Кинетическая энергия вращательного движения. Кинетическая энергия вращения

21.09.2019

Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек, на которые это тело можно мысленно разбить:

Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i-й точки , Ri– расстояние до оси вращения. Следовательно,

Сопоставив и можно увидеть, что момент инерции тела I является мерой инертности при вращательном движении, так же как масса m – мера инерции при поступательном движении.

В общем случае движение твердого тела можно представить в виде суммы двух движений – поступательного со скоростью vc и вращательного с угловой скоростью ω вокруг мгновенной оси, проходящей через центр инерции. Тогда полная кинетическая энергия этого тела

Здесь Ic – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

Основной закон динамики вращательного движения.

Динамика вращательного движения

Основной закон динамики вращательного движения:

или M=Je , где М - момент силы M=[ r · F ] , J - момент инерции -момент импульса тела.

если М(внешн)=0 - закон сохранения момента импульса. - кинетическая энергия вращающегося тела.

работа при вращательном движении.

Закон сохранения момента импульса.

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку A, p=mv - импульс материальной точки (рис. 1); L - псевдовектор, направление которого совпадает с направлением поступательного движения правого винта при его вращении от r к р.

Модуль вектора момента импульса

где α - угол между векторами r и р, l - плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая точка тела движется по окружности постоянного радиуса ri со скоростью vi . Скорость vi и импульс mivi перпендикулярны этому радиусу, т. е. радиус является плечом вектора mivi . Значит, мы можем записать, что момент импульса отдельной частицы равен

и направлен по оси в сторону, определяемую правилом правого винта.

Монет импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу vi = ωri, получим

Таким образом, момент импульса твердого тела относительно оси равен моменту инерции тела относительно той же оси, умноженному на угловую скорость. Продифференцируем уравнение (2) по времени:

Эта формула - еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место векторное равенство

В замкнутой системе момент внешних сил М=0 и откуда

Выражение (4) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения момента импульса также как и закон сохранения энергии является фундаментальным законом природы. Он связан со свойством симметрии пространства - его изотропностью, т. е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Здесь мы продемонстрируем закон сохранения момента импульса с помощью скамьи Жуковского. Человек, сидящий на скамье, вращающаяся вокруг вертикальной оси, и держащий в вытянутых руках гантели (рис. 2), вращается внешним механизмом с угловой скоростью ω1. Если человек прижмет гантели к телу, то момент инерции системы уменьшится. Но момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость вращения ω2 увеличивается. Аналогичным образом, гимнаст во время прыжка через голову поджимает к туловищу руки и ноги, с целью уменьшить свой момент инерции и тем самым увеличить угловую скорость вращения.

Давление в жидкости и газе.

Молекулы газа, совершая хаотическое, хаотическое движение, не связаны или довольно слабо связаны силами взаимодействия, из-за чего движутся практически свободно и в результате соударений разлетаются во все стороны, при этом заполняя весь предоставленный им объем, т. е. объем газа определяется объемом занимаемого газом сосуда.

А жидкость же, имея определенный объем, принимает форму того сосуда, в который она заключена. Но в отличие от газов в жидкостях среднее расстояние между молекулами в среднем сохраняется постоянным, поэтому жидкость обладает практически неизменным объемом.

Свойства жидкостей и газов во многом сильно отличаются, но в нескольких механических явлениях их свойства определяются одинаковыми параметрами и идентичными уравнениями. По этой причине гидроаэромеханика - раздел механики, который изучает равновесие и движение газов и жидкостей, взаимодействие между ними и между обтекаемыми ими твердыми телами, - т.е. применяется единый подход к изучению жидкотей и газов.

В механике жидкости и газы с большой степенью точности рассматриваются как сплошные, непрерывное распределенные в занятой ими части проставранства. У газов плостность от давления зависит существенно. Из опыта установлено. что сжимаемостью жидкости и газа часто можно пренебречь и целесообразно пользоваться единым понятие - несжимаемостью жидкости - жидкости, с всюду одинаковой плотностью, которая не изменяется со течением времени.

Поместим в покоящуюся тонкую пластинку, в результате части жидкости, расположенные по разные стороны от пластины, будут действовать на каждый ее элемент ΔS с силами ΔF, которые будут равны по модулю и направленый перпендикулярно площадке ΔS независимо от ориентации площадки, в ином случае наличие касательных сил привело бы частицы жидкости в движение (рис.1)

Физическая величини, опеределяемая нормальной силой, действующей со стороны жидкости (или газа) на единицу площади, называется давлением p/ жидкости (или газа): p=ΔF/ΔS.

Единица давления - паскаль (Па): 1 Па равен давлению, создаваемому силой 1 Н, которая равномерно распределена по нормальной к ней поверхности площадью 1 м2 (1 Па=1 Н/м2).

Давление при равновесии жидкостей (газов) подчиняется закону Паскаля: давление в любом месте покоящейся жидкости одинаково по воем направлениям, причем давление одинаково передается по всему объему, который занимает покоящаяся жидкость.

Исследуем влияние веса жидкости на распределение давления внутри неподвижной несжимаемой жидкости. При равновесии жидкости давление вдоль любой горизонтальной всегда одинаково, иначе не было бы равновесия. Значит свободная поверхность покоящейся жидкости всегда горизонтальна (притяжение жидкости стенками сосуда не учитываем). Если жидкость несжимаема, то плотность данной жидкости не зависит от давления. Тогда при поперечном сечении S столба жидкости, его высоте h и плотности ρ вес P=ρgSh, при этом давление на нижнее основание: p=P/S=ρgSh/S=ρgh, (1)

т. е. давление линейно изменяется с высотой. Давление ρgh называется гидростатическим давлением.

Согласно формуле (1), сила давления на нижние слои жидкости будет больше, чем на верхние, поэтому на тело, погруженное в жидкость, действует сила, определяемая законом Архимеда: на тело, погруженное в жидкость (газ), действует со стороны этой жидкости направленная вверх выталкивающая сила, равная весу вытесненной телом жидкости (газа): FА=ρgV, где ρ - плотность жидкости, V- объем погруженного в жидкость тела.

Кинетическая энергия вращения

Лекция 3. Динамика твердого тела

План лекции

3.1. Момент силы.

3.2. Основные уравнения вращательного движения. Момент инерции.

3.3. Кинетическая энергия вращения.

3.4. Момент импульса. Закон сохранения момента импульса.

3.5. Аналогия между поступательным и вращательным движением.

Момент силы

Рассмотрим движение твердого тела вокруг неподвижной оси. Пусть твердое тело имеет неподвижную ось вращения ОО (рис.3.1 ) и к нему приложена произвольная сила .

Рис. 3.1

Разложим силу на две составляющие силы , сила лежит в плоскости вращения, а сила – параллельна оси вращения. Затем силу разложим на две составляющие: – действующую вдоль радиус-вектора и – перпендикулярную ему.

Не любая сила, приложенная к телу, будет вращать его. Силы и создают давление на подшипники, но не вращают его.

Сила может вывести тело из равновесия, а может – нет в зависимости от того, в каком месте радиус-вектора она приложена. Поэтому вводится понятие момента силы относительно оси. Моментом силы относительно оси вращения называется векторное произведение радиуса-вектора на силу .

Вектор направлен по оси вращения и определяется правилом векторного произведения или правилом правого винта, или правилом буравчика.

Модуль момента силы

где α – угол между векторами и .

Из рис.3.1. видно, что .

r 0 – кратчайшее расстояние от оси вращения до линии действия силы и называется плечом силы. Тогда момент силы можно записать

М = F r 0 . (3.3)

Из рис. 3.1.

где F – проекция вектора на направление, перпендикулярное вектору радиус-вектору . В этом случае момент силы равен

. (3.4)

Если на тело действует несколько сил, то результирующий момент силы равен векторной сумме моментов отдельных сил, но так как все моменты направлены вдоль оси, то их можно заменить алгебраической суммой. Момент будет считаться положительным, если он вращает тело по часовой стрелке и отрицательным, если против часовой стрелки. При равенстве нулю всех моментов сил (), тело будет находиться в равновесии.

Понятие момента силы можно продемонстрировать с помощью «капризной катушки». Катушку с нитками тянут за свободный конец нитки (рис. 3.2 ).

Рис. 3.2

В зависимости от направления силы натяжения нити катушка перекатывается в ту или иную сторону. Если тянуть под углом α , то момент силы относительно оси О (перпендикулярной к рисунку) вращает катушку против часовой стрелки и она откатывается назад. В случае натяжения под углом β вращающий момент направлен против часовой стрелки и катушка катится вперед.

Используя условие равновесия (), можно сконструировать простые механизмы, которые являются «преобразователями» силы, т.е. прикладывая меньшую силу можно поднимать и перемещать разного веса грузы. На этом принципе основаны рычаги, тачки, блоки разного рода, которые широко используются в строительстве. Для соблюдения условия равновесия в строительных подъемных кранах для компенсации момента силы, вызванного весом груза, всегда имеется система противовесов, создающая момент силы обратного знака.

3.2. Основное уравнение вращательного
движения. Момент инерции

Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси ОО (рис.3.3 ). Разобьём мысленно это тело на элементы массами Δm 1 , Δm 2 , …, Δm n . При вращении эти элементы опишут окружности радиусами r 1 , r 2 , …, r n . На каждый элемент действуют соответственно силы F 1 , F 2 , …, F n . Вращение тела вокруг оси ОО происходит под действием полного момента сил М .

М = М 1 + М 2 + … +М n (3.4)

где М 1 = F 1 r 1, М 2 = F 2 r 2, …, M n = F n r n

Согласно II закону Ньютона, каждая сила F , действующая на элемент массой Dm , вызывает ускорение данного элемента a , т.е.

F i = Dm i a i (3.5)

Подставив в (3.4) соответствующие значения, получим

Рис. 3.3

Зная связь между линейным угловым ускорением ε () и что угловое ускорение для всех элементов одинаково, формула (3.6) будет иметь вид

М = (3.7)

=I (3.8)

I – момент инерции тела относительно неподвижной оси.

Тогда мы получим

М = I ε (3.9)

Или в векторном виде

(3.10)

Это уравнение является основным уравнением динамики вращательного движения. По форме оно сходно с уравнением II закона Ньютона. Из (3.10) момент инерции равен

Таким образом, моментом инерции данного тела называется отношение момента силы к вызываемому им угловому ускорении. Из (3.11) видно, что момент инерции является мерой инертности тела по отношению к вращательному движению. Момент инерции играет ту же роль, что и масса при поступательном движении. Единица измерения в СИ [I ] = кг·м 2 . Из формулы (3.7) следует, что момент инерции характеризует распределение масс частиц тела относительно оси вращения.

Итак, момент инерции элемента массы ∆m движущегося по окружности радиусом r равен

I = r 2 Dm (3.12)

I= (3.13)

В случае непрерывного распределения масс сумму можно заменить интегралом

I= ∫ r 2 dm (3.14)

где интегрирование производится по всей массе тела.

Отсюда видно, что момент инерции тела зависит от массы и её распределения относительно оси вращения. Это можно продемонстрировать на опыте (рис.3.4 ).

Рис. 3.4

Два круглых цилиндра, один полый (например, металлический), другой сплошной (деревянный) с одинаковыми длинами, радиусами и массами начинают одновременно скатываться. Полый цилиндр, обладающий большим моментом инерции, отстанет от сплошного.

Вычислить момент инерции можно, если известна масса m и ее распределение относительно оси вращения. Наиболее простой случай – кольцо, когда все элементы массы расположены одинаково от оси вращения (рис. 3.5 ):

I = (3.15)

Рис. 3.5

Приведем выражения для моментов инерции разных симметричных тел массой m .

1. Момент инерции кольца , полого тонкостенного цилиндра относительно оси вращения совпадающей с осью симметрии.

, (3.16)

r – радиус кольца или цилиндра

2. Для сплошного цилиндра и диска момент инерции относительно оси симметрии

(3.17)

3. Момент инерции шара относительно оси, проходящей через центр

(3.18)

r – радиус шара



4. Момент инерции тонкого стержня длинной l относительно оси, перпендикулярной стержню и проходящей через его середину

(3.19)

l – длина стержня.

Если ось вращения не проходит через центр масс, то момент инерции тела относительно этой оси определяется теоремой Штейнера.

(3.20)

Согласно этой теореме, момент инерции относительно произвольной оси О’O’ ( ) равен моменту инерции относительно параллельной оси, проходящей через центр масс тела ( ) плюс произведение массы тела на квадрат расстояния а между осями (рис. 3.6 ).

Рис. 3.6

Кинетическая энергия вращения

Рассмотрим вращение абсолютно твердого тела вокруг неподвижной оси ОО с угловой скоростью ω (рис. 3.7 ). Разобьем твердое тело на n элементарных масс ∆m i . Каждый элемент массы вращается по окружности радиуса r i с линейной скоростью (). Кинетическая энергия складывается из кинетических энергий отдельных элементов.

(3.21)

Рис. 3.7

Вспомним по (3.13), что – момент инерции относительно оси ОО.

Таким образом, кинетическая энергия вращающегося тела

Е к = (3.22)

Мы рассмотрели кинетическую энергию вращения вокруг неподвижной оси. Если тело участвует в двух движениях: в поступательном и вращательном движениях, то кинетическая энергия тела складывается из кинетической энергии поступательного движения и кинетической энергии вращения.

Например, шар массой m катится; центр масс шара движется поступательно со скоростью u (рис. 3.8 ).

Рис. 3.8

Полная кинетическая энергия шара будет равна

(3.23)

3.4. Момент импульса. Закон сохранения
момента импульса

Физическая величина равная произведению момента инерции I на угловую скорость ω , называется моментом импульса (моментом количества движения) L относительно оси вращения.

– момент импульса величина векторная и по направлению совпадает с направлением угловой скорости .

Продифференцировав уравнение (3.24) по времени, получим

где, М – суммарный момент внешних сил. В изолированной системе момент внешних сил отсутствует (М =0) и

Рассмотрим вначале твердое тело, вращающееся вокруг неподвижной оси OZ с угловой скоростью ω (рис.5.6). Разобьем тело на элементарные массы . Линейная скорость элементарной массы равна , где - ее расстояние от оси вращения. Кинетическая энергия i -той элементарной массы будет равна

.

Кинетическая энергия всего тела слагается из кинетических энергий его частей, поэтому

.

Учитывая то, что сумма в правой части этого соотношения представляет момент инерции тела относительно оси вращения, получим окончательно

. (5.30)

Формулы кинетической энергии вращающегося тела (5.30) подобны соответствующим формулам для кинетической энергии поступательного движения тела. Они получаются из последних формальной заменой .

В общем случае движение твердого тела можно представить в виде суммы движений – поступательного со скоростью, равной скорости центра масс тела, и вращения с угловой скоростью вокруг мгновенной оси, проходящей через центр масс. В этом случае выражение для кинетической энергии тела принимает вид

.

Найдем теперь работу, совершаемую моментом внешних сил, при вращении твердого тела. Элементарная работа внешних сил за время dt будет равна изменению кинетической энергии тела

Взяв дифференциал от кинетической энергии вращательного движения, найдем ее приращение

.

В соответствии с основным уравнением динамики для вращательного движения

С учетом данных соотношений, приведем выражение элементарной работы к виду

где - проекция результирующего момента внешних сил на направление оси вращения OZ, - угол поворота тела за рассматриваемый промежуток времени.

Интегрируя (5.31), получим формулу для работы внешних сил, действующих на вращающееся тело

В случае, если , то формула упрощается

Таким образом, работа внешних сил при вращении твердого тела относительно неподвижной оси определяется действием проекции момента этих сил на данную ось.

Гироскоп

Гироскопом называется быстро вращающееся симметричное тело, ось вращения которого может изменять свое направление в пространстве. Чтобы ось гироскопа могла свободно поворачиваться в пространстве, гироскоп помещают в так называемом кардановом подвесе (рис.5.13). Маховик гироскопа вращается во внутренней кольцевой обойме вокруг оси С 1 С 2 , проходящей через его центр тяжести. Внутренняя обойма в свою очередь может вращаться во внешней обойме вокруг оси В 1 В 2 , перпендикулярной к С 1 С 2 . Наконец, наружная обойма может свободно вращаться в подшипниках стойки вокруг оси А 1 А 2 , перпендикулярной к осям С 1 С 2 и В 1 В 2 . Все три оси пересекаются в некоторой неподвижной точке О, называемой центром подвеса или точкой опоры гироскопа. Гироскоп в кардановом подвесе имеет три степени свободы и, следовательно, может совершать любые повороты вокруг центра подвеса. Если центр подвеса гироскопа совпадает с его центром тяжести, то результирующий момент сил тяжести всех частей гироскопа относительно центра подвеса равен нулю. Такой гироскоп называют уравновешенным.

Рассмотрим теперь наиболее важные свойства гироскопа, которые и нашли ему широкое применение в различных областях.

1) Устойчивость.

При любых поворотах стойки уравновешенного гироскопа его ось вращения сохраняет неизменное направление по отношению к лабораторной системе отсчета. Это связано с тем, что момент всех внешних сил, равный моменту сил трения, очень мал и практически не вызывает изменения момента импульса гироскопа, т.е.

Поскольку момент импульса направлен вдоль оси вращения гироскопа, то ее ориентация должна сохраняться неизменной.

Если внешняя сила действует в течение короткого времени, то интеграл, определяющий приращение момента импульса, будет мал

. (5.34)

Значит, при кратковременных воздействиях даже больших сил движение уравновешенного гироскопа изменяется мало. Гироскоп как бы сопротивляется всяким попыткам изменить величину и направление его момента импульса. С этим и связана замечательная устойчивость, которую приобретает движение гироскопа после приведения его в быстрое вращение. Это свойство гироскопа широко используется для автоматического управления движением самолетов, судов, ракет и прочих аппаратов.

Если же действовать на гироскоп длительное время постоянным по направлению моментом внешних сил, то ось гироскопа устанавливается, в конце концов, по направлению момента внешних сил. Данное явление используется в гирокомпасе. Этот прибор представляет собой гироскоп, ось которого может свободно поворачиваться в горизонтальной плоскости. Вследствие суточного вращения Земли и действия момента центробежных сил ось гироскопа поворачивается так, чтобы угол между и стал минимальным (рис.5.14). Это соответствует положению оси гироскопа в плоскости меридиана.

2). Гироскопический эффект.

Если к вращающемуся гироскопу приложить пару сил и , стремящуюся повернуть его около оси, перпендикулярной оси вращения, то он станет поворачиваться вокруг третьей оси, перпендикулярной к первым двум (рис.5.15). Такое необычное поведение гироскопа получило название гироскопического эффекта. Оно объясняется тем, что момент пары сил направлен вдоль оси О 1 О 1 и изменение за время вектора на величину будет иметь тоже направление. В результате новый вектор повернется относительно оси О 2 О 2 . Таким образом, противоестественное на первый взгляд поведение гироскопа полностью соответствует законам динамики вращательного движения

3). Прецессия гироскопа.

Прецессией гироскопа называется конусообразное движение его оси. Оно происходит в том случае, когда момент внешних сил, оставаясь постоянным по величине, поворачивается одновременно с осью гироскопа, образуя с ней всё время прямой угол. Для демонстрации прецессии может служить велосипедное колесо с наращенной осью, приведенное в быстрое вращение (рис.5.16).

Если колесо подвесить за наращенный конец оси, то его ось начнет прецессировать вокруг вертикальной оси под действием собственного веса. Демонстрацией прецессии может служить и быстро вращающийся волчок.

Выясним причины прецессии гироскопа. Рассмотрим неуравновешенный гироскоп, ось которого может свободно поворачиваться вокруг некоторой точки О (рис.5.16). Момент сил тяжести, приложенный к гироскопу, равен по величине

где - масса гироскопа, - расстояние от точки О до цента масс гироскопа, - угол, образованный осью гироскопа с вертикалью. Вектор направлен перпендикулярно к вертикальной плоскости, проходящей через ось гироскопа.

Под действием этого момента момент импульса гироскопа (его начало помещено в точку О) получит за время приращение , а вертикальная плоскость, проходящая через ось гироскопа, повернется на угол . Вектор все время перпендикулярен к , следовательно, не изменяясь по величине, вектор изменяется только по направлению. При этом спустя время взаимное расположение векторов и будет таким же, как и в начальный момент. В итоге ось гироскопа будет непрерывно поворачиваться вокруг вертикали, описывая конус. Такое движение называется прецессией.

Определим угловую скорость прецессии. Согласно рис.5.16 угол поворота плоскости, проходящей через ось конуса и ось гироскопа, равен

где - момент импульса гироскопа, а - его приращение за время .

Разделив на , с учетом отмеченных соотношений и преобразований, получим угловую скорость прецессии

. (5.35)

Для гироскопов, применяющихся в технике, угловая скорость прецессии бывает в миллионы раз меньше скорости вращения гироскопа .

В заключении отметим, что явление прецессии наблюдается и у атомов вследствие орбитального движения электронов.

Примеры применения законов динамики

При вращательном движении

1. Рассмотрим некоторые примеры на закон сохранения момента импульса, которые можно осуществить с помощью скамьи Жуковского. В простейшем случае скамья Жуковского представляет собой платформу в форме диска (кресло), который может свободно вращаться вокруг вертикальной оси на шариковых подшипниках (рис.5.17). Демонстратор садится или становится на скамью, после чего ее приводят во вращательное движение. Вследствие того, что силы трения благодаря применению подшипников очень малы, момент импульса системы, состоящей из скамьи и демонстратора, относительно оси вращения не может меняться во времени, если система предоставлена самой себе. Если демонстратор держит в руках тяжелые гантели и разводит руки в стороны, то он увеличит момент инерции системы, а потому должна уменьшится угловая скорость вращения, чтобы остался неизменным момент импульса.

По закону сохранения момента импульса составим уравнение для данного случая

где - момент инерции человека и скамьи, и - момент инерции гантелей в первом и втором положениях, и - угловые скорости системы.

Угловая скорость вращения системы при разведении гантелей в сторону будет равна

.

Работу, совершенную человеком при перемещении гантелей, можно определить через изменение кинетической энергии системы

2. Приведем еще один опыт со скамьей Жуковского. Демонстратор садится или становится на скамью и ему передают быстро вращающееся колесо с вертикально направленной осью (рис.5.18). Затем демонстратор поворачивает колесо на 180 0 . При этом изменение момента импульса колеса целиком передается скамье и демонстратору. В результате скамья вместе с демонстратором приходит во вращение с угловой скоростью, определяемой на основании закона сохранения момента импульса.

Момент импульса системы в начальном состоянии определяется только моментом импульса колеса и равен

где - момент инерции колеса, - угловая скорость его вращения.

После поворота колеса на угол 180 0 момент импульса системы будет уже определяться суммой момента импульса скамьи с человеком и момента импульса колеса. С учетом того, что вектор момента импульса колеса изменил свое направление на противоположное, а его проекция на вертикальную ось стала отрицательной, получим

,

где - момент инерции системы «человек-платформа», - угловая скорость вращения скамьи с человеком.

По закону сохранения момента импульса

и .

В итоге, находим скорость вращения скамьи

3. Тонкий стержень массой m и длиной l вращается с угловой скоростью ω=10 с -1 в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Продолжая вращаться в той же плоскости, стержень перемещается так, что ось вращения теперь проходит через конец стержня. Найти угловую скорость во втором случае.

В данной задаче за счет того, что распределение массы стержня относительно оси вращения изменяется, момент инерции стержня также изменяется. В соответствии с законом сохранения момента импульса изолированной системы, имеем

Здесь - момент инерции стержня относительно оси, проходящей через середину стержня; - момент инерции стержня относительно оси, проходящей через его конец и найденный по теореме Штейнера.

Подставляя данные выражения в закон сохранения момента импульса, получим

,

.

4. Стержень длиной L =1,5 м и массой m 1 =10 кг подвешен шарнирно за верхний конец. В середину стержня ударяет пуля массой m 2 =10 г, летящая горизонтально со скоростью =500 м/с, и застревает в стержне. На какой угол отклонится стержень после удара?

Представим на рис. 5.19. систему взаимодействующих тел «стержень-пуля». Моменты внешних сил (сила тяжести, реакция оси) в момент удара равны нулю, поэтому можем воспользоваться законом сохранения момента импульса

Момент импульса системы до удара равен моменту импульса пули относительно точки подвеса

Момент импульса системы после неупругого удара определится по формуле

,

где - момент инерции стержня относительно точки подвеса, - момент инерции пули, - угловая скорость стержня с пулей непосредственно после удара.

Решая после подстановки полученное уравнение, найдем

.

Воспользуемся теперь законом сохранения механической энергии. Приравняем кинетическую энергию стержня после попадания в него пули его потенциальной энергии в наивысшей точке подъема:

,

где - высота поднятия центра масс данной системы.

Проведя необходимые преобразования, получим

Угол отклонения стержня связан с величиной соотношением

.

Проведя вычисления, получим =0,1p=18 0 .

5. Определить ускорения тел и натяжения нити на машине Атвуда, предполагая, что (рис.5.20). Момент инерции блока относительно оси вращения равен I , радиус блока r . Массой нити пренебречь.

Расставим все силы, действующие на грузы и блок, и составим для них уравнения динамики

Если нет проскальзывания нити по блоку, то линейное и угловое ускорение связаны между собой соотношением

Решая эти уравнения, получим

После чего находим T 1 и T 2 .

6. К шкиву креста Обербека (рис.5.21) прикреплена нить, к которой подвешен груз массой M = 0,5 кг. Определить за какое время груз опускается с высоты h =1 м до нижнего положения. Радиус шкива r =3 см. На кресте укреплены четыре груза массой m =250 г каждый на расстоянии R = 30 см от его оси. Моментом инерции самого креста и шкива пренебречь по сравнению с моментом инерции грузов.

Рассмотрим абсолютно твердое тело, вращающееся относительно неподвижной оси. Мысленно разобьем это тело на бесконечно малые кусочки с бесконечно малыми размерами и массами m v т., т 3 , ..., находящиеся на расстояниях R v R 0 , R 3 ,... от оси. Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его малых частей:

- момент инерции твердого тела относительно данной оси 00,. Из сопоставления формул кинетической энергии поступательного и вращательного движений очевидно, что момент инерции во вращательном движении является аналогом массы в поступательном движении. Формула (4.14) удобна для расчета момента инерции систем, состоящих из отдельных материальных точек. Для расчета момента инерции сплошных тел, воспользовавшись определением интеграла, можно преобразовать ее к виду

Несложно заметить, что момент инерции зависит от выбора оси и меняется при ее параллельном переносе и повороте. Найдем значения моментов инерции для некоторых однородных тел.

Из формулы (4.14) очевидно, что момент инерции материальной точки равен

где т - масса точки; R - расстояние до оси вращения.

Несложно вычислить момент инерции и для полого тонкостенного цилиндра (или частного случая цилиндра с малой высотой - тонкого кольца) радиуса R относительно оси симметрии. Расстояние до оси вращения всех точек для такого тела одинаково, равно радиусу и может быть вынесено из- под знака суммы (4.14):

Рис. 4.5

Сплошной цилиндр (или частный случай цилиндра с малой высотой - диск) радиуса R для расчета момента инерции относительно оси симметрии требует вычисления интеграла (4.15). Заранее можно понять, что масса в этом случае в среднем сосредоточена несколько ближе к оси, чем в случае полого цилиндра, и формула будет похожа на (4.17), но в ней появится коэффициент, меньший единицы. Найдем этот коэффициент. Пусть сплошной цилиндр имеет плотность р и высоту А. Разобьем его на полые цилиндры (тонкие цилиндрические поверхности) толщиной dr (рис. 4.5 показывает проекцию, перпендикулярную оси симметрии). Объем такого полого цилиндра радиуса г равен площади поверхности, умноженной на толщину: dV = 2nrhdr, масса: dm = 2nphrdr, а момент инерции в соответствии с формулой (4.17): dj =

= r 2 dm = 2лр/?г Wr. Полный момент инерции сплошного цилиндра получается интегрированием (суммированием) моментов инерции полых цилиндров:

Аналогично ищется момент инерции тонкого стержня длины L и массы т, если ось вращения перпендикулярна стержню и проходит через его середину. Разобьем такой

С учетом того что масса сплошного цилиндра связана с плотностью формулой т = nR 2 hp, имеем окончательно момент инерции сплошного цилиндра:

Рис. 4.6

стержень в соответствии с рис. 4.6 на кусочки толщиной dl. Масса такого кусочка равна dm = mdl/L, а момент инерции в соответствии с формулой (4.6): dj = l 2 dm = l 2 mdl/L. Полный момент инерции тонкого стержня получается интегрированием (суммированием) моментов инерции кусочков:

Взятие элементарного интеграла дает момент инерции тонкого стержня длины L и массы т

Рис. 4.7

Несколько сложней берется интеграл при поиске момента инерции однородного шара радиуса R и массы /77 относительно оси симметрии. Пусть сплошной шар имеет плотность р. Разобьем его в соответствии с рис. 4.7 на полые тонкие цилиндры толщиной dr, ось симметрии которых совпадает с осью вращения шара. Объем такого полого цилиндра радиуса г равен площади поверхности, умноженной на толщину:

где высота цилиндра h найдена с использованием теоремы Пифагора:

Тогда несложно найти массу полого цилиндра:

а также момент инерции в соответствии с формулой (4.15):

Полный момент инерции сплошного шара получается интегрированием (суммированием) моментов инерции полых цилиндров:


С учетом того что масса сплошного шара связана с плотностью форму- 4 .

лой т = -npR A y имеем окончательно момент инерции относительно оси

симметрии однородного шара радиуса R массы т:

Начнем с рассмотрения вращения тела вокруг неоодвижной оси которую мы назовем осью z (рис. 41.1). Линейная скорость элементарной массы равна где - расстояние массы от оси . Следовательно для кинетической энергии элементарной массы получается выражение

Кинетическая энергия тела слагается из кинетических энергий его частей:

Сумма в правой части этого соотношения представляет собой момент инерции тела 1 относительно оси вращения. образом, кинетическая энергия тела, вращающегося вокруг неподвижной оси равна

Пусть на массу действуют внутренняя сила и внешняя сила (см. рис. 41.1). Согласно (20.5) эти силы совершат за время работу

Осуществив в смешанных произведениях векторов циклическую перестановку сомножителей (см. (2.34)), получим:

где N - момент внутренней силы относительно точки О, N - аналогичный момент внешней силы.

Просуммировав выражение (41.2) по всем элементарным массам, получим элементарную работу, совершаемую над телом за время dt:

Сумма моментов внутренних сил равна нулю (см. (29.12)). Следовательно, обозначив суммарный момент внешних сил через N придем к выражению

(мы воспользовались формулой (2.21)).

Наконец, приняв во внимание, что есть угол на который поворачивается тело за время получим:

Знак работы зависит от знака т. е. от знака проекции вектора N на направление вектора

Итак, при вращении тела внутренние силы работы не совершают, работа же внешних сил определяется формулой (41.4).

К формуле (41.4) можно прийти, воспользовавшись тем, что работа, совершаемая всеми приложенными к телу силами, идет на приращение его кинетической энергии (см. (19.11)). Взяв дифференциал от обеих частей равенства (41.1), придем к соотношению

Согласно уравнению (38.8) так что, заменив через придем к формуле (41.4).

Таблица 41.1

В табл. 41.1 сопоставлены формулы механики вращательного движений с аналогичными формулами механики поступательного движения (механики точки). Из этого сопоставления легко заключить, что во всех случаях роль массы играет момент инерции, роль силы момент силы, роль импульса - момент импульса и т. д.

Формулу. (41.1) мы получили для случая, когда тело вращается вокруг неподвижной фиксированной в теле оси. Теперь допустим что тело вращается произвольным образом относительно неподвижной точки, совпадающей с его центром масс.

Свяжем жестко с телом декартову систему координат, начало которой поместим в центр масс тела. Скорость i-й элементарный массы равна Следовательно, для кинетической энергии тела, можно написать выражение

где - угол между векторами Заменив а через и учтя, что получим:

Распишем скалярные произведения через проекции векторов на оси связанной с телом координатной системы:

Наконец, объединив слагаемые с одинаковыми произведениями компонент угловой скорости и вынеся эти произведения за знаки сумм, получим: так что формула (41.7) принимает вид (ср. с (41.1)). При вращении произвольного тела вокруг одной из главных осей инерции, скажем оси и формула (41.7) переходит в (41.10.

Таким, образом. кинетическая энергия вращающегося тела равна половине произведения момента инерции на квадрат угловой скорости в трех случаях: 1) для тела вращающегося вокруг неподвижной оси; 2) для тела вращающегося вокруг одной из главных осей инерции; 3) для шарового волчка. В остальных случаях кинетическая энергия определяется белее сложными формулами (41.5) или (41.7).



© dagexpo.ru, 2024
Стоматологический сайт