Как вводятся координаты на плоскости. Введение системы координат

21.09.2019

Дадим теперь понятие о методе координат на плоскости, т. е. укажем способ, позволяющий определять положение точек плоскости с помощью чисел.

Возьмем две взаимно перпендикулярные прямые и на каждой из них установим положительное направление. Эти прямые, относительно которых мы будем определять положение точек плоскости, называются осями координат. Оси координат обычно располагают так, как это указано на рис. 6: одну - горизонтально и положительное направление на ней выбирают слева направо, а другую - вертикально и положительное направление на ней - снизу вверх. Одна из осей (обычно горизонтальная) называется осью абсцисс (ось Ох), а другая -

осью ординат (ось Оу). Точка пересечения осей координат называется началом координат (на рис. 6 начало координат обозначено буквой О). Наконец, выберем единицу масштаба (мы всегда будем предполагать, что на обеих осях координат выбрана одна и та же единица масштаба).

Теперь положение любой точки плоскости можно будет определить числами - координатами этой точки. Действительно, всякой точке М плоскости соответствуют на осях координат две точки Р и Q, являющиеся ее проекциями на эти оси (рис. 6) и, обратно, зная точки на осях координат, можно построить единственную точку М на плоскости, для которой Р и Q являются проекциями на эти оси. Таким образом, определение положения точки М плоскости сводится к определению положений ее проекций Р и Q на координатные оси.

Но мы уже знаем, что положение точки на оси вполне определяется координатой. Пусть - координата точки Р на оси абсцисс и у - координата точки Q на оси ординат . Числа х и у вполне определяют положение точки М на плоскости и называются координатами точки; при этом называется абсциссой точки М, а у - ее ординатой.

Таким образом, абсциссой точки называется величина направленного отрезка оси Ох, началом которого является начало координат, а концом - проекция точки на эту ось; ординатой точки называется величина направленного отрезка оси Оу, началом которого является начало координат, а концом - проекция точки на ось ординат.

Итак, положение любой точки плоскости вполне определяется заданием пары чисел х и у, первое из которых является абсциссой точки, а второе - ее ординатой.

Координаты точки условимся писать в скобках, рядом с буквой, обозначающей эту точку, ставя на первом месте абсциссу, а на втором - ординату и разделяя их запятой: При указанном на рис. 6 расположении координатных осей для всех точек плоскости, лежащих вправо от оси Оу (оси ординат), абсцисса положительна, а для точек, лежащих влево от оси Оу, - отрицательна. Точки самой оси Оу имеют абсциссу, равную нулю. Совершенно так же точки плоскости, лежащие выше оси Ох (оси абсцисс), имеют положительную ординату у, а точки, лежащие ниже оси отрицательную. Точки самой оси Ох имеют ордииату, равную нулю. Начало координат имеет координаты (0, 0).

Оси координат делят плоскость на четыре части, называемые четвертями или квадрантами (иногда их также называют координатными

углами). Часть плоскости, заключенная между положительными полуосями Ох и Оу, называется первым квадрантом. Дальше нумерация квадрантов идет против часовой стрелки (рис. 7). Для всех точек 1 квадранта для точек II квадранта в III квадранте и в IV квадранте

Координаты, которые принимаются здесь для определения положения точки плоскости, называются прямоугольными координатами, так как точка М плоскости получается пересечением двух прямых РМ и QM (рис. 6), встречающихся под прямым углом, а также декартовыми по имени математика и философа Декарта, который в 1637 году опубликовал первый труд по аналитической геометрии.

Декартова прямоугольная система координат не является единственной координатной системой, позволяющей определять положения точек плоскости (см. § 11 этой главы), но она является наиболее простой и мы в дальнейшем будем пользоваться преимущественно ею. Из описанного метода координат вытекает решение двух основных задач.

Задача I. По данной точке М найти ее координаты.

Из данной точки М опускаем перпендикуляры на оси Основания этих перпендикуляров - точки Р и Q - определят обе искомые координаты. Первая координата точки М, ее абсцисса, равна величине направленного отрезка ОР оси Вторая же координата точки ее ордината, равна величине направленного отрезка OQ оси

Задача И. Зная координаты точки М, построить эту точку.

Отложим по оси Ох от точки О отрезок длиною единиц вправо, если и влево, если Конец этого отрезка - точка Р - будет проекцией искомой точки М на ось Ох, откладывая по оси Оу от точки О отрезок длиною единиц вверх, если и вниз, если получим точку Q - проекцию искомой точки на ось Оу. Зная же Р и Q, легко по этим точкам, как проекциям, построить искомую точку М. Для этого нужно провести через Р и Q прямые, параллельные осям координат; в пересечении этих прямых получится искомая точка

Замечание. Если мы условимся рассматривать направленные отрезки РМ и QM (рис. 6) как отрезки осей, направления которых совпадают с направлениями параллельных им координатных осей, то абсцисса точки М будет выражаться не только величиной отрезка ОР,

но и равной ей величиной отрезка QM. Ордината той же точки будет одинаково выражаться как величиной отрезка OQ, так и равной ей величиной отрезка РМ. Направленные отрезки OP, QM, OQ и РМ будем называть координатными отрезками точки М. Тогда при решении рассмотренных двух основных задач нет необходимости определять обе проекции точки М, достаточно определить только одну, например проекцию на ось абсцисс. Так, в задаче 1 опускаем из данной точки М перпендикуляр на ось абсцисс. Его основание Р определяет проекцию точки М на эту ось. Величина направленного отрезка ОР даст абсциссу данной точки, а величина отрезка РМ - ординату у.

Пример. Построить точку по координатам Откладываем вправо от О по оси абсцисс отрезок длиною в 2 единицы; через конец Р этого отрезка проводим прямую, параллельную оси ординат, и на ней откладываем вниз от Р отрезок длиною в 3 единицы; конец этого отрезка и есть искомая точка М.

Таким образом, в выбранной системе координат каждой точке плоскости соответствует вполне определенная пара координат х и у и, обратно, всякая пара действительных чисел х, у определяет на плоскости единственную точку, абсцисса которой равна х, а ордината у. Поэтому задать точку, это значит задать ее координаты; найти точку, значит найти ее координаты.

Прямоугольная система координат на плоскости задаётся двумя взаимно перпендикулярными прямыми. Прямые называют осями координат (или координатными осями). Точку пересечения этих прямых называют началом отсчёта и обозначают буквой O.

Обычно одна из прямых горизонтальна, другая — вертикальна. Горизонтальную прямую обозначают как ось x (или Ox) и называют осью абсцисс, вертикальную — ось y (Oy), называют осью ординат. Всю систему координат обозначают xOy.

Точка O разбивает каждую из осей на две полуоси, одну из из которых считают положительной (её обозначают стрелкой), другую — отрицательной.

Каждой точке F плоскости ставится в соответствие пара чисел (x;y) — её координаты.

Координата x называется абсциссой. Она равна Ox, взятому с соответствующим знаком.

Координата y называется ординатой и равна расстоянию от точки F до оси Oy (с соответствующим знаком).

Расстояния до осей обычно (но не всегда) измеряют одной и той же единицей длины.

Точки, расположенные справа от оси y, имеют положительные абсциссы. У точек, которые лежат левее оси ординат, абсциссы отрицательны. Для любой точки, лежащей на оси Oy, её координата x равна нулю.

Точки с положительной ординатой лежат выше оси x, с отрицательной — ниже. Если точка лежит на оси Ox, её координата y равна нулю.

Координатные оси разбивают плоскость на четыре части, которые называют координатными четвертями (или координатными углами или квадрантами).

1 координатная четверть расположена в правом верхнем углу координатной плоскости xOy. Обе координаты точек, расположенных в I четверти, положительны.

Переход от одной четверти к другой ведётся против часовой стрелки.

2 координатная четверть находится в левом верхнем углу. Точки, лежащие во II четверти, имеют отрицательную абсциссу и положительную ординату.

3 координатная четверть лежит в левом нижнем квадранте плоскости xOy. Обе координаты точек, принадлежащей III координатному углу, отрицательны.

4 координатная четверть — это правый нижний угол координатной плоскости. Любая точка из IV четверти имеет положительную первую координату и отрицательную вторую.

Пример расположения точек в прямоугольной системе координат:

Метод координат - это, конечно, очень хорошо, но в настоящих задачах C2 никаких координат и векторов нет. Поэтому их придется вводить. Да-да, вот так взять и ввести: указать начало отсчета, единичный отрезок и направление осей x, y и z.

Самое замечательное свойство этого метода заключается в том, что не имеет никакого значения, как именно вводить систему координат. Если все вычисления будут правильными, то и ответ будет правильным.

Координаты куба

Если в задаче C2 будет куб - считайте, что вам повезло. Это самый простой многогранник, все двугранные углы которого равны 90°.

Система координат также вводится очень просто:

  1. Начало координат - в точке A;
  2. Чаще всего ребро куба не указано, поэтому принимаем его за единичный отрезок;
  3. Ось x направляем по ребру AB, y - по ребру AD, а ось z - по ребру AA 1 .

Обратите внимание: ось z направляется вверх! После двумерной системы координат это несколько непривычно, но на самом деле очень логично.

Итак, теперь у каждой вершины куба есть координаты. Соберем их в таблицу - отдельно для нижней плоскости куба:

Несложно заметить, что точки верхней плоскости отличаются соответствующих точек нижней только координатой z. Например, B = (1; 0; 0), B 1 = (1; 0; 1). Главное - не запутаться!

Призма - это уже намного веселее. При правильном подходе достаточно знать координаты только нижнего основания - верхнее будет считаться автоматически.

В задачах C2 встречаются исключительно правильные трехгранные призмы (прямые призмы, в основании которых лежит правильный треугольник). Для них система координат вводится почти так же, как и для куба. Кстати, если кто не в курсе, куб - это тоже призма, только четырехгранная.

Итак, поехали! Вводим систему координат:

  1. Начало координат - в точке A;
  2. Сторону призмы принимаем за единичный отрезок, если иное не указано в условии задачи;
  3. Ось x направляем по ребру AB, z - по ребру AA 1 , а ось y расположим так, чтобы плоскость OXY совпадала с плоскостью основания ABC.

Здесь требуются некоторые пояснения. Дело в том, что ось y НЕ совпадает с ребром AC, как многие считают. А почему не совпадает? Подумайте сами: треугольник ABC - равносторонний, в нем все углы по 60°. А углы между осями координат должны быть по 90°, поэтому сверху картинка будет выглядеть так:

Надеюсь, теперь понятно, почему ось y не пойдет вдоль AC. Проведем в этом треугольнике высоту CH. Треугольник ACH - прямоугольный, причем AC = 1, поэтому AH = 1 · cos A = cos 60°; CH = 1 · sin A = sin 60°. Эти факты нужны для вычисления координат точки C.

Теперь взглянем на всю призму вместе с построенной системой координат:

Получаем следующие координаты точек:

Как видим, точки верхнего основания призмы снова отличаются от соответствующих точек нижнего лишь координатой z. Основная проблема - это точки C и C 1 . У них есть иррациональные координаты, которые надо просто запомнить. Ну, или понять, откуда они возникают.

Координаты шестигранной призмы

Шестигранная призма - это «клонированная» трехгранная. Можно понять, как это происходит, если взглянуть на нижнее основание - обозначим его ABCDEF. Проведем дополнительные построения: отрезки AD, BE и CF. Получилось шесть треугольников, каждый из которых (например, треугольник ABO) является основанием для трехгранной призмы.

Теперь введем собственно систему координат. Начало координат - точку O - поместим в центр симметрии шестиугольника ABCDEF. Ось x пойдет вдоль FC, а ось y - через середины отрезков AB и DE. Получим такую картинку:

Обратите внимание: начало координат НЕ совпадает с вершиной многогранника! На самом деле, при решении настоящих задач вы обнаружите, что это очень удобно, поскольку позволяет значительно уменьшить объем вычислений.

Осталось добавить ось z. По традиции, проводим ее перпендикулярно плоскости OXY и направляем вертикально вверх. Получим итоговую картинку:

Запишем теперь координаты точек. Предположим, что все ребра нашей правильной шестигранной призмы равны 1. Итак, координаты нижнего основания:

Координаты верхнего основания сдвинуты на единицу по оси z:

Пирамида - это вообще очень сурово. Мы разберем только самый простой случай - правильную четырехугольную пирамиду, все ребра которой равны единице. Однако в настоящих задачах C2 длины ребер могут отличаться, поэтому ниже приведена и общая схема вычисления координат.

Итак, правильная четырехугольная пирамида. Это такая же, как у Хеопса, только чуть поменьше. Обозначим ее SABCD, где S - вершина. Введем систему координат: начало в точке A, единичный отрезок AB = 1, ось x направим вдоль AB, ось y - вдоль AD, а ось z - вверх, перпендикулярно плоскости OXY. Для дальнейших вычислений нам потребуется высота SH - вот и построим ее. Получим следующую картинку:

Теперь найдем координаты точек. Для начала рассмотрим плоскость OXY. Здесь все просто: в основании лежит квадрат, его координаты известны. Проблемы возникают с точкой S. Поскольку SH - высота к плоскости OXY, точки S и H отличаются лишь координатой z. Собственно, длина отрезка SH - это и есть координата z для точки S, поскольку H = (0,5; 0,5; 0).

Заметим, что треугольники ABC и ASC равны по трем сторонам (AS = CS = AB = CB = 1, а сторона AC - общая). Следовательно, SH = BH. Но BH - половина диагонали квадрата ABCD, т.е. BH = AB · sin 45°. Получаем координаты всех точек:

Вот и все с координатами пирамиды. Но не с координатами вообще. Мы рассмотрели лишь самые распространенные многогранники, однако этих примеров достаточно, чтобы самостоятельно вычислить координаты любых других фигур. Поэтому можно приступать, собственно, к методам решения конкретных задач C2.

Прямоугольная (другие названия — плоская, двухмерная) система координат, названная по имени французского ученого Декарта (1596—1650) «декартовой системой координат на плоскости», образуется пересечением на плоскости под прямым углом (перпендикулярно) двух числовых осей так, что положительная полуось одной направлена вправо (ось x, или ось абсцисс), а второй — вверх (ось y, или ось ординат).

Точка пересечения осей совпадает с точкой 0 каждой из них и называется началом координат.

Для каждой из осей выбирается произвольный масштаб (единичный отрезок длины). Каждой точке плоскости соответствует одна пара чисел, названная координатами этой точки на плоскости. И наоборот, любой упорядоченной паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами.

Первая координата точки называется абсциссой этой точки, а вторая координата — ординатой.

Вся плоскость координат делится на 4 квадранта (четверти). Квадранты расположены от первого до четвертого против часовой стрелки (см. рис.).

Чтобы определить координаты точки, нужно найти ее расстояние до оси абсцисс и оси ординат. Так как расстояние (кратчайшее) определяется по перпендикуляру, то из точки опускаются два перпендикуляра (вспомогательные линии на плоскости координат) на оси так, что точка их пересечения — это и есть место заданной точки в плоскости координат. Точки пересечения перпендикуляров с осями называются проекциями точки на оси координат.

Первый квадрант ограничен положительными полуосями абсцисс и ординат. Следовательно, координаты точек в этой четверти плоскости будут положительными
(знаки « + » и

Например, точка M (2; 4) на рисунке вверху.

Второй квадрант ограничен отрицательной полуосью абсцисс и положительной полуосью ординат. Следовательно, координаты точек по оси абсцисс будут отрицательными (знак «-»), а по оси ординат — положительными (знак « + »).

Например, точка C (-4; 1) на рисунке выше.

Третий квадрант ограничен отрицательной полуосью абсцисс и отрицательной полуосью ординат. Следовательно, координаты точек по оси абсцисс и оси ординат будут отрицательными (знаки «-» и «-»).

Например, точка D (-6; -2) на рисунке выше.

Четвертый квадрант ограничен положительной полуосью абсцисс и отрицательной полуосью ординат. Следовательно, координаты точек по оси абсцисс будут положительными (знак «+»). а по оси ординат - отрицательными (знак «-»).

Например, точка R (3; -3) на рисунке выше.

Построение точки по ее заданным координатам

    первую координату точки найдем на оси абсцисс и проведем через нее вспомогательную линию — перпендикуляр;

    вторую координату точки найдем на оси ординат и проведем через нее вспомогательную линию - перпендикуляр;

    точка пересечения двух перпендикуляров (вспомогательных линий) и будет соответствовать точке с заданными координатами.



© dagexpo.ru, 2024
Стоматологический сайт