вынесем его из-под корня
S 2 = 16 * 1/4 sqrt((a + b + c)(b + c - a)(a + c - b)(a + b -c))
S 2 = 4 sqrt((a + b + c)(b + c - a)(a + c - b)(a + b -c))
(см. пятую строку рисунка внизу)

Чтобы ответить на вопрос, заданный в задаче, нам достаточно разделить площадь получившегося треугольника, на площадь первоначального.
Определим соотношения площадей, разделив выражения друг на друга и сократив получившуюся дробь.

Порой в жизни встречаются такие ситуации, когда приходится копаться в памяти в поисках давно забытых школьных знаний. Например, нужно определить площадь земельного участка треугольной формы или же пришел черед очередного ремонта в квартире или частном доме, и нужно посчитать, сколько уйдет материала для поверхности с треугольной формой. Было время, когда вы могли решить такую задачку за пару минут, а теперь отчаянно пытаетесь вспомнить, как же определить площадь треугольника?

Не стоит из-за этого переживать! Ведь это вполне нормально, когда мозг человека решает переложить давно неиспользуемые знания куда-нибудь в удаленный уголок, из которого порой их не так-то и легко извлечь. Чтобы вам не пришлось мучиться с поиском забытых школьных знаний для решения такой задачи, в этой статье собраны различные методы, которые позволяют легко найти искомую площадь треугольника.

Общеизвестно, что треугольником называют такой вид многоугольника, который ограничен минимально возможным количеством сторон. В принципе, любой многоугольник можно разделить на несколько треугольников, соединив его вершины отрезками, которые не пересекают его стороны. Поэтому, зная треугольника, можно посчитать площадь практически любой фигуры.

Среди всех возможных треугольников, которые встречаются в жизни, можно выделить следующие частные виды: и прямоугольный.

Проще всего площадь треугольника рассчитывается, когда один из его углов прямой, то есть в случае с прямоугольным треугольником. Несложно заметить, что он представляет собой половину прямоугольника. Поэтому его площадь равна половине произведения сторон, которые образуют между собой прямой угол.

Если нам известны высота треугольника, опущенная из одной из его вершин на противоположную сторону, и длина этой стороны, которую называют основанием, то площадь рассчитывается как половина произведения высоты на основание. Записывается это с помощью такой формулы:

S = 1/2*b*h, в которой

S - искомая площадь треугольника;

b, h - соответственно, высота и основание треугольника.

Так легко рассчитать площадь равнобедренного треугольника, поскольку высота будет делить противоположную сторону пополам, и ее легко можно будет измерить. Если определяется площадь то в качестве высоты удобно брать длину одной из сторон, образующих прямой угол.

Все это конечно хорошо, но как определить, является ли один из углов треугольника прямым или нет? Если размер нашей фигуры небольшой, то можно воспользоваться строительным углом, чертежным треугольником, открыткой или другим предметом с прямоугольной формой.

Но что делать, если у нас треугольный земельный участок? В этом случае поступают следующим образом: отсчитывают от вершины предполагаемого прямого угла по одной из сторон расстояние кратное 3 (30 см, 90 см, 3 м), а по другой стороне отмеряют в той же пропорции расстояние кратное 4 (40 см, 160 см, 4 м). Теперь нужно измерить расстояние между конечными точками этих двух отрезков. Если получилось значение кратное 5 (50 см, 250 см, 5 м), то можно утверждать, что угол прямой.

Если известно значение длины каждой из трех сторон нашей фигуры, то площадь треугольника можно определить, используя формулу Герона. Для того чтобы она имела более простой вид, применяют новую величину, которая называется полупериметром. Это сумма всех сторон нашего треугольника, разделенная пополам. После того как полупериметр посчитан, можно приступать к определению площади по формуле:

S = sqrt(p(p-a)(p-b)(p-c)), где

sqrt - квадратный корень;

p - значение полупериметра (p =(a+b+c)/2);

а,b,с - ребра (стороны) треугольника.

Но что делать, если треугольник имеет неправильную форму? Здесь возможны два способа. Первый из них состоит в том, чтобы попытаться разделить такую фигуру на два прямоугольных треугольника, сумму площадей которых посчитать отдельно, а затем сложить. Или же, если известен угол между двумя сторонами и размер этих сторон, то применить формулу:

S = 0.5 * ab * sinC, где

a,b - стороны треугольника;

с - величина угла между этими сторонами.

Последний случай на практике встречается редко, но тем не менее, в жизни все возможно, поэтому приведенная выше формула не будет лишней. Удачи в расчётах!



© dagexpo.ru, 2024
Стоматологический сайт