Критерии согласия. Критерий согласия пирсона

21.09.2019

Критерием согласия называется критерий значимости, применяемый для проверки гипотезы о законе распределения генеральной совокупности, из которой взята выборка.

Чаще всего исследователя интересует, соответствует ли распределение экспериментальных данных нормальному закону. Поэтому примеры будут связаны с проверкой экспериментального распределения на нормальность.

  • Критерий Шапиро-Уилки
  • Критерий хи-квадрат
  • Критерий лямбда Колмогорова-Смирнова

КРИТЕРИЙ ШАПИРО-УИЛКИ

Условия применения: выборка небольшого объема

Н 0 – распределение генеральной совокупности из которой получена выборка совокупности соответствует нормальному закону.

Н 1 - распределение генеральной совокупности из которой получена выборка совокупности не соответствует нормальному закону.

Таблица 1 – Алгоритм расчета критерия Шапиро-Уилки.

x x Δk k ank ankΔk
1 2 3 4 5 6 7
1 11,8 13,8 2 1 0,5739 1,1478
2 12 13,2 1,2 2 0,3291 0,39492
3 12,1 13 0,9 3 0,2141 0,19269
4 12,3 12,8 0,5 4 0,1224 0,0612
5 12,6 12,6 0 5 0,0399 0
6 12,6 12,6
7 12,8 12,3 Сумма=b = 17966
8 13 12,1
9 13,2 12
10 13,8 11,8

Порядок расчета критерия Шапиро-Уилки

  1. Формулируем гипотезу Н 0 о соответствии распределения генеральной совокупности, из которой получены данные нормальному закону. Назначаем уровень значимости α=0,05.
  2. Получаем выборку экспериментальных данных (столбец 1 табл.1). В нашем случае n=10.
  3. Рассчитываем значение выборочной дисперсии. Для примера S 2 =0, 37.
  4. Ранжируем выборку в возрастающем и убывающем порядке (столбцы 2 и 3)
  5. Считаем разности Δk (столбец 5)
  6. Из таблицы 6 Приложения(см. В.С.Иванов, 1990) находим значения коэффициентов ank (столбец 6)
  7. Находим произведение ankΔk
  8. Вычисляем b=сумма ankΔk= 1,7966
  9. Рассчитываем значение критерия Wф по формуле:
  1. Из табл. 7 Приложения (см. В.С.Иванов, 1990) находим критическое значение критерия Шапиро-Уилки для α=0,05 Wкрит= 0,842.
  2. Вывод. Так как Wф>Wкрит, можно говорить, что экспериментальные данные соответствуют нормальному закону на уровне значимости 0,05.

КРИТЕРИЙ ХИ-КВАДРАТ

Разработан Карлом Пирсоном . Основан на построении интервального вариационного ряда и сравнении эмпирических (n эм) и теоретических (n т) частот (Рис.1).

Рис.1. Гистограмма, характеризующая эмпирическое распределение и функция плотности вероятностей нормального распределения.

Статистическая гипотеза : плотность распределения генеральной совокупности, из которой взята выборка, соответствует теоретической модели нормального распределения.

Значение фактического критерия хи-квадрат вычисляется по формуле:

Если фактическое значение критерия хи-квадрат больше или равно чем критическое значение критерия хи-квадрат, можно сделать вывод, что эмпирическое распределение не соответствует нормальному закону на уровне значимости α.

КРИТЕРИЙ ЛЯМБДА КОЛМОГОРОВА-СМИРНОВА

Разработан Андреем Николаевичем Колмогоровым и Николаем Васильевичем Смирновым .

Статистическая гипотеза : функция распределения генеральной совокупности (рис. 2), из которой взята выборка, соответствует функции распределения нормального закона.

Рис.2. Красные точки - кумулята, построенная на основе экспериментальных данных, синяя кривая - теоретическая функция распределения (нормальное распределение).

Значение критерия λ ф вычисляется по формуле:

Вывод: если λ ф > λ крит – эмпирическое распределение не соответствует нормальному на уровне значимости α.

ЛИТЕРАТУРА

  1. Высшая математика и математическая статистика: учебное пособие для вузов / Под общ. ред. Г. И. Попова. – М. Физическая культура, 2007.– 368 с.
  2. Основы математической статистики: Учебное пособие для ин-тов физ. культ / Под ред. В.С. Иванова.– М.: Физкультура и спорт, 1990. 176 с.

Так как все предположения о характере того или иного распределения - это гипотезы, а не категорические утверждения, то они, естественно, должны быть подвергнуты статистической проверке с помощью так называемых критериев согласия.

Критерии согласия, опираясь на установленный закон распределения, дают возможность установить, когда расхождения между теоретическими и эмпирическими частотами следует признать несущественными (случайными), а когда - существенными (неслучайными). Таким образом, критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой при выравнивании ряда гипотезы

о характере распределения в эмпирическом ряду и дать ответ, можно ли принять для данного эмпирического распределения модель, выраженную некоторым теоретическим законом распределения.

Существует ряд критериев согласия. Чаще других применяют критерии Пирсона, Романовского и Колмогорова. Рассмотрим их.

Критерий согласия Пирсона %2 (хи-квадрат) - один из основных критериев согласия. Критерий предложен английским математиком Карлом Пирсоном (1857-1936) для оценки случайности (существенности) расхождений между частотами эмпирического и теоретического распределений. Критерий Пирсона где к

число групп, на которые разбито эмпирическое распределение;

наблюдаемая частота признака в і-й группе; теоретическая частота, рассчитанная по предполагаемому распределению. Для распределения у} составлены таблицы, где указано критическое значение критерия согласия %2 для выбранного уровня значимости а и данного числа степеней свободы V (см. Приложение 4).

Уровень значимости а - вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. В статистических исследованиях в зависимости от важности и ответственности решаемых задач пользуются следующими тремя уровнями значимости: 1)

а = 0,10, тогда Р = 0,90; 2)

а = 0,05, тогда Р = 0,95; 3)

а = 0,01, тогда Р = 0,99.

Например, вероятность 0,01 означает, что в одном случае из 100 может быть отвергнута правильная гипотеза. В экономических исследованиях считается практически приемлемой вероятность ошибки 0,05, т.е. в 5 случаях из 100 может быть отвергнута правильная гипотеза.

Кроме того, %2-критерий, определяемый по таблице, зависит и от числа степеней свободы. Число степеней свободы V определяется как число групп в ряду распределения к минус число связей с V

Под числом связей понимается число показателей эмпирического ряда, использованных при исчислении теоретических частот, т.е. показателей, связывающих эмпирические и теоретичес- / л

кие частоты

Так, в случае выравнивания по кривой нормального распределения имеется три связи:

х ~ х" " СУ = а" * х Ш = У

ЭМП теор’ ЭМП ТеОр> ^ 1ЭМП ^ /теор*

Поэтому при выравнивании по кривой нормального распределения число степеней свободы определяется как V = к - 3, где к - число групп в ряду.

В случае выравнивания по кривой Пуассона V = к - 2, так как при построении частот используются две ограничивающие связи: х, 1тг /

Для оценки существенности расчетное значение %2расч сравнивается с табличным %2табл.

При полном совпадении теоретического и эмпирического распределений %2 = 0, в противном случае %2 > 0.

Если Храсч > Xтабл’ Т0 ПРИ заданном уровне значимости а и числе степеней свободы V гипотезу о несущественности (случайности) расхождений отклоняем.

В случае если %2асч ^ Х2табЛ’ заключаем, что эмпирический ряд хорошо согласуется с гипотезой о предполагаемом распределении и с вероятностью (1 - а) можно утверждать, что расхождение между теоретическими и эмпирическими частотами случайно.

Используя критерий согласия?2, необходимо соблюдать следующие условия: 1)

объем исследуемой совокупности должен быть достаточно большим (УУ> 50), при этом частота или численность каждой группы должна быть не менее 5. Если это условие нарушается, необходимо предварительно объединить маленькие частоты; 2)

эмпирическое распределение должно состоять из данных, полученных в результате случайного отбора, т.е. они должны быть независимыми.

Если в эмпирическом ряду распределение задано частостями / \ т.

то у} следует исчислять по формуле

Критерий Романовского Кр основан на использовании критерия Пирсона %2, т.е. уже найденных значений %2, и числа степеней свободы v:

Он весьма удобен при отсутствии таблиц для %2.

Если Кр 3, то не случайны

и, соответственно, теоретическое распределение не может служить моделью для изучаемого эмпирического распределения.

Критерий Колмогорова X основан на определении максимального расхождения между накопленными частотами или частостями эмпирических и теоретических распределений:

X = -2= или X = , iN

где Dud- соответственно максимальная разность между накопленными частотами (F - F") и между накоплен-

ными частостями (р - р") эмпирического и теоретического рядов распределений;

N - число единиц в совокупности.

Рассчитав значение X, по таблице Р(к) (см.

Приложение 6) определяют вероятность, с которой можно утверждать, что отклонения эмпирических частот от теоретических случайны. Вероятность Р(к) может изменяться от 0 до 1. При Р(к) = 1 происходит полное совпадение частот, при Р(к) = 0 - полное расхождение. Если А, принимает значения до 0,3, то Р(к) = 1.

Основное условие для использования критерия Колмогорова - достаточно большое число наблюдений.

Пример. Используя данные табл. 5.17, проверить правильность выдвинутой гипотезы о распределении призывников района по закону нормального распределения. Величины, необходимые для расчета критериев согласия, приведены в табл. 5.19.

Таблица 5.19

Расчет величин для определения критериев согласия Пирсона х2 и Колмогорова X Рост, см Частоты ряда распределения (/п - т")2 т" F F" к- р,\ т т" А 1 2 3 4 5 6 156-160 8 5 1,8 8 5 3 161-165 17 16 0,1 25 21 4 166-170 42 40 0,1 67 61 6 171-175 54 65 1,9 121 126 5 176-180 73 73 0 194 199 5 181-185 57 57 0 251 256 5 186-190 38 30 2,1 289 286 3 191-195 11 11 0 300 297 3 X 300 297 6,0 Сначала рассчитаем критерий Пирсона

Затем выберем уровень значимости а = 0,05 и определим число степеней свободы V. В данном распределении 8 групп и число связей (параметров) равно 3, следовательно, V = 8 - 3 = 5. По таблице Приложения 4 найдем при а = 0,05 и V = 5 критерий Пирсона %2 = 11,07.

Так как %2расч Проверим выдвинутую гипотезу, используя критерий Романовского:

I X2 - V I 16,0 - 5 I 1

кр = ] Г=^ = 1 = --г = 0,3.

Так как Кр Критерий Романовского также подтверждает, что расхождения между эмпирическими и теоретическими частотами несущественны.

Рассмотрим теперь применение критерия Колмогорова А,. Как видно из табл. 5.19, максимальная разность между кумулятивными частотами равна 6, т.е. Б = шах!/1- Р"\ = 6. Следовательно, критерий Колмогорова

X = -?= = = 0,35.

По таблице Приложения 6 находим значение вероятности при X = 0,35: Р(Х) = 0,9997. Это означает, что с вероятностью, близкой к единице, можно утверждать, что гипотеза о нормальном распределении не отвергается, а расхождения эмпирического и теоретического распределений носят случайный характер.

Теперь, подтвердив правильность выдвинутой гипотезы с помощью известных критериев согласия, можно использовать результаты распределения для практической деятельности.

Пример. Используя данные табл. 5.18, проверить гипотезу о подчинении распределения числа неисправностей в автомобилях закону Пуассона.

Исходные данные и расчет величин, необходимых для определения критериев согласия, приведены в табл. 5.20.

Подсчитаем величину %2: 2

Дфасч ^ / 9

(см. табл. 5.20). хХтабл = 9>49

(см. Приложение 4).

Поскольку %2расч Таким образом, выдвинутая гипотеза о распределении числа неисправностей в автомобилях по закону Пуассона не отвергается.

Проверяемую гипотезу обычно называют нулевой H 0 , правило, по которому гипотеза принимается или отвергается называется статистическим критерием.. Статистические критерии, служащие для проверки гипотез о виде законов распределения называются критериями согласия. Т.е. критерии согласия устанавливают, когда полученные в действительности расхождения между предполагаемыми теоретическим и опытным распределением:несущественно - случайные и когда существенно - неслучайные.

Рассмотрим случайную величину, которая характеризует вид или функцию расхождения между предполагаемым теоретическим и опытным распределением признака, тогда по имеющемуся опытному распределению, можно определить значение a , которое приняла случайная величина, если известен ее закон распределения, то не трудно найти вероятность того, что случайная величина примет значение не меньшее a . Если величина a получена как результат наблюдения случайной величины x , т.е. при распределении рассматриваемого признака, по предполагаемому теоретическому закону, то вероятность не должна быть малой. Если же вероятность оказалась малой, то это объясняется тем, что фактически полученному значение не случайной величины x , а какой-то другой с другим законом распределения, т.е. изучаемый признак распределен не по предполагаемому закону. Таким образом, в случае, когда не мала -расхождения между эмпирическими и теоретическими распределениями следует признать не существенным- случайным, а опытное и теоретическое распределение не противоречащими, т.е. согласующимися друг с другом.

Если вероятность мала, то расхождения между опытным и теоретическим распределениями существенны, объяснить их случайностью нельзя, а гипотезу о распределении признака по предполагаемому теоретическому закону следует считать не подтвердившейся, она не согласуется с опытными данными. Необходимо тщательно изучив опытные данные попытаться найти новый закон о качестве предполагаемого признака, который лучше, полнее бы отражал особенности опытного распределения, такие вероятности считаются малыми и их берут не превосходящими 0,1.

Критерии согласия Пирсона или критерии c 2 .

Пусть анализ опытных данных привел к выбору некоторого закона распределения, в качестве предполагаемого для рассматриваемого признака, а по опытным данным в результате n-наблюдений, найдены параметры (если они не были известны раннее). Обозначим через n i - эмпирические частоты случайной величины x.

n×P i -теоретические частоты, представляющие произведение числа наблюдений n на вероятности P i - рассчитанные по предполагаемому теоретическому распределению. Критерии согласия c 2 за меру расхождения теоретического и эмпирического рядов частот принимают величину


;

c 2 -величина, которую называют c 2 распределение или распределение Пирсона. Она равна 0 лишь при совпадении всех эмпирических и теоретических частот, в остальных случаях отлична от 0 и тем больше, чем больше расхождение между указанными частотами. Доказано, что выбранная характеристика c 2 или статистика при n®¥ имеет распределение Пирсона со степенями свободы

k=m-s- 1.

где m -число интервалов эмпирического распределения вариационного ряда или число групп.

s -число параметров теоретического распределения, определяемых по опытным данным, (например в случае нормального распределения число оцениваемых по выборке параметров равно 2).

Схема применения критерия сводится к следующему:

1. По опытным данным выбирают в качестве предполагаемого закон распределения признака и находят его параметры.

2. С помощью полученного распределения определяют теоретические частоты, соответствующие опытным частотам.

3. Малочисленные опытные частоты, если они есть, объединяют с соседними, затем по формуле определяют величину c 2 .

4. Определяют число степеней свободы k .

5. Из таблиц приложения для выбранного уровня значимости a находят критическое значение при числе степеней свободы равным k .

6. Формулируем вывод, руководствуясь общим принципом применения критериев согласия, а именно если вероятность >0,01, то имеющиеся расхождения между теоретическими и опытными частотами признаются не существенными.

Если фактически наблюдаемое значение больше критического, то H 0 отвергается, если то гипотеза не противоречит опытным данным. Критерий c 2 дает удовлетворительные результаты, если в каждом группировочном интервале достаточное число наблюдений n i .

Замечание: Если в каком-нибудь интервале число наблюдений <5, то имеет смысл объединить соседние интервалы с тем, чтобы в объединенных интервалах n i было не меньше 5. При этом при вычислении числа степеней свободы k в качестве m -берется соответственно уменьшенное число интервалов.

Получено следующее распределение 100 рабочих цеха по выработке в отчетном году

(в %-тах к предыдущему году).

Введение

Актуальность данной темы в том, что в течение изучения основ биостатистики мы предполагали, что закон распределения генеральной совокупности известен. Но что, если закон распределения неизвестен, но есть основания предполагать, что он имеет определенный вид (назовем его А), то проверяют нулевую гипотезу: генеральная совокупность распределена по закону А. Проверка этой гипотезы производится при помощи специально подобранной случайной величины - критерия согласия.

Критерии согласия - это критерии проверки гипотез о соответствии эмпирического распределения теоретическому распределению вероятностей. Такие критерии подразделяются на два класса:

  • Ш Общие критерии согласия применимы к самой общей формулировке гипотезы, а именно к гипотезе о согласии наблюдаемых результатов с любым априорно предполагаемым распределением вероятностей.
  • Ш Специальные критерии согласия предполагают специальные нулевые гипотезы, формулирующие согласие с определенной формой распределения вероятностей.

Критерий согласия

Наиболее распространенные критерии согласия - омега-квадрат, хи-квадрат, Колмогорова и Колмогорова-Смирнова.

Непараметрические критерии согласия Колмогорова, Смирнова, омега квадрат широко используются. Однако с ними связаны и широко распространенные ошибки в применении статистических методов.

Дело в том, что перечисленные критерии были разработаны для проверки согласия с полностью известным теоретическим распределением. Расчетные формулы, таблицы распределений и критических значений широко распространены. Основная идея критериев Колмогорова, омега квадрат и аналогичных им состоит в измерении расстояния между функцией эмпирического распределения и функцией теоретического распределения. Различаются эти критерии видом расстояний в пространстве функций распределения.

Критерии согласия ч2 Пирсона для простой гипотезы

Теорема К. Пирсона относится к независимым испытаниям с конечным числом исходов, т.е. к испытаниям Бернулли (в несколько расширенном смысле). Она позволяет судить о том, согласуются ли наблюдения в большом числе испытаний частоты этих исходов с их предполагаемыми вероятностями.

Во многих практических задачах точный закон распределения неизвестен. Поэтому выдвигается гипотеза о соответствии имеющегося эмпирического закона, построенного по наблюдениям, некоторому теоретическому. Данная гипотеза требует статистической проверки по результатам которой будет либо подтверждена, либо опровергнута.

Пусть X - исследуемая случайная величина. Требуется проверить гипотезу H0 о том, что данная случайная величина подчиняется закону распределения F(x). Для этого необходимо произвести выборку из n независимых наблюдений и по ней построить эмпирический закон распределения F"(x). Для сравнения эмпирического и гипотетического законов используется правило, называемое критерием согласия. Одним из популярных является критерий согласия хи-квадрат К. Пирсона. В нем вычисляется статистика хи-квадрат:

где N - число интервалов, по которому строился эмпирический закон распределения (число столбцов соответствующей гистограммы), i - номер интервала, pt i -вероятность попадания значения случайной величины в i-й интервал для теоретического закона распределения, pe i - вероятность попадания значения случайной величины в i-й интервал для эмпирического закона распределения. Она и должна подчиняться распределению хи-квадрат.

Если вычисленное значение статистики превосходит квантиль распределения хи-квадрат с k-p-1 степенями свободы для заданного уровня значимости, то гипотеза H0 отвергается. В противном случае она принимается на заданном уровне значимости. Здесь k - число наблюдений, p число оцениваемых параметров закона распределения.

Рассмотрим статистику:

Статистика ч2 называется статистикой хи-квадрат Пирсона для простой гипотезы.

Ясно, что ч2 представляем собой квадрат некоего расстояния между двумя r-мерными векторами: вектором относительных частот (mi /n, …, mr /n) и вектором вероятностей (pi , …, pr). От евклидового расстояния это расстояние отличается лишь тем, что разные координаты входят в него с разными весами.

Обсудим поведение статистики ч2 в случае, когда гипотеза Н верна, и в случае, когда Н неверна. Если верна Н, то асимптотическое поведение ч2 при n > ? указывает теорема К. Пирсона. Чтобы понять, что происходит с (2.2), когда Н неверна, заметим, что по закону больших чисел mi /n > pi при n > ?, для i = 1, …, r. Поэтому при n > ?:

Эта величина равна 0. Поэтому если Н неверна, то ч2 >? (при n > ?).

Из сказанного следует, что Н должна быть отвергнута, если полученное в опыте значение ч2 слишком велико. Здесь, как всегда, слова «слишком велико» означают, что наблюденное значение ч2 превосходит критическое значение, которое в данном случае можно взять из таблиц распределения хи-квадрат. Иначе говоря, вероятность Р(ч2 npi ч2) - малая величина и, следовательно, маловероятно случайно получить такое же, как в опыте, или еще большее расхождение между вектором частот и вектором вероятностей.

Асимптотический характер теоремы К. Пирсона, лежащий в основе этого правила, требует осторожности при его практическом использовании. На него можно полагаться только при больших n. Судить же о том, достаточно ли n велико, надо с учетом вероятностей pi , …, pr . Поэтому нельзя сказать, к примеру, что ста наблюдений будет достаточно, поскольку не только n должно быть велико, но и произведения npi , …, npr (ожидаемые частоты) тоже не должны быть малы. Поэтому проблема аппроксимации ч2 (непрерывное распределение) к статистике ч2 , распределение которой дискретно, оказалась сложной. Совокупность теоретических и экспериментальных доводов привела к убеждению, что эта аппроксимация применима, если все ожидаемые частоты npi>10. если число r (число различных исходов) возрастает, граница для снижена (до 5 или даже до 3, если r порядка нескольких десятков). Чтобы соблюсти эти требования, на практике порой приходится объединять несколько исходов, т.е. переходить к схеме Бернулли с меньшим r.

Описанный способ для проверки согласия можно прилагать не только к испытаниям Бернулли, но и к произвольным выборкам. Предварительно их наблюдения надо превратить в испытания Бернулли путем группировки. Делают это так: пространство наблюдений разбивают на конечное число непересекающихся областей, а затем для каждой области подсчитывают наблюденную частоту и гипотетическую вероятность.

В данном случае к перечисленным ранее трудностям аппроксимации прибавляется еще одна - выбор разумного разбиения исходного пространства. При этом надо заботится о том, чтобы в целом правило проверки гипотезы об исходном распределении выборки было достаточно чувствительным к возможным альтернативам. Наконец, отмечу, что статистические критерии, основные на редукции к схеме Бернулли, как правило, не являются состоятельными против всех альтернатив. Так что такой метод проверки согласия имеет ограниченную ценность.

Критерий согласия Колмогорова - Смирнова в своем классическом виде является более мощным, чем критерий ч2 и может быть использован для проверки гипотезы о соответствии эмпирического распределения любому теоретическому непрерывному распределению F(x) с заранее известными параметрами. Последнее обстоятельство накладывает ограничения на возможность широкого практического приложения этого критерия при анализе результатов механических испытаний, так как параметры функции распределения характеристик механических свойств, как правило, оценивают по данным самой выборки.

Критерий Колмогорова - Смирнова применяют для негруппированных данных или для группированных в случае малой ширины интервала (например, равной цене деления шкалы силоизмерителя, счетчика циклов нагружения и т. д.). Пусть результатом испытаний серии из n образцов является вариационный ряд характеристики механических свойств

x1 ? x2 ? ... ? xi ? ... ? xn. (3.93)

Требуется проверить нулевую гипотезу о принадлежности выборочного распределения (3.93) теоретическому закону F(x).

Критерий Колмогорова - Смирнова базируется на распределении максимального отклонения накопленной частности от значения функции распределения. При его использовании вычисляют статистики

являющуюся статистикой критерия Колмогорова. Если выполняется неравенство

Dnvn ? лб (3.97)

для больших объемов выборки (n > 35) или

Dn(vn + 0.12 + 0.11/vn) ? лб (3.98)

для n ? 35, то нулевую гипотезу не отвергают.

При невыполнении неравенств (3.97) и (3.98) принимают альтернативную гипотезу о принадлежности выборки (3.93) неизвестному распределению.

Критические значения лб составляют: л0.1 = 1.22; л0.05 = 1.36; л0.01 = 1.63.

Если параметры функции F(x) заранее не известны, а оцениваются по данным выборки, критерий Колмогорова - Смирнова теряет свою универсальность и может быть использован только для проверки соответствия опытных данных лишь некоторым конкретным функциям распределения.

При использовании в качестве нулевой гипотезы принадлежность опытных данных нормальному или логарифмически нормальному распределению вычисляют статистики:

где Ц(zi) - значение функции Лапласа для

Ц(zi) = (xi - xср)/s Критерий Колмогорова - Смирнова для любых объемов выборки n записывают в виде

Критические значения лб в этом случае составляют: л0.1 = 0.82; л0.05 = 0.89; л0.01 = 1.04.

Если проверяют гипотезу о соответствии выборки ***экспоненциальному распределению, параметр которого оценивают по опытным данным, вычисляют аналогичные статистики:

критерий эмпирический вероятность

и составляют критерий Колмогорова - Смирнова.

Критические значения лб для этого случая: л0.1 = 0.99; л0.05 = 1.09; л0.01 = 1.31.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

АЗОВСКИЙ РЕГИОНАЛЬНЫЙ ИНСТИТУТ УПРАВЛЕНИЯ

ЗАПОРОЖСКОГО НАЦИОНАЛЬНОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

Кафедра математики

КУРСОВАЯ РАБОТА

З дисциплины «СТАТИСТИКА»

На тему: «КРИТЕРИИ СОГЛАСИЯ»

студентки 2-го курса

группы 207 факультета управления

Батуры Татьяны Олеговны

Научный руководитель

доцент Косенков О. И.

Бердянск – 2009г.


ВВЕДЕНИЕ

1.2 Критерии согласия χ 2 Пирсона для простой гипотезы

1.3 Критерии согласия для сложной гипотезы

1.4 Критерии согласия χ 2 Фишера для сложной гипотезы

1.5 Другие критерии согласия. Критерии согласия для распределения Пуассона

РАЗДЕЛ II. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ КРИТЕРИЯ СОГЛАСИЯ

ПРИЛОЖЕНИЯ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

В данной курсовой работе рассказано о наиболее распространенных критериях согласия – омега-квадрат, хи-квадрат, Колмогорова и Колмогорова-Смирнова. Особенное внимание уделено случаю, когда необходимо проверить принадлежность распределения данных некоторому параметрическому семейству, например, нормальному. Эта весьма распространенная на практике ситуация из-за своей сложности исследована не до конца и не полностью отражена в учебной и справочной литературе.

Критериями согласия называют статистические критерии, предназначенные для проверки согласия опытных данных и теоретической модели. Лучше всего этот вопрос разработан, если наблюдения представляют случайную выборку. Теоретическая модель в этом случае описывает закон распределения.

Теоретическое распределение – это то распределение вероятностей, которое управляет случайным выбором. Представления о нем может дать не только теория. Источниками знаний здесь могут быть и традиция, и прошлый опыт, и предыдущие наблюдения. Надо лишь подчеркнуть, что это распределение должно быть выбрано независимо от тех данных, по которым мы собираемся его проверять. Иначе говоря, недопустимо сначала «подогнать» по выборке некоторый закон распределения, а потом пытаться проверить согласие с полученным законом по этой же выборке.

Простые и сложные гипотезы. Говоря о теоретическом законе распределения, которому гипотетически должны бы следовать элементы данной выборки, надо различать простые и сложные гипотезы об этом законе:

· простая гипотеза прямо указывает некий определенный закон вероятностей (распределение вероятностей), по которому возникли выборочные значения;

· сложная гипотеза указывает на единственное распределение, а какое-то их множество (например, параметрическое семейство).

Критерии согласия основаны на использовании различных мер расстояний между анализируемым эмпирическим распределением и функцией распределения признака в генеральной совокупности.

Непараметрические критерии согласия Колмогорова, Смирнова, омега квадрат широко используются. Однако с ними связаны и широко распространенные ошибки в применении статистических методов.

Дело в том, что перечисленные критерии были разработаны для проверки согласия с полностью известным теоретическим распределением. Расчетные формулы, таблицы распределений и критических значений широко распространены. Основная идея критериев Колмогорова, омега квадрат и аналогичных им состоит в измерении расстояния между функцией эмпирического распределения и функцией теоретического распределения. Различаются эти критерии видом расстояний в пространстве функций распределения.

Приступая к выполнению данной курсовой работы, я поставила себе за цель, узнать какие существуют критерии согласия, разобраться для чего же они нужны. Для осуществления этой цели необходимо выполнить следующие задания:

1. Раскрыть суть понятия “критерии согласия”;

2. Определить какие критерии согласия существуют, изучить их по отдельности;

3. Сделать выводы по проведенной работе.


РАЗДЕЛ I. ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ КРИТЕРИЯ СОГЛАСИЯ

1.1 Критерии согласия Колмогорова и омега-квадрат в случае простой гипотезы

Простая гипотеза. Рассмотрим ситуацию, когда измеряемые данные являются числами, иначе говоря, одномерными случайными величинами. Распределение одномерных случайных величин может быть полностью описано указанием их функций распределения. И многие критерии согласия основаны на проверке близости теоретической и эмпирической (выборочной) функций распределения.

Предположим, что имеем выборку n. Обозначим истинную функцию распределения, которой подчиняются наблюдения, G(х), эмпирическую (выборочную) функцию распределения – F n (х), а гипотетическую функцию распределения – F(х). Тогда гипотеза Н о том, что истинная функция распределения есть F(х), записывается в виде Н: G(·) = F(·).

Как проверить гипотезу H? Если Н верна, то F n и F должны проявлять определенное сходство, и различие между ними должно убывать с увеличением n. Вследствие теоремы Бернулли F n (х) → F(х) при n → ∞. Для количественного выражения сходства функций F n иF используют различные способы.

Для выражения сходства функций можно использовать то или иное расстояние между этими функциями. Например, можно сравнить F n и F в равномерной метрике, т.е. рассмотреть величину:

(1.1)

Статистику D n называют статистикой Колмогорова.

Очевидно, что D n - случайная величина, поскольку ее значение зависит от случайного объекта F n . Если гипотеза Н 0 справедлива и n → ∞, то F n (x) → F(x) при всяком х. Поэтому естественно, что при этих условиях D n → 0. Если же гипотеза Н 0 неверна, то F n → G и G ≠ F, а потому sup -∞

Как всегда при проверке гипотезы, рассуждаем так, как если бы гипотеза была верна. Ясно, что Н 0 должна быть отвергнута, если полученное в эксперименте значение статистики D n кажется неправдоподобно большим. Но для этого надо знать, как распределена статистика D n при гипотезе Н: F= G при заданных n и G.

Замечательное свойство D n состоит в том, что если G = F, т.е. если гипотетическое распределение указано правильно, то закон распределения статистики D n оказывается одним и тем же для всех непрерывных функций G. Он зависит только от объема выборки n.

Доказательство этого факта основано на том, что статистика не изменяет своего значения при монотонных преобразованиях оси х. Таким преобразованием любое непрерывное распределение G можно превратить в равномерное на отрезке . При этом F n (x) перейдет в функцию распределения выборки из этого равномерного распределения.

При малых п для статистики D n при гипотезе Н 0 составлены таблицы процентных точек. При больших п распределение D n (при гипотезе Н 0) указывает найденная в 1933 г. А.Н.Колмогоровым предельная теорема. Она говорит о статистике

(поскольку сама величина D n → 0 при Н 0 , приходится умножать ее на неограниченно растущую величину, чтобы распределение стабилизировалось). Теорема Колмогорова утверждает, что при справедливости Н 0 и если G непрерывна:
(1.2)

Эта сумма очень легко считается в Maple. Для проверки простой гипотезы Н 0: G = F требуется по исходной выборке вычислить значение статистики D n . Для этого годится простая формула.



© dagexpo.ru, 2024
Стоматологический сайт