Какую роль выполняет карбоангидраза при накоплении со2. Газообмен в тканях. Напряжение газов в тканевой жидкости и клетках. Транспорт углекислоты кровью. Значение карбоангидразы. Влияние на дыхательный центр раздражения различных рецепторов и отделов цент

19.07.2019

Которые, как ни парадоксально, самостоятельно не применяются в качестве диуретиков (мочегонных средств). В основном ингибиторы карбоангидразы применяются при глаукоме.

Карбоангидраза в эпителии проксимальных канальцев нефрона катализирует дегидратацию угольной кислоты, что является ключевым звеном в реабсорбции бикарбонатов. При действии ингибиторов карбоангидразы бикарбонат натрия не реабсорбируется, а выделяется с мочой (моча становится щелочной). Вслед за натрием из организма с мочой выводится калий и вода. Мочегонное действие веществ этой группы слабое, так как почти весь выделившийся в мочу в проксимальных канальцах натрий задерживается в дистальных частях нефрона. Поэтому в качестве диуретиков ингибиторы карбоангидразы в настоящее время самостоятельно не применяются .

Препараты ингибиторов карбоангидразы

Ацетазоламид

(диакарб) является наиболее известным представителем данной группы диуретиков. Он хорошо всасывается в ЖКТ и в неизмененном виде быстро выделяется с мочой (то есть действие его кратковременное). Аналогичные ацетазоламиду препараты – дихлорфенамид (даранид) и метазоламид (нептазан).

Метазоламид относится также к классу ингибиторы карбоангидразы. Имеет более длительный период полувыведения, чем ацетазоламид и менее нефротоксичен.

Дорзоламид . Показан для снижения повышенного внутриглазного давления у пациентов с открытоугольной глаукомой или с глазной гипертензией, которые недостаточно реагируют на бета-адреноблокаторы.

Бринзоламид (торговые наименования Azopt, Alcon Laboratories, Inc, Befardin Fardi MEDICALS) относится также к классу ингибиторы карбоангидразы. Используется для снижения внутриглазного давления у пациентов с открытоугольной глаукомой или глазной гипертензией. Активно применяется сочетание бринзоламида с тимололом на рынке под торговым названием Азарга (Azarga).

Побочные эффекты

Ингибиторы карбоангидразы оказывают следующие основные побочные эффекты:

  • гипокалиемия;
  • гиперхлоремический метаболический ацидоз;
  • фосфатурия;
  • гиперкальциурия с риском образования почечных камней;
  • нейротоксичность (парестезии и сонливость);
  • аллергические реакции.

Противопоказания

Ацетазоламид, как и другие ингибиторы карбоангидразы, противопоказан при циррозе печени, так как подщелачивание мочи препятствует выделению аммиака, что приводит к энцефалопатии.

Показания к применению

Ингибиторы карбоангидразы в основном используются для лечения глаукомы. Они также могут быть использованы для лечения эпилепсии и острой горной болезни. Так как они способствуют растворению и выведению мочевой кислоты, они могут быть использованы при лечении подагры.

Ацетазоламид применяется при следующих состояниях:

  • Глаукома (снижает продукцию внутриглазной жидкости сосудистым сплетением цилиарного тела.
  • Лечение эпилепсии (petit mal). Ацетазоламид эффективен при лечении большинства типов припадков, в том числе тонико-клонических и абсансов, хотя и имеет ограниченную пользу, так как при длительном применении развивается толерантность.
  • Для профилактики нефропатии при лечении , так как при распаде клеток освобождается большое количество пуриновых оснований, которые обеспечивают резкое увеличение синтеза мочевой кислоты. Подщелачивание мочи ацетазоламидом из-за выделения бикарбонатов тормозит нефропатию вследствие выпадения кристаллов мочевой кислоты.
  • Для повышения диуреза при отеках и коррекции метаболического гипохлоремического алкалоза при ХСН. За счет снижения реабсорбции NaCl и бикарбонатов в проксимальных канальцах.

Однако ни при одном из этих показаний назначение ацетазоламида не является основным фармакологическим лечением (препаратом выбора). Ацетазоламид назначается также при горной болезни (так как он вызывает ацидоз, который приводит к восстановлению чувствительности дыхательного центра к гипоксии).

Ингибиторы карбоангидразы при лечении горной болезни

На большой высоте парциальное давление кислорода ниже, и люди должны дышать быстрее, чтобы получить достаточное для жизни количество кислорода. Когда это происходит, парциальное давление углекислого газа CO2 в легких уменьшается (просто выдувается при выдохе), в результате чего возникает дыхательный алкалоз. Этот процесс, как правило, компенсируется почками благодаря экскреции бикарбонатов и благодаря этому вызывается компенсаторный метаболический ацидоз, но этот механизм занимает несколько дней.

Более непосредственное лечение это ингибиторы карбоангидразы, которые предотвращают поглощение бикарбоната в почках и помогают скорректировать алкалоз. Ингибиторы карбоангидразы также улучшают течение хронической горной болезни.

Карбоангидраза (синоним: карбонатдегидратаза, карбонатгидролиаза) - фермент, катализирующий обратимую реакцию гидратации диоксида углерода: СО 2 + Н 2 О Û Н 2 СО 3 Û Н + + НСО 3 . Содержится в эритроцитах, клетках слизистой оболочки желудка, коре надпочечников, почках, в незначительных количествах - в ц.н.с., поджелудочной железе и других органах. Роль карбоангидразы в организме связана с поддержанием кислотно-щелочного равновесия , транспортом СО 2 , образованием соляной кислоты слизистой оболочкой желудка. Активность карбоангидразы в крови в норме довольно постоянна, но при некоторых патологических состояниях она резко меняется. Повышение активности карбоангидразы в крови отмечается при анемиях различного генеза, нарушениях кровообращения II-III степени, некоторых заболеваниях легких (бронхоэктазах, пневмосклерозе), а также при беременности. Снижение активности этого фермента в крови происходит при ацидозе почечного генеза, гипертиреозе. При внутрисосудистом гемолизе активность карбоангидразы появляется в моче, в то время как в норме она отсутствует. Контролировать активность карбоангидразы в крови целесообразно во время оперативных вмешательств на сердце и легких, т.к. она может служить показателем адаптивных возможностей организма, а также при терапии ингибиторами карбоангидразы - гипотиазидом, диакарбом.

Для определения активности карбоангидразы применяют радиологические, иммуноэлектрофоретические, колориметрические и титриметрические методы. Определение производят в цельной крови, взятой с гепарином, или в гемолизированных эритроцитах. Для клинических целей наиболее приемлемы колориметрические методы определения активности карбоангидразы (например, модификации метода Бринкмана), основанные на установлении времени, необходимого для сдвига рН инкубационной смеси с 9,0 до 6,3 в результате гидратации СО 2 . Воду, насыщенную углекислотой, смешивают с индикаторно-буферным раствором и определенным количеством сыворотки крови (0,02 мл ) или взвеси гемолизированных эритроцитов. В качестве индикатора используют феноловый красный. По мере диссоциации молекул угольной кислоты все новые молекулы СО 2 подвергаются ферментативной гидратации. Для получения сравнимых результатов реакция должна протекать всегда при одинаковой температуре, наиболее удобно поддерживать температуру тающего льда - 0°. Время контрольной реакции (спонтанной реакции гидратации СО 2) в норме составляет 110-125 с . В норме при определении этим методом активность карбоангидразы в среднем равна 2-2,5 условным единицам, а в пересчете на 1 млн. эритроцитов 0,458 ± 0,006 условным единицам (за единицу активности карбоангидразы принимают увеличение скорости катализируемой реакции в 2 раза).

Библиогр.: Клиническая оценка лабораторных тестов, под ред. Н.У. Тица, пер. с англ., с. 196, М., 1986.

  • Механизм образования III и IV тонов
  • Добавочные тоны
  • Сфигмограмма сонной артерии в норме:
  • Флебосфигмограмма яремной вены в норме:
  • 205. Понятие о белковом минимуме и белковом оптимуме. Белки полноценные и неполноценные.
  • 206. Калорические коэффициенты питательных веществ.
  • 207. Суточная потребность в солях и воде.
  • 208. Значение витаминов в питании.
  • 209. Сущность процесса пищеварения. Функциональная система, поддерживающая постоянный уровень питательных веществ в крови.
  • Функциональная система, поддерживающая уровень питательных веществ в крови
  • 210. Методы изучения функций пищеварительных желез. Сущность созданного и. П. Павловым хронического метода исследования, его преимущества.
  • 211. Роль полости рта в процессе пищеварения. Состав и свойства слюны.
  • 212. Схемы рефлекторной дуги безусловного слюноотделительного рефлекса. Приспособительный характер слюноотделения к различным пищевым и отвергаемым веществам.
  • 213. Общая характеристика процессов пищеварения в желудке. Состав и свойства желудочного сока.
  • 215. Состав и свойства панкреатического сока.
  • 216. Регуляция панкреатической секреции: а) сложно-рефлекторная фаза; б) гуморальная фаза.
  • 217. Роль желчи в пищеварении. Состав и свойства желчи.
  • 218. Регуляция желчеобразования. Основные пищевые продукты, усиливающие желчеобразование.
  • 219. Механизм желчевыделения, его рефлекторная и гуморальная регуляции.
  • 220. Кишечный сок, его состав и свойства.
  • 221.Виды сокращений мускулатуры желудочно-кишечного тракта, их характеристика. Регуляция моторной функции желудочно-кишечного тракта.
  • 222.Всасывание основных пищевых веществ, механизм всасывания, его регуляция.
  • 223.Пищевой центр. Современные представления о механизмах возникновения голода, жажды, насыщения.
  • 224.Принципы организации функциональной системы дыхания.
  • 225. Дыхание, его основные этапы.
  • 226. Механизм внешнего дыхания. Биомеханика вдоха и выдоха.
  • 227. Давление в плевральной полости и его происхождение и роль в механизме внешнего дыхания. Изменения давления в плевральной полости в разные фазы дыхательного цикла.
  • 228. Жизненная ёмкость лёгких и составляющие её компоненты. Методы их определения. Остаточный объём.
  • 230. Состав атмосферного и выдыхаемого воздуха. Альвеолярный воздух как внутренняя среда организма. Понятие о парциальном давлении газов.
  • 231. Газообмен в лёгких. Парциальное давление газов (о2и со2) в альвеолярном воздухе и напряжение газов в крови. Основные закономерности перехода газов через мембрану.
  • 232. Обмен газов между кровью и тканями. Напряжение о2и со2в крови, тканевой жидкости и клетках.
  • 233. Транспорт о2кровью, кривая диссоциации оксигемоглобина, её характеристика, кислородная ёмкость крови.
  • 234. Транспорт углекислоты кровью, значение карбоангидразы, взаимосвязь транспорта о2и со2.
  • 235. Иннервация дыхательных мышц.
  • 236. Дыхательный центр. Современные представления о структуре и локализации. Автоматия дыхательного центра.
  • 237. Зависимость деятельности дыхательного центра от газового состава крови.
  • 238. Роль хеморецепторов в регуляции дыхания. Роль механорецепторов в регуляции дыхания.
  • 239.Роль углекислоты в регуляции дыхания. Механизм первого вдоха новорождённого.
  • 240.Механизм периодической деятельности дыхательного центра. Теории возникновения периодической деятельности дыхательного центра.
  • (Спросить на консультации)
  • 241. Влияние на дыхательный центр раздражения различных рецепторов и отделов центральной нервной системы.
  • 242. Условно-рефлекторная регуляция дыхания. Защитные дыхательные рефлексы.
  • 243. Дыхание при мышечной работе. Дыхание при пониженном атмосферном давлении (высотная болезнь). Дыхание при повышенном атмосферном давлении (кессонная болезнь).
  • 244. Искусственное дыхание. Периодическое дыхание. Патологические типы дыхания.
  • 245. Почки и их функция. Особенности кровоснабжения нефрона.
  • 246. Процесс мочеобразования: гломерулярная фильтрация, канальцевая реабсорбция, канальцевая секреция.
  • 247. Осмотическое разведение и концентрирование мочи.
  • 248. Роль почек в осморегуляции и волюморегуляции. Роль почек в регуляции ионного состава крови. Роль почек в регуляции кислотно-основного состояния.
  • 249. Экскреторная функция почек. Инкреторная функция почек. Метаболическая функция почек.
  • 250. Нервная регуляция деятельности почек.
  • 251. Диурез. Состав мочи. Мочевыведение и мочеиспускание. Возрастные особенности.
  • 252. Гемодиализ. Искусственная почка.
  • 253. Понятие об иммунитете. Классификация иммунитета. Специфический и неспецифический иммунитет.
  • 254. Клеточный и гуморальный иммунитет. Центральные и периферические органы иммунной системы.
  • (Спросить на консультации)

    241. Влияние на дыхательный центр раздражения различных рецепторов и отделов центральной нервной системы.

    И. П.Павлов говорил, что дыхательный центр, который раньше представляли величиной с булавочную головку, необычайно разросся: он спустился вниз в спинной мозг и поднялся вверх до коры больших полушарий. Какую же роль играют другие отделы дыхательного центра?

    Возбуждение к бульбарном отделу поступает от многих образований, в том числе и от пневмотаксического центра, расположенного в варолиевом мосту. Пневмотаксический центр не обладает автоматией, но, благодаря непрерывной активности, способствует периодической деятельности дыхательного центра, увеличивает скорость развития инспираторной и экспираторной импульсации в нейронах продолговатого мозга. Так, если перерезать ствол мозга, отделив варолиев мост от продолговатого, то у животного снижается частота дыхательных движений. Причем более продолжительными становятся обе фазы – вдох и выдох. Пневмотаксический и бульбарныые центры имеют двусторонние связи, с помощью которых пневмотаксический центр ускоряет наступление последующих инспираций и экспираций.

    На активность нейронов дыхательных центров оказывают влияние другие отделы ЦНС, такие, как центр регуляции сердечнососудистой системы, ретикулярная формация, лимбическая система, гипоталамус, кора больших полушарий. Например, характер дыхания изменяется при эмоциях.

    В спинном мозге находятся нейроны (мотонейроны), иннервируюшие дыхательные мышцы. Возбуждение к нейронам спинного мозга передается от инспираторных и экспираторных нейронов продолговатого мозга по нисходящим проводящим путям, лежащим в белом веществе спинного мозга. В отличие от бульбарного центра, мотонейроны спинного мозга не обладают автоматией, поэтому после перерезки спинного мозга сразу за продолговатым дыхание останавливается, так как дыхательные мышцы не получают команды к сокращениям. Если же перерезка спинного мозга сделана на уровне 45 шейного позвонка, то самостоятельное дыхание может сохраниться за счет сокращения диафрагмы, потому что центр диафрагмального нерва расположен в 35 шейных сегментах спинного мозга.

    В регуляции тонуса поперечнополосатых мышц, участвующих в дыхании, большую роль играет средний мозг. Поэтому при сокращении различных мышц афферентная импульсация от мышц поступает в средний мозг, который, соответственно мышечной нагрузке изменяет характер дыхания. Средний мозг отве также за координацию дыхания с актами глотания, рвоты и отрыгивания. Во время глотания дыхание задерживается на фазе выдоха, надгортанник закрывает вход в гортань. При рвоте, при отрыгивании газов происходит «холостой вдох» вдох при закрытой гортани. При этом сильно снижается внутриплевральное давление, что и способствует поступлению содержимого из желудка в грудную часть пищевода.

    Значение гипоталамуса (отдела промежуточного мозга) в регуляции дыхания заключается в том, что в нем содержатся центры, контролирующие все виды обмена веществ (белкового, жирового, углеводного, минерального) и центр теплорегуляции. Поэтому усиление обмена веществ, повышение температуры тела ведут к усилению дыхания, Например, при повышении температуры тела дыхание учащается, что способствует увеличению отдачи тепла вместе с выдыхаемым воздухом и предохраняет организм от перегревания (тепловая одышка). Гипоталамус принимает участие в изменении характера дыхания при болевых раздражениях, при различных поведенческих актах (прием корма, обнюхивание, спаривание и др.). Помимо регуляции частоты и глубины дыхания, гипоталамус через вегетативную нервную систему регулирует просвет бронхиол, спадение нефункционирующих альвеол, степень расширения легочных сосудов, проницаемость легочного эпителия и стенок капилляров.

    Многогранно значение коры больших полушарий головного мозга в регуляции дыхания. В коре расположены центральные отделы всех анализаторов, информирующих как о внешних воздействиях, так и о состоянии внутренней среды организма. Поэтому наиболее тонкое приспособление дыхания к сиюминутным потребностям организма осуществляется при обязательном участии высших отделов нервной системы.

    Особое значение имеет кора больших полушарий при мышечной работе. Известно, что учащение дыхания начинается за несколько секунд до начала работы, сразу после команды «приготовиться». Аналогичное явление было обнаружено у спортивных лошадей наряду с тахикардией. Причиной подобных «опережающих» реакций у людей и животных являются выработавшиеся в результате повторных тренировок условные рефлексы. Только влиянием коры больших полушарий можно объяснить произвольные, волевые изменения ритма, частоты и глубины дыхания. Человек может произвольно задержать дыхание на несколько секунд или усилить его. Несомненна роль коры в изменении паттерна дыхания во время подачи голоса, при нырянии, при обнюхивании.

    Итак, в регуляции внешнего дыхания участвует дыхательный центр. Ядро этого центра, находящееся в продолговатом мозге, посылает ритмичные импульсы через спинной мозг к дыхательным мышцам. Сам же бульбарный отдел дыхательного центра находится под постоянным воздействием со стороны вышележащих отделов центральной нервной системы и различных рецепторов пульмональных, сосудистых, мышечных и других.

    Из венозной крови можно извлечь 55-58 об.% углекислого газа. Большая часть СО2, извлекаемого из крови, происходит из имеющихся в плазме и эритроцитах солей угольной кислоты и только около 2,5 об.% углекислого газа растворено и около 4-5об.% находится в соединении с гемоглобином в виде карбогемоглобина.

    Образованно угольной кислоты из углекислого газа происходит в эритроцитах, где содержится фермент карбоангидраза, являющийся мощным катализатором, ускоряющим реакцию гидратации СО2.

    Связывание углекислого газа кровью в капиллярах большого круга. Углекислый газ, образующийся в тканях, диффундирует в кровь кровеносных капилляров, так как напряжение СО2 в тканях значительно превышает его напряжение в артериальной крови. Растворяющийся в плазме СО2 диффундирует внутрь эритроцита, где под влиянием карбоангидразы он мгновенно превращается в угольную кислоту,

    Согласно расчетам, активность карбоангидразы в эритроцитах такова, что реакция гидратации углекислоты ускоряется в 1500-2000 раз. Так как весь углекислый газ внутри эритроцита превращается в угольную кислоту, то напряжение СО2 внутри эритроцита близко к нулю, поэтому все новые и новые количества СО2 поступают внутрь эритроцита. В связи с образованием угольной кислоты из СО3 в эритроците концентрация ионов НСО3" возрастает, и они начинают диффундировать в плазму. Это возможно потому, что поверхностная мембрана эритроцита проницаема для анионов. Для катионов мембрана эритроцита практически непроницаема. Взамен ионов НСО3" в эритроциты входит ион хлора. Переход ионов хлора из плазмы внутрь эритроцита освобождает в плазме ионы натрия, которые связывают поступающие нз эритроцита ионы НСО3, образуя NaHCО3 Химический анализ плазмы венозной крови показывает значительное увеличение в ней бикарбоната.

    Накопление внутри эритроцита анионов приводит к повышению осмотического давления внутри эритроцита, а это вызывает переход воды из плазмы через поверхностную мембрану эритроцита. В результате объем эритроцитов в капиллярах большого круга увеличивается. При исследовании с помощью гематокрнта установлено, что эритроциты занимают 40% объема артериальной крови и 40,4% объема венозной крови. Из этого следует, что объем эритроцитов венозной крови больше, чем эритроцитом артериальной, что объясняется проникновением в них воды.

    Одновременно с поступлением СО2 внутрь эритроцита и образованием в нем угольной кислоты происходит отдача кислорода оксигемоглобином и превращение его в редуцированный гемоглобин. Последний является значительно менее диссоциирующей кислотой, чем оксигемоглобин и угольная кислота. Поэтому при превращении оксигемоглобина в гемоглобин Н2СО3 вытесняет из гемоглобина ионы калия и, соединяясь с ними, образует калиевую соль бикарбоната.

    Освобождающийся Н˙ ион угольной кислоты связывается гемоглобином. Так как редуцированный гемоглобин является малодиссоциированной кислотой, то при этом не происходит закисления крови и разница рН венозной и артериальной крови крайне невелика. Происходящую в эритроцитах тканевых капилляров реакцию можно представить следующим образом:

    КНbO2 + Н2СO3= HHb + O2 + КНСO3

    Из изложенного следует, что оксигемоглобин, превращаясь в гемоглобин и отдавая связанные им основания углекислоте, способствует образованию бикарбоната и транспорту в таком виде углекислоты. Кроме того, гкмоглобин образует химическое соединение с СО2 - карбогемоглобин. Наличие в крови соединения гемоглобина с углекислым газом было установлено путем следующего опыта. Если к цельной крови прибавить цианистый калий, который полностью инактивирует карбоангидразу, то оказывается, что эритроциты такой крови связывают больше СО2, чем плазма. Отсюда был сделан вывод, что связывание СО2 эритроцитами после инактивирования карбоангидразы объясняется наличием в эритроцитах соединения гемоглобина с СО2. В дальнейшем выяснилось, что СО2 присоединяется к аминной группе гемоглобина, образуя так называемую карбаминовую связь.

    Реакция образования карбогемоглобина может идти в одну или другую сторону в зависимости от напряжения углекислого газа в крови. Хотя небольшая часть всего количества углекислого газа, которое может быть извлечено из крови, находится в соединении с гемоглобином (8-10%), однако роль этого соединения в транспорте углекислоты кровью достаточно велика. Примерно 25-30% углекислого газа, поглощаемого кровью в капиллярах большого круга, вступает в соединение с гемоглобином, образуя карбогемоглобин.

    Отдача СО2 кровью в легочных капиллярах. Вследствие более низкого парциального давления СО2 в альвеолярном воздухе по сравнению с напряжением его в венозной крови углекислый газ переходит путем диффузии из крови легочных капилляров в альвеолярный воздух. Напряжение СО2в крови падает.

    Одновременно с этим вследствие более высокого парциального давления кислорода в альвеолярном воздухе по сравнению с его напряжением в венозной крови кислород поступает из альвеолярного воздуха в кровь капилляров легких. Напряжение О2 в крови возрастает, и гемоглобин превращается в оксигемоглобин. Так как последний является кислотой, диссоциация которой значительно выше, чем гемоглобина угольной кислоты, то он вытесняет угольную кислоту из ее калиевой. Реакция идет следующим образом:

    ННb + O2 + КНСO3= КНbO2+H2CO3

    Освободившаяся из своей связи с основаниями угольная кислота расщепляется карбоангидразой на углекислый газ в воду. Значение карбоангидразы в отдаче углекислого газа в легких видно из следующих данных. Для того чтобы произошла реакция дегидратации Н2СО3 растворенной в воде, с образованием того количества углекислого газа, которое выходит из крови за время ее нахождения в капиллярах легких, требуется 300 секунд. Кровь же проходит через капилляры легких в течение 1-2 секунд, но за это время успевает произойти дегидратация угольной кислоты внутри эритроцита и диффузия образовавшегося СО2 сначала в плазму крови, а затем в альвеолярный воздух.

    Так как в легочных капиллярах уменьшается в эритроцитах концентрация ионов НСО3, то эти ионы из плазмы начинают диффундировать в эритроциты, а ионы хлора диффундируют из эритроцитов в плазму. В связис тем что напряжение углекислого газа в крови легочных капилляров уменьшается, карбаминовая связь расщепляется и карбогемоглобин отдает углекислый газ.

    Кривые диссоциации соединений угольной кислоты в крови. Как мы уже говорили, свыше 85% углекислого газа, которое может быть извлечено из крови подкислении ее, освобождается в результате расщепления бикарбонатов (калия в эритроцитах и натрия в плазме).

    Связывание углекислого газа и отдача его кровью зависят от его парциального напряжения. Можно построить кривые диссоциации соединений углекислоты в крови, подобные кривым диссоциации оксигемоглобина. Для этого по оси ординат откладывают объемные проценты связанного кровью углекислого газа, а по оси абсцисс- парциальные напряжения углекислого газа. Нижняя кривая нарис. 58 показывает связывание углекислого газа артериальной кровью, гемоглобин которой почти полностью насыщен кислородом. Верхняя кривая показывает связывание кислого газа венозной кровью.

    Различие в высоте этих кривых зависит от того, что артериальная кровь, богатая оксигемоглобином, обладает меньшей способностью связывать углекислый газ по сравнению с венозной кровью. Являясь более сильной кислотой, чем угольная кислота, оксигемоглобин отнимает основания у бикарбонатов и этим способствует освобождению угольной кислоты. В тканях оксигемоглобин, переходя в гемоглобин, отдает связанные с ним основания, увеличивая связывание кислого газа кровью.

    Точка А на нижней кривой на рис. 58 соответствует напряжению кислоты, равному 40 мм рт. ст., т. е. тому напряжению, которое фактически имеется в артериальной крови. При таком напряжении связано 52 об.% СО2. Точка V на верхней кривой соответствует напряжению кислого газа 46 мм рт. ст., т. е. фактически имеющемуся в венозной крови. Как видно из кривой, при таком напряжении венозная кровь связывает 58 об.% углекислого газа. Линия AV, соединяющая верхнюю и нижнюю кривую, соответствует тем изменениям способности связывать углекислый газ, которые происходят при превращении артериальной крови в венозную или, наоборот, венозной крови в артериальную.

    Венозная кровь благодаря тому, что содержащийся в ней гемоглобин переходит в оксигемоглобин, в капиллярах легких отдает около 6 об.% СО2. Если бы в легких гемоглобин не превращался в оксигемоглобин, то, как видно из кривой, венозная кровь при имеющемся в альвеолах парциальном давлении углекислого газа, равном 40 мм рт. ст.. связывала бы 54 об.% СО2, следовательно, отдала бы не 6, а только 4об.%. Равным образом, если бы артериальная кровь в капиллярах большого круга не отдавала своего кислорода, т. е. если бы гемоглобин ее оставался насыщенным кислородом, то эта артериальная кровь при парциальпом давлении углекислого газа, имеющемся в капиллярах тканей тела, смогла бы связат не 58 об.% СО2, а лишь 55 об.%.

    О и . Сегодня вы узнаете о том, как транспортируется углекислый газ в нашей крови.

    Углекислый газ транспортируется кровью в трех формах. В венозной крови можно выявить около 58 об. % (580 мл/л) С02, причем из них лишь около 2,5 объемных % находятся в растворенном состоянии. Некоторая часть молекул С02 соединяется в эритроцитах с гемоглобином, образуя карбгемоглобин (приблизительно 4,5 об.%). Остальное количество С02 химически связано и содержится в виде солей угольной кислоты (приблизительно 51 об. %).

    Углекислый газ является одним из самых частых продуктов химических реакций обмена веществ. Он непрерывно образуется в живых клетках и оттуда диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту (С02 + Н20 > Н2С03).

    Этот процесс катализируется (ускоряется в двадцать тысяч (!) раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. соответственно - процесс соединение углекислого газа с водой происходит практически только в эритроцитах. Но это процесс обратимый, который может изменять свое направление. В зависимости от концентрации углекислого газа карбоангидраза катализирует как образование угольной кислоты, так и расщепление ее на углекислый газ и воду (в капиллярах легких): С02 + Н20 — Н2С03.

    Благодаря указанным процессам связывания концентрация С02 в эритроцитах оказывается невысокой. Поэтому все новые количества С02 продолжают диффундировать внутрь эритроцитов. Если у Вас есть некрасивая родинка, то можно удалить родинку лазером! Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления - в результате во внутренней среде эритроцитов увеличивается количество воды. Поэтому объем эритроцитов в капиллярах большого круга кровообращения несколько увеличивается.

    Гемоглобин имеет большее сродство к кислороду, чем к углекислому газу - поэтому в условиях повышения парциального давления кислорода карбогемоглобин превращается сначала в дезоксигемоглобин, а затем - в оксигемоглобин.

    Кроме того, при превращении оксигемоглобина в гемоглобин происходит увеличением способности крови связывать двуокись углерода. Это явление носит название эффекта Хол-дейна. Гемоглобин служит источником катионов калия (К+), необходимых для связывания угольной кислоты в форме углекислых солей - бикарбонатов.

    Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемог-лобин. В таком виде двуокись углерода переносится к легким.

    В капиллярах малого круга кровообращения концентрация двуокиси углерода снижается. От карбогемоглобина отщепляется С02. Одновременно происходит образование оксигемоглобина. увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на Н20 и С02. Круг завершен.

    Осталось сделать еще одно примечание. Угарный газ (СО) обладает большим сродством к гемоглобину, чем углекислый газ (С02) и чем кислород. Поэтому отравления угарным газом столь опасны: вступая с устойчивую связь с гемоглобином, угарный газ блокирует возможность нормального транспорта газов и фактически «душит» организм. Жители больших городов, а особенно - водители личных автомобилей, постоянно вдыхают повышенные концентрации угарного газа, причем кондиционеры совсем не снижают его количество. Это приводит к тому, что даже достаточное количество полноценных эритроцитов в условиях нормального кровообращения оказывается неспособным выполнить транспортные функции. Отсюда - обмороки, сердечные приступы и внезапные смерти относительно здоровых людей в условиях автомобильных пробок.

    Материал подготовил: Atamovich



    © dagexpo.ru, 2024
    Стоматологический сайт