Кто из ученых открыл явление дисперсии? Дисперсия света: история открытия и описание явления

12.10.2019

Окружающий мир наполнен миллионами разнообразных оттенков. Благодаря свойствам света каждый предмет и объект вокруг нас имеет определенный цвет, воспринимаемый человеческим зрением. Изучение световых волн и их характеристик позволило людям глубже взглянуть на природу света и явления, связанные с ним. Сегодня поговорим о дисперсии.

Природа света

С физической точки зрения свет представляет собой сочетание электромагнитных волн с разными значениями длины и частоты. Глаз человека воспринимает не любой свет, а только лишь тот, длина волн которого колеблется от 380 до 760 нм. Остальные разновидности остаются для нас невидимыми. К ним, например, относятся инфракрасное и ультрафиолетовое излучения. Знаменитый ученый Исаак Ньютон представлял свет как направленный поток самых мелких частиц. И лишь позже было доказано, что он по своей природе является волной. Однако Ньютон все же был отчасти прав. Дело в том, что свет обладает не только волновыми, но и корпускулярными...

0 0

Разложение света в спектр вследствие дисперсии при прохождении через призму (опыт Ньютона). У этого термина существуют и другие значения, см. Дисперсия.

Диспе рсия све та (разложение света) - это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления...

0 0

Опыты Ньютона

Первые опыты с дисперсионным разложением света проделал Ньютон. Он направил обычный луч солнечного света на призму и получил то, что многие сегодня видят ежедневно – призма разложила световой пучок на множество разноцветных цветов - от красного до фиолетового. После серии других опытов с линзами и призмой Ньютон сделал вывод, что призма не изменяет солнечного света, а лишь разлагает его на составляющие. Но как же это получается?

Дело в том, что свет имеет определенную скорость. Как показал опыт, световой пучок состоит из множества цветов, вот их-то скорость как раз и различна. То есть каждый цвет спектра имеет свою скорость движения и свою длину волны. Различной оказалась также степень преломления цветовых лучей. Вспомните, как выглядит...

0 0

Глава 1. Световые волны - Урок 5. Дисперсия света
Вернуться к оглавлению
Урок 5. ДИСПЕРСИЯ СВЕТА

Показатель преломления не зависит от угла падения светового пучка, но он зависит от его цвета. Это было открыто Ньютоном.

Занимаясь усовершенствованием телескопов. Ньютон обратил внимание на то. что изображение, даваемое объективом, по краям окрашено. Он заинтересовался этим и первый «исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, каких до того никто даже не подозревал» (слова из надписи на надгробном памятнике Ньютону). Радужную окраску изображения, даваемого линзой, наблюдали, конечно, и до него. Было замечено также, что радужные края имеют предметы, рассматриваемые через призму. Пучок световых лучей, прошедший через призму, окрашивается по краям.

Основной опыт Ньютона был гениально прост. Ньютон догадался направить на призму световой пучок малого поперечного сечения. Пучок солнечного света проходил в затемненную...

0 0

Гимназия № 26 ДИСПЕРСИЯ СВЕТА Выполнил: ученик 11 В класса Шелепов Дмитрий Руководитель: Пылкова Л.В. Томск-2011 В 17 веке начинает развиваться представление о волновой природе света. Первое открытие, свидетельствующее о волновой природе света, было сделано итальянским учёным Франческо Гримальди. Он заметил, что если на пути очень узкого пучка света поставить предмет, то на экране не получается резкой тени. Края тени размыты, кроме того, вдоль тени появляются цветные полосы. Открытое явление Гримальди назвал дифракцией, но объяснить правильно не сумел. Он понимал, что наблюдаемое им явление находится в противоречии с корпускулярной теорией света, однако не решился полностью отказаться от этой теории. Правильное объяснение открытого явления связано с теорией цветного зрения, основы которой были заложены замечательным английским учёным Исааком Ньютоном. Дисперсия света (разложение света) - это явление зависимости абсолютного показателя преломления вещества от длины волны света...

0 0

Диспе рсия све та (разложение света) - это явление зависимости абсолютного показателя преломления вещества от длины волны света (частотная дисперсия) , а также, от координаты (пространственная дисперсия) , или, что то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты) . Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона) . Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета) . Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

у красного цвета максимальная скорость в среде и минимальная степень преломления,...

0 0

Урок физики "Дисперсия света"

Разделы: Физика

Задачи урока:

Образовательные: ввести понятия спектр, дисперсия света; ознакомить учащихся с историей открытия данного явления. наглядно продемонстрировать процесс разложение узкого светового луча на составляющие различных цветовых оттенков. выявить различия этих элементов луча света. продолжить формирование научного мировоззрения учащихся. Развивающие: развитие внимания, образного и логического мышления, памяти при изучении данной темы. стимулирование познавательной мотивации учащихся. развитие критического мышления. Воспитательные: воспитание интереса к предмету; воспитание чувства прекрасного, красоты окружающего мира.

Тип урока: урок изучения и первичного закрепления новых знаний.

Методы обучения: беседа, рассказ, объяснение, эксперимент. (Информационно-развивающий)

Требования к...

0 0

Министерство науки и образования Украины

Украинская инженерно-педагогическая академия

Доклад на тему:

Дисперсия света

Выполнил студент гр. ДРЭ-С5-1

Фесенко А.В.

Харьков 2006

Явление дисперсии

Дисперсия света. В яркий солнечный день закроем окно в комнате плотной шторой, в ко торой сделаем маленькое отверстие. Через это отвер стие будет проникать в комнату узкий солнечный луч, образующий на противоположной стене светлое пятно. Если на пути луча поставить

стеклянную призму, то пятно на стене превратится в разноцветную по лоску, в которой будут представлены все цвета ра дуги-от фиолетового до красного (рис. 1,ф– фиолетовый, С - синий, Г - голубой, 3 - зеленый, Ж -желтый, О -оранжевый, К - красный).

Дисперсия света – зависимость показателя преломления n вещества от частоты f (длины волны) света или зависимость...

0 0

Слайд 1
Слово “дисперсия” происходит от латинского слова dispersio , что в буквальном переводе означает “рассеяние, развеивание ”. Дисперсия света Работу выполнила ученица 11 «Э» класса Адельшина Ильвира

Слайд 2
История открытия Определение Опыт Ньютона Особенность прохождения светового пучка через призму Основные свойства Следствия Условия возникновения радуги Вопросы Выводы Содержание

Слайд 3
Световой поток при прохождении через призму разлагается на цветовой спектр, который Исаак Ньютон достаточно детально изучил в свое время. Результатом его исследований стало открытие явления дисперсии в 1672 году. Первые шаги на пути к открытию дисперсии

Слайд 4
Около 300 лет назад Исаак Ньютон пропустил солнечные лучи через призму. Недаром на его надгробном памятнике, поставленном в 1731 году и украшенном фигурами юношей, которые держат в руках эмблемы его главнейших открытий, одна фигура держит призму, а в надписи на памятнике есть слова: «Он...

0 0

10

Изучение дисперсии света в 11-м классе

Тишкова Светлана Анатольевна, учитель физики

Статья отнесена к разделу: Преподавание физики

Этот урок проводится в конце изучения темы “волновые свойства света” в классах физико-математического профиля.

А. Учащиеся должны усвоить:


Пучок белого света, при прохождении через вещество, имеющее преломляющий угол, разлагается на пучки различной цветности. Это явление называется дисперсией света.

При падении на границу раздела двух сред световые пучки разной цветности преломляются по-разному: красные - меньше, а фиолетовые - больше.

Объективная характеристика цветности – частота электромагнитной волны.

Б. Учащиеся должны научиться:

Создавать понятие “дисперсия света”.

Распознавать дисперсию света среди других явлений.

Воспроизводить дисперсию света в конкретной ситуации.

0 0

11

Дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав веществ. Частицы вещества совершают вынужденные колебания в переменном электромагнитном поле волны.

Дисперсия света – зависимость абсолютного показателя преломления вещества n от частоты...

0 0

12

Наблюдение явления дисперсии света лабораторная
В физике дисперсией света называется зависимость показателя преломления вещества от длины световой волны. Наиболее наглядно демонстрирует явление дисперсии света его разложение под действием какой-либо призмы.

1.3. Первые опыты с призмами. Представления о при чинах возникновения цветов до Ньютона.
1.4. Опыты Ньютона с призмами. Ньютоновская теория возникновения цветов
1.5. Открытие аномальной дисперсии света. Опыты Кундта
Глава II . Дисперсия в природе
2.1. Радуга
Глава III . Экспериментальная установка для наблюдения смешения цветов
3.1. Описание установки
3.2. Устройство экспериментальной установки
Заключение
Литература
Введение.
Дисперсия света. Мы всегда сталкиваемся с этим явлением в жизни, но не всегда замечаем этого. Но если быть внимательным, то явление дисперсии всегда нас окружает. Одно из таких явлений это обычная радуга. Наверное, нет человека, который не...

0 0

13

МАОУ «Средняя школа №28 имени Г. Ф. Кирдищева»

Петропавловск-Камчатского городского округа

Дисперсия света и цвета тел

Конспект урока физики в 11 классе

Урок изучения нового материала, закрепления и контроля

Учитель физики МАОУ «Средняя школа №28 имени Г. Ф. Кирдищева» Юрьева О. Л.

Сергей ЕСЕНИН

Не жалею, не зову, не плачу,
Все пройдет, как с белых яблонь дым.
Увяданья золотом охваченный,
Я не буду больше молодым.

Ты теперь не так уж будешь биться,
Сердце, тронутое холодком,
И страна березового ситца
Не заманит шляться босиком.

Дух бродяжий! ты все реже, реже
Расшевеливаешь пламень уст
О, моя утраченная свежесть,
Буйство глаз и половодье чувств!

Я теперь скупее стал в желаньях,
Жизнь моя, иль ты приснилась мне?
Словно я весенней гулкой ранью
Проскакал на розовом коне.

Все мы, все мы в этом мире тленны,
Тихо льется...

0 0

14

Какие волны называются когерентными?

волны, имеющие одинаковую частоту

волны, имеющие одинаковую амплитуду

волны, имеющие одинаковую частоту и постоянную разность фаз

Поляризация света доказывает, что свет –
поток нейтральных частиц
поперечная волна
продольная волн

Что называется дифракцией света?
разложение белого света в спектр при помощи стеклянной призмы
усиление или ослабление света при наложении двух когерентных волн
огибание светом препятствий

Цвета спектра (красный – к, оранжевый – о, синий – с, желтый – ж, голубой – г, зеленый – з, фиолетовый – ф) в порядке убыли длины волны правильно указаны в ответе:
1.ф, с, г, з, ж, о, к
к, о, ж, з, г, с, ф
ф, г, з, с, ж, о, к

Радужная окраска тонких пленок нефтепродуктов в лужах вызвана явлением
дифракции
дисперсии
интерференции

Просветление линз объясняется за счет...

0 0

15

Реферат: Тема урока: «Свет это поток частиц»
Учитель Пылкова Л.В., МОУ гимназия № 26

Тема урока: «Свет это поток частиц»

Тип урока: Модифицированные дебаты

Организация «модифицированных» дебатов допускает некоторые изменения правил, можно увеличить или уменьшить количество игроков в командах; допустимы вопросы аудитории, организуются группы поддержки, к которым команды могут обращаться во время игры, группа экспертов осуществляет функции судейства, вырабатывает компромиссное решение, когда это необходимо для реализации учебных целей. Основными этапами организации учебного процесса на основе использования методики дебатов являются: ориентация (выбор темы); подготовка к проведению; проведение дебатов; обсуждение игры.

^ Цели урока:

Обобщение и систематизация знаний

Дисперсия света (разложение света) — это явление зависимости абсолютного показателя преломления вещества от длины волны света (частотная дисперсия), а также, от координаты (пространственная дисперсия), или, что то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета).

Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

Красного цвета максимальная скорость в среде и минимальная степень преломления,

Фиолетового цвета минимальная скорость света в среде и максимальная степень преломления.

Аномальная дисперсия — вид дисперсии света, при которой показатель преломления среды уменьшается с увеличением частоты световых колебаний.

где — показатель преломления среды,

— частота волны.

Согласно современным представлениям и нормальная, и аномальная дисперсии представляют собой явления единой природы. Эта точка зрения основывается на электромагнитной теории света, с одной стороны, и на электронной теории вещества, — с другой. Термин «аномальная дисперсия» сохраняет сегодня лишь исторический смысл, поскольку «нормальная дисперсия» — это дисперсия вдали от длин волн, при которых происходит поглощение света данным веществом, а «аномальная дисперсия» — это дисперсия в области полос поглощения света веществом.

Отличие аномальной дисперсии от нормальной в том, что в некоторых веществах (например в парах иода) при разложении света при прохождении призмы, синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. В нормальной дисперсии наоборот, красный свет преломляется на угол, меньший, чем тот, на который преломляется фиолетовый. (подробнее смотри тему "Дисперсия").

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света. Белый свет разлагается на спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.


Поглощение света - явление ослабления яркости света при его прохождении через вещество или при отражении от поверхности. Поглощение света происходит вследствие преобразования энергии световой волны во внутреннюю энергию вещества или в энергию вторичного излучения, имеющего иной спектральный состав и иное направление распространения.

Закон Бугера — Ламберта — Бера — физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Закон выражается следующей формулой:

,

где I0 — интенсивность входящего пучка, l — толщина слоя вещества, через которое проходит свет, kλ — показатель поглощения.

Показатель поглощения — коэффициент, характеризующий свойства вещества и зависящий от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.

Цвет — качественная субъективная характеристика электромагнитного излучения оптического диапазона, определяемая на основании возникающего физиологического зрительного ощущения, и зависящая от ряда физических, физиологических и психологических факторов. Индивидуальное восприятие цвета определяется его спектральным составом, а также цветовым и яркостным контрастом c окружающими источниками света, а также несветящимися объектами. Очень важны такие явления, как метамерия; особенности человеческого глаза, и психики.

Спектр поглощения — зависимость интенсивности поглощённого веществом излучения (как электромагнитного, так и акустического) от частоты. Он связан с энергетическими переходами в веществе. Спектр поглощения характеризуется так называемым коэффициентом поглощения который зависит от частоты и определяется как обратная величина к расстоянию, на котором интенсивность прошедшего потока излучения снижается в e раз. Для различных материалов коэффициент поглощения и его зависимость от длины волны различны..

С сегодняшних позиций, нормальная дисперсия — это дисперсия вдали от длин волн, при которых происходит поглощение света данным веществом, тогда как аномальная дисперсия — это дисперсия в области полос поглощения света веществом.

МОУ Алексеевская средняя общеобразовательная школа

Тема работы

«Дисперсия света, цвет и человек»

Вид работы – проблемно-реферативная

Учитель физики 1 квалификационной категории

Стекольников Всилий Георгиевич

2010 год

Введение ………………………………………………………….. 3

1. Дисперсия света ……………………………………………………4

2. Немного из истории цвета ………………………………………….5

3. Влияние цвета на человека………………………………………….7

4. Какого цвета ваш характер? ..............................................................8

5. Цвет и звук …………………………………………………………..9

6. Лечебное воздействие цвета ………………………………………..11

7. Группа крови и цвет …………………………………………………12

8. Цвет автомобиля и ДТП на дороге………………………………… 13

учебных кабинетов ………………………………………………….14

10. Заключение …………………………………………………………15

11. Список использованной литературы …………………………….. 16

Введение

В данной работе поставлены следующие задачи:

Раскрыть интересные факты о том, как цвет влияет на характер человека, какое лечебное воздействие оказывает цвет, какова связь между цветом и звуком, фантастические на первый взгляд перспективы «цветного озвучивания» космоса, какова связь между группой крови человека и цветом, о том, какая интересная зависимость существует между человеком и цветом. Немного затрагиваются малоисследованные наукой факты существования биополя человека и любого предмета, их взаимовлияние друг на друга. Также факт умелого использования великих художников и композиторов влияния цветового оформления картин и произведений для их лучшего восприятия человеком на подсознательном уровне через цвет.

Показать влияние цветового оформления учебных кабинетов, школьных коридоров, спортзалов и мастерских на успешное обучение учащихся, на их психическое состояние, а в зависимости от этого и здоровье.

1. Дисперсия света

Занимаясь усовершенствованием телескопов, Ньютон обратил внимание на то, что изображение, даваемое объективом, по краям окрашено. Он заинтересовался этим и первый «исследовал разнообразие световых лучей и проистекавшие отсюда особенности цветов, каких до того никто даже не подозревал» (слова из надписи на надгробном памятнике Ньютону). Радужную окраску изображения, даваемое линзой, наблюдали, конечно, и до него. Было замечено, также, что радужные имеют предметы, рассматриваемые через призму, Пучок световых лучей, прошедших через призму, окрашивается по краям.

https://pandia.ru/text/78/320/images/image002_36.jpg" width="124" height="112">
И. Ньютон () Опыт Ньютона Дисперсия света

Основной опыт Ньютона был гениально прост. Он догадался направить на призму световой луч малого поперечного сечения. Пучок солнечного света проходил в затемненную комнату через маленькое отверстие в стене. Падая на стеклянную призму, он преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов. Следуя многовековой традиции, согласно которой радуга считалась состоящей из 7 цветов, Ньютон тоже выделил 7 цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный. Саму радужную полоску Ньютон назвал спектром.

https://pandia.ru/text/78/320/images/image005_27.jpg" align="left" width="150" height="100 src=">

Виды спектров

Важный вывод, к которому пришел Ньютон, был сформулирован им в трактате по «Оптике» следующим образом: «Световые лучи, отличающие по цвету, отличаются по степени преломляемости». Наиболее сильно преломляются фиолетовые лучи, меньше других-красные. Зависимость показателя преломления света от его цвета Ньютон назвал дисперсией .

2. Немного из истории цвета

В Англии был такой случай. На своего соседа пожаловались в суд жители домов, расположенных напротив. Дело в том, что, ядрено-канареечный цвет, в который англичанин выкрасил фасад своего дома, и черные рамы вызывали у местных жителей головную боль. По предписанию суда владелец яркого особняка вынужден был его перекрасить.

Колл" href="/text/category/koll/" rel="bookmark">коллег российские текстильные фабрики в 90-х годах, производили в основном ткани трех мрачных цветов; серого, коричневого и черного. По мнению, психологов такая цветовая гамма построена на оттенках разрушения. Полюбившимся постперестроечным россиянам сложные цвета жухлой осени, прошлогодних листьев и увядания, психологи называют грязноватистыми, тухлыми и нездоровыми.

Развитие цвета связано со 100-летним циклом, утверждает кандидат наук, один из первых российских ученых-колористов, преподаватель столичной Текстильной академии Светлана Жученкова. Концу столетия, как правило соответствуют сложные цвета; сиреневый, болотно-зеленый, серо-синий, а также бледные и нежные цвета. Простые цвета; белый, черный, красный и желтый-более характерны для начала века.

В тоже время нельзя не считаться с национальной психологией. Так, например, если в Америке мужчина идет устраиваться на работу в коричневом костюме, то он вряд ли получит это место. Французы предпочитают острые тона и любят контрасты, итальянцы - более мягкие цвета. Азия тяготеет к желтому, голубому и немного вульгарному, рыжему, прибалты - к зеленому и коричневому. Москва отличается пестрой гаммой, а Санкт-Петербург - «эстетствующей».

https://pandia.ru/text/78/320/images/image009_25.jpg" width="109" height="150">

В свое время Сталин, последовав примеру Наполеона, создавшего вычурный и помпезный цветовой стиль для увековечивания в архитектуре и живописи пышности своих побед, требовал строить порталы и арки в величественном стиле Наполеона, демонстрируя обликом страны собственное величие. С цветовой гаммой вождь народов обошелся более сурово. Из 160 цветов, каждый из которых в царской Росси имел свое название, сохранилось лишь несколько десятков. Послереволюционные цвета в истории колористики России вообще отсутствуют как жанр. В сталинскую эпоху существовали ограниченные цвета. В 40-50-ые годы страну одели в серо-стальные и зеленые тона, в 60-ые использовались цвета повышения производительности труда. В 70-ые были разработаны флюоросцентные красители. По некоторым данным, почти все разработчики этих ядовитых цветов умерли от рака.

https://pandia.ru/text/78/320/images/image011_20.jpg" align="left" width="106" height="136 src=">

3. Влияние цвета на человека.

Между человеком и цветом существуют странные и непростые отношения. По мнению ученых, цвет это не просто элемент эстетики и культуры, а скорее сложная психическая субстанция, демонстрирующая настроение человека, состояние его психического здоровья и даже способная влиять на него.

https://pandia.ru/text/78/320/images/image014_16.jpg" width="276" height="360 src=">

Красный цвет активизирует мышечную силу. Психологи утверждают, что, если на тяжелоатлета надеть красные очки, он «возьмет» больший вес, чем без них. В то же время, находясь в окружении «красного», человек постарается быстрее из него выбраться. Красные телефонные будки были рассчитаны на большую проходимость. Почти также реагируют на этот цвет и дети. Ребенок, спящий лицом к стене с красными обоями, более раздражителен и неспокоен.

Фиолетовый цвет мог бы заменить наркоманам галлюциноген. Если человека посадить в комнату, где все: потолок, пол, стены, окна и двери будут выкрашены в фиолетовый цвет, то у него начнутся галлюцинации.

Синий цвет способствует размышлениям, успокаивает и снижает давление.

Голубой цвет настраивает на меланхолию.

Белый цвет создает ощущение нереальности.

Черный цвет самый сложный с одной стороны, мистический, символизирующий посвященность во что-то недоступное остальным, с другой стороны - официальный.

Влияние на человека

Раздражает, возбуждает

Фиолетовый

Вызывает галлюцинации

Успокаивает, снижает давление

Настраивает на меланхолию

Создает ощущение нереальности

Мистический

4. Какого цвета ваш характер?

Психологи утверждают, что характер человека можно определить по его цветовым вкусам. К таким выводам, кстати, пришел швейцарский ученый М. Люмар. Он считает, что если вам нравится красный цвет, то основные ваши черты-сильная воля, быстрое принятие решений. Предпочтение желтого цвета говорит о том, что вы оптимист и идеалист. Вам нравиться все новое, неожиданное, необычное и сенсационное.

Если вам нравиться оранжевый цвет, то вы склонны легко воспринимать удачи и неудачи, у вас достаточно воли для принятия решений. Вы сильны физически и психически.

Если вам нравиться зеленый цвет, то вы самоуверенны и критически настроенная личность. Вы основательны, консервативны, знаете себе цену. Вы почти идеальны в семейной жизни.

Если вас привлекает голубой или синий цвет, то вы человек несильного характера, эмоциональны и добродушны, с богатой внутренней жизнью.

Если же вам нравиться фиолетовый цвет, то вы скорее интуитивист, чем логик.

Основные черты характера

Сильная воля, решительность

Оптимист, идеалист

Оранжевый

Вы сильная личность

Вы самоуверенны, консервативны, идеальны в семейной жизни

Слабохарактерны, эмоциональны, добродушны

Фиолетовый

Вы интуитивист, чем логик

5. Цвет и звук

Связь между цветом и звуком наиболее ярко выражена в явлении цветомузыки. Цветомузыка была близка композитору, который предпочитал создавать свои произведения в определенной для данного цвета тональности. Музыка цвета была одним из основных элементов и во многих картинах художника. Масштабного осуществления цветомузыкального воздействия впервые удалось композитору в симфонической поэме «Прометей» («Поэма огня», 1910г.) Для усиления воздействия музыки он ввел в состав оркестра орган, колокола, использовал звучание хора без слов и специальное освещение («партии цвета»).

Картины Рериха:

https://pandia.ru/text/78/320/images/image016_19.jpg" width="128" height="128">

Восприятие человеком музыкальных произведений одновременно с определенной цветовой гаммой света существенно влияет на впечатление от использования этих произведений. В первую очередь потому, что чувствительности глаза и уха взаимосвязаны. Так, чувствительность глаза к зелено-голубым лучам видимого спектра под влиянием звуков и шумов заметно повышается, а к оранжево-красным понижается; чувствительность же нашего слухового аппарата с повышением интенсивности освещения уменьшается. Влияет и то, что быстрее всего человек воспринимает предметы красного цвета и медленнее всего, предметы фиолетовой окраски. И поскольку мир в красках всегда воспринимается человеком острее и глубже, чем серый фон, автор музыки имеет возможность использовать особенности цветового зрения человека для усиления воздействия на него музыки.

Медики давно уже установили, что мажорная музыка ускоряет выделение в организме пищеварительных соков, оказывает возбуждающее действие на человеческий организм, главным образом ускоряет ритмы дыхания и сердцебиения. Его воздействие усиливается, если использовать в окраске помещений и предметов, оранжево-красные тона. Мелодичная музыка вызывает у человека замедление дыхания; на восприятии тихих, невозбуждающих у человека тревоги звуков основана музыкальная терапия. Ее эффективность повышается, если она проводится в помещении, где преобладают сине-зеленые тона окраски.

Это не случайно. В психологическом плане красные цвета возбуждают и настораживают человека-это цвет огня и крови, и в исторически сложившихся у человека представлениях они служат предвестниками беды. Сине-зеленые тона - это цвета свежей растительности и ясного неба; они обычно не связаны с опасностью. Таким образом, цвет влияет на психофизиологическое состояние человека, на восприятие им различных явлений, в том числе и музыки.

Наблюдается и обратный процесс. У большинства любящих музыку людей при сопоставлении мажорных и минорных мелодий возникает ощущение светотени, ибо мажор отождествляется со «светлым» ладом, а минор - с «темным». Это имеет место например, при восприятии картины рассвета во вступлении к опере «Хованщина» и картины ночного неба во вступлении к опере «Ночь перед Рождеством» -Корсакова.

https://pandia.ru/text/78/320/images/image019_14.jpg" width="150" height="112">

Кроме «многоцветья», сопровождающего звучание музыки, ее диапазон воздействия может расширить и использование в оркестрах музыкальных инструментов с особым звуковым спектром –как старых, но не нашедших широкого применения (например, изобретенного терменвокса), так и новых.

https://pandia.ru/text/78/320/images/image021_13.jpg" width="143" height="107">

При этом возможен такой фантастический путь: создать особый музыкальный инструмент и музыку необычайного звучания, перекодировав излучение с их богатой и оригинальной цветовой гаммой в звуковой спектр. Несмотря на кажущуюся утопичность идеи, такую работу проделали сотрудники Парижской астрономической обсерватории, которые с помощью электроакустической техники перевели в звуковые частоты свет отдельных звезд. В результате небесный свод «заговорил» с людьми на языке звуков. О восприятии «музыки небесных сфер» мечтал еще Пифагор. Ныне его мечта осуществилась, но иным путем, чем он предполагал, (не за счет механического движения небесных тел по их орбитам).

6. Лечебное воздействие цвета

Давно доказано, что каждый человек имеет свое биополе . Но как подтвердили специальные научные исследования, наличие биополя характерна и для произведений искусств; картин, скульптур. Более того, в ходе эксперимента удалось доказать, что через это биополе они могут воздействовать на наше здоровье в некоторых случаях сильнее, чем лекарства. Подбором произведения и цветовой гаммы можно нормализовать давление, успокоить нервную систему, уменьшить боль, снять стресс. При регулярном лечении художественными произведениями отмечены хорошие результаты при неврозах, болезнях сердца, печени, щитовидной железы, желчного пузыря и кишечника. Кроме этого человек получает сильный психоэмоциональный импульс, который способствует общему оздоровлению организма.

https://pandia.ru/text/78/320/images/image024_11.jpg" width="92" height="180">

Лечебное воздействие цвета связано с влиянием колебаний волны определенной длины на наши органы и психические центры, причем действие разных цветов оказывает специфическое влияние при определенных заболеваниях.

Красный цвет помогает при вирусных заболеваниях, язвах желудка, анемии , гипотонии, стимулирует иммунитет, деятельность желез внутренней секреции и обмен веществ, укрепляет память, придает бодрость и энергию.

Розовый цвет оказывает седативное воздействие на нервную систему, улучшает настроение.

Оранжевый цвет улучшает процессы пищеварения, регенерации, помогает при заболеваниях селезенки и легких, усиливает кровообращение.

Желтый цвет эффективен при атонических запорах, бессоннице , кожных заболеваниях. Он возбуждает аппетит, оказывает очищающее действие на весь организм, стимулирует зрение и работу печени, тонизирует нервную систему. Его принято считать физиологически оптимальным цветом.

Зеленый цвет нормализует сердечную деятельность, стабилизирует артериальное давление, уменьшает головные боли, боли при заболеваниях позвоночника, помогает при острых простудных заболеваниях, улучшает обмен веществ и работоспособность.

Голубой цвет используют при заболеваниях глаз, печени, гортани, позвоночника. Он снижает аппетит и спазмы кишечника, нормализует сердечную деятельность.

Синий цвет влияет на щитовидную железу, помогает при заболеваниях почек и мочевого пузыря, легких, глаз, лечит бессонницу, психические болезни, желтуху, кожные заболевания.

Фиолетовый цвет -цвет духовности и творчества. Он оказывает успокаивающее действие на нервную систему, помогает при психических расстройствах, невралгии, сотрясениях мозга. Этот цвет рекомендуют при заболеваниях почек, печени, мочевого и желчного пузыря, при различных воспалительных процессах. Отмечено также его позитивное воздействие на сосудистую систему.

7. Группа крови и цвет

Ученые установили, что между группой крови человека и цветом, также существует тесная связь.

1-ая группа крови. Наиболее благоприятны красный, оранжевый и пурпурный тона.

3-яя группа. Более широкий выбор. Красный и оранжевый цвета стимулируют процессы жизнедеятельности и усиливают умственную деятельность. Голубой и зеленый тона успокоят нервы, а фиолетовый тон будет способствовать создания настроения для раздумий и воспоминаний.

4-ая группа. Люди с такой группой крови сходны по своим энергетическим характеристикам со второй, следует чаще соприкасаться чаще с голубым и зеленым цветом.

Группа крови

Благоприятный цвет

Красный, оранжевый, пурпурный

Голубой, зеленый

Красный, оранжевый, голубой, зеленый, фиолетовый

Голубой, зеленый

8. Цвет автомобиля и ДТП на дороге

По официальным данным, автомобили серебристого цвета на 50% реже попадают в серьезные ДТП, чем автомобили других цветов. Автомобили белого, желтого, серого, красного и синего цвета имеют примерно одинаковый уровень риска. Особенной опасности подвергаются те водители, которые садятся за руль черных, коричневых и зеленых автомобилей, потому что их риск попасть в аварию и получить серьезные травмы повышаются в 2 раза.

https://pandia.ru/text/78/320/images/image026_10.jpg" align="left" width="335" height="209 src=">Самый «опасный» автомобиль по вероятности попадания в ДТП.

Риск увеличивается в 2 раза.

Цветопсихологические исследования показали, что дети отдают предпочтение тому или иному цвету в зависимости от возраста.

В раннем возрасте они предпочитают красный или пурпурный цвет, причем девочки розовый цвет.

В возрасте 9-11 лет интерес к красному цвету постепенно заменяется интересом к оранжевому, затем к желтому, желто-зеленому, а затем к зеленому.

После 12 лет любимый цвет синий.

Классные доски необходимо окрашивать в темно-зеленый или в темно-синий цвет. Не следует на стене, где висит доска, создавать цветовой контраст, чтобы не утомлять зрение учащихся. Передняя стена во многих случаях может быть окрашена в цвет, более интенсивный по сравнению с задней и боковыми стенами.

В подготовительном и первом классе можно рекомендовать интенсивные чистые красные тона.

Для второклассников красный цвет можно постепенно заменять оранжево-красным или оранжевым, для 10-11 летних детей - желтым, желто-зеленым, а затем зеленым.

Для детей переходного возраста начинает играть определенную роль синий цвет, но обязательно в сочетании с оранжевым, так как класс с большим количеством синевого цвета создает «холодное» впечатление.

В классах, где занимаются ручным трудом, следует применять голубой цвет. Этим же цветом следует окрашивать музыкальный класс. В спортивном зале лучше применять голубой и светло-зеленые цвета.

Залы и коридоры могут быть окрашены в светло-синий и желтый цвета

Предпочитаемые цвета

Цвет, вызывающий отрицательное отношение

Преобладающее психологическое настроение

Красный, пурпурный, розовый, бирюзовый

Черный, темно-коричневый, серый

Пребывание в мире сказок

Зеленый, желтый, красный

Оливковый, пастельно-зеленый, лиловый

Преобладание чувственного восприятия мира

Ультрамарин, оранжевый, зеленый

Фиолетовый, лиловый

Рациональный подход к восприятию мира, развитие самосознания

Красно-оранжевый

Пурпурный, розовый

Инстинктивно-целенаправленное восприятие мира

10. Заключение

Данная работа призвана показать, какое большое значение имеет знания о влиянии цвета на человеческий организм, на здоровье, на психическое и физическое состояние, на эффективное восприятие художественных и музыкальных произведений. Да и жизнь и безопасность человека напрямую связана, например, с цветом автомобиля, что конечно необходимо учитывать. Вместе с тем, это направление в физике является малоизученной, например, биополе человека и предметов. Или «малоосвещенной» в научной и учебной литературе . Это направление в физике имеет большие перспективы для дальнейшего изучения.

12. Список использованной литературы

1. , Справочник по физике, 2005 год

1.Соросовский научно-образовательный журнал, 2005 год, 2006 год

2. Журнал «Физика в школе», 2005 год

После грозы и дождя, когда из-за туч выглядывает солнышко, мы часто наблюдаем на небе очень красивое явление - радугу.

Она состоит из разноцветных дуг. Причём цвета в ней всегда чередуются в определённой последовательности: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый. Оказывается, на такие цвета разлагается обыкновенный солнечный свет.

Что такое дисперсия света

Разложение белого света на цвета называют дисперсией света .

Для знакомства с этим явлением проведём простой опыт. Направим узкий луч белого света на прозрачную трёхгранную призму из стекла, расположенную в тёмной комнате. Пройдя сквозь грани призмы, луч преломится дважды и отклонится. Кроме того за призмой вместо одного белого луча мы увидим семь разноцветных, окрашенных в те же цвета, что и радуга, лучей, расположенных в той же последовательности. Причём окажется, что сильнее всего преломился фиолетовый луч, а меньше всего красный. То есть, угол преломления зависит от цвета луча.

Если на пути цветового спектра поместить другую призму, повёрнутую на 180° относительно первой, то пройдя через неё, все цветовые лучи снова соберутся в луч белого света.

Опыт с прохождение белого света через призму первые провёл Исаак Ньютон. Он же объяснил, что цвет - это собственное свойство света.

Из своего опыта Нютон сделал 2 вывода:

  1. Белый свет имеет сложную структуру. Он состоит из потока частиц разного цвета.
  2. Все эти частицы движутся с разной скоростью, поэтому лучи разного цвета и преломляются на разный угол. Самая высокая скорость у частиц красного цвета. Он преломляется через призму меньше всех других цветов. Чем меньше скорость, тем больше показатель преломления.

Именно Ньютон разделил цветовой спектр на 7 цветов, потому что считал, что существует связь между цветами и музыкальными нотами, которых тоже 7, семью днями недели и семью объектами Солнечной системы (во времена Ньютона были известны только 7 планет: Меркурий, Венера, Земля, Луна, Марс, Сатурн, Юпитер), семью чудесами света. Правда, в спектре Ньютона синий цвет назывался индиго.

Чтобы легче было представить последовательность цветов в спектре, достаточно запомнить фразу, в которой заглавные буквы совпадают с первыми буквами наименований цветов: «Каждый Охотник Желает Знать , Где Сидит Фазан ».

В общем смысле спектром в физике называют распределение значений физической величины (энергии, массы или частоты).

Спектр видимого излучения

Свет, представляющий собой волны одинаковой длины и соответствующий одному цвету, называется монохроматичным . Белый свет представляет собой набор электромагнитных волн различной длины. Поэтому он является полихроматичным .

Почему же белый свет разлагается на другие цвета, проходя через призму? Причина в том, что каждый цвет, входящий в состав белого света, имеет свою длину световой волны и распространяется в прозрачной оптической среде со своей фазовой скоростью, отличной от скоростей волн других цветов. У красного цвета эта скорость в среде максимальна, а у фиолетового минимальна. Кстати, скорости эти различны только в оптической среде. В вакууме скорость лучей разного цвета остаётся постоянной и равной скорости света.

Лучи разного цвета (разной длины волны) имеют разные показатели преломления, поэтому по-разному отклоняются при переходе из одной среды в другую. В зависимости показателя преломления света от длины волны заключается суть явления дисперсии света. По этой причине и возникает спектр .

Отношение скорости света в вакууме к его скорости в данной среде называют абсолютным показателем преломления среды.

n = c/v ,

где с - скорость света; v - скорость света в оптической среде.

Зная длину волны, можно вычислить показатель преломления среды для каждого цвета видимого спектра.

Итак, белый свет разлагается на разные цвета, потому что каждый цвет имеет свой показатель преломления.

Дисперсией объясняется появление радуги. Капельки воды сферической формы, парящие в атмосфере, преломляют, а затем и отражают солнечный свет от своей внутренней поверхности. В результате он разлагается в спектр, и мы видим разноцветное свечение. Грани бриллианта «играют» цветами также благодаря дисперсии.

Цвета, входящие в спектр, называются спектральными цветами . Но спектр содержит не все цвета, которые воспринимает мозг человека. Например, в нём нет розового цвета. Он получается при смешении других цветов.

В спектре не существует резкой границы между цветами. Все цвета плавно переходят друг в друга.

Длины волн, соответствующих каждому цвету, были определены одним из создателей волновой теории света английским физиком, механиком, врачом, астрономом и востоковедом Томасом Юнгом.

Свет и цвет

Сложной структурой белого света объясняется многообразие красок в окружающем нас мире. Из-за того что световые лучи разного цвета по-разному отражаются от предметов или поглощаются ими, мы и видим мир цветным.

Помните выражение: «Все кошки ночью серые»? А ведь это действительно так. В темноте цвет различить невозможно. Там, где нет света, все предметы кажутся нам чёрными. Но стоит только направить на кошку луч света, как она сразу же приобретёт цвет.

Цвет предмета - это цвет отражённой волны спектра. Белые предметы отражают все цвета, поэтому мы и видим их белыми. Чёрные, наоборот, все цвета поглощают и не отражают ничего. Траву мы видим зелёной, потому при солнечном свете она отражает зелёный цвет, а все остальные поглощает. Банан жёлтый, потому что отражает жёлтый цвет и т.д.

Дисперсия света - это зависимость показателя преломления n вещества от длины волны света (в вакууме)

или, что то же самое, зависимость фазовой скорости световых волн от частоты:

Дисперсией вещества называется производная от n по

Дисперсия - зависимость показателя преломления вещества от частоты волны – особенно ярко и красиво проявляет себя совместно с эффектом двойного лучепреломления (см. Видео 6.6 в предыдущем параграфе), наблюдаемом при прохождении света через анизотропные вещества. Дело в том, что показатели преломления обыкновенной и необыкновенной волн различно зависят от частоты волны. В результате цвет (частота) света прошедшего через анизотропное вещество помещенное между двумя поляризаторами зависит как от толщины слоя этого вещества, так и от угла между плоскостями пропускания поляризаторов.

Для всех прозрачных бесцветных веществ в видимой части спектра с уменьшением длины волны показатель преломления увеличивается, то есть дисперсия вещества отрицательна: . (рис. 6.7, области 1-2, 3-4)

Если вещество поглощает свет в каком-то диапазоне длин волн (частот), то в области поглощения дисперсия

оказывается положительной и называется аномальной (рис. 6.7, область 2–3).

Рис. 6.7. Зависимость квадрата показателя преломления (сплошная кривая) и коэффициента поглощения света веществом
(штриховая кривая) от длины волны
l вблизи одной из полос поглощения ()

Изучением нормальной дисперсии занимался ещё Ньютон. Разложение белого света в спектр при прохождении сквозь призму является следствием дисперсии света. При прохождении пучка белого света через стеклянную призму на экране возникает разноцветный спектр (рис. 6.8).


Рис. 6.8. Прохождение белого света через призму: вследствие различия значений показателя преломления стекла для разных
длин волн пучок разлагается на монохроматические составляющие - на экране возникает спектр

Наибольшую длину волны и наименьший показатель преломления имеет красный свет, поэтому красные лучи отклоняются призмой меньше других. Рядом с ними будут лучи оранжевого, потом желтого, зеленого, голубого, синего и, наконец, фиолетового света. Произошло разложение падающего на призму сложного белого света на монохроматические составляющие (спектр).

Ярким примером дисперсии является радуга. Радуга наблюдается, если солнце находится за спиной наблюдателя. Красные и фиолетовые лучи преломляются сферическими капельками воды и отражаются от их внутренней поверхности. Красные лучи преломляются меньше и попадают в глаз наблюдателя от капелек, находящихся на большей высоте. Поэтому верхняя полоса радуги всегда оказывается красной (рис. 26.8).


Рис. 6.9. Возникновение радуги

Используя законы отражения и преломления света, можно рассчитать ход световых лучей при полном отражении и дисперсии в дождевых каплях. Оказывается, что лучи рассеиваются с наибольшей интенсивностью в направлении, образующем угол около 42° с направлением солнечных лучей (рис. 6.10).


Рис. 6.10. Расположение радуги

Геометрическое место таких точек представляет собой окружность с центром в точке 0. Часть ее скрыта от наблюдателя Р под горизонтом, дуга над горизонтом и есть видимая радуга. Возможно также двойное отражение лучей в дождевых каплях, приводящее к радуге второго порядка, яркость которой, естественно, меньше яркости основной радуги. Для нее теория дает угол 51 °, то есть радуга второго порядка лежит вне основной. В ней порядок цветов заменен на обратный: внешняя дуга окрашена в фиолетовый цвет, а нижняя - в красный. Радуги третьего и высших порядков наблюдаются редко.

Элементарная теория дисперсии. Зависимость показателя преломления вещества от длины электромагнитной волны (частоты) объясняется на основе теории вынужденных колебаний. Строго говоря, движение электронов в атоме (молекуле) подчиняется законам квантовой механики. Однако для качественного понимания оптических явлений можно ограничиться представлением об электронах, связанных в атоме (молекуле) упругой силой. При отклонении от равновесного положения такие электроны начинают колебаться, постепенно теряя энергию на излучение электромагнитных волн или передавая свою энергию узлам решетки и нагревая вещество. В результате этого колебания будут затухающими.

При прохождении через вещество электромагнитная волна воздействует на каждый электрон с силой Лоренца:

где v - скорость колеблющегося электрона. В электромагнитной волне отношение напряженностей магнитного и электрического полей равно

Поэтому нетрудно оценить отношение электрической и магнитной сил, действующих на электрон:

Электроны в веществе движутся со скоростями, много меньшими скорости света в вакууме:

где - амплитуда напряженности электрического поля в световой волне, - фаза волны, определяемая положением рассматриваемого электрона. Для упрощения вычислений пренебрежем затуханием и запишем уравнение движения электрона в виде

где, - собственная частота колебаний электрона в атоме. Решение такого дифференциального неоднородного уравнения мы уже рассматривали ранее и получили

Следовательно, смещение электрона из положения равновесия пропорционально напряженности электрического поля. Смещениями ядер из положения равновесия можно пренебречь, так как массы ядер весьма велики по сравнению с массой электрона.

Атом со смещенным электроном приобретает дипольный момент

(для простоты положим пока, что в атоме имеется только один «оптический» электрон, смещение которого вносит определяющий вклад в поляризацию). Если в единице объема содержится N атомов, то поляризованность среды (дипольный момент единицы объема) можно записать в виде

В реальных средах возможны разные типы колебаний зарядов (групп электронов или ионов), вносящих вклад в поляризацию. Эти типы колебаний могут иметь разные величины заряда е i и массы т i , а также различные собственные частоты (мы будем обозначать их индексом k), при этом число атомов в единице объема с данным типом колебаний N k пропорционально концентрации атомов N:

Безразмерный коэффициент пропорциональности f k характеризует эффективный вклад каждого типа колебаний в общую величину поляризации среды:

С другой стороны, как известно,

где - диэлектрическая восприимчивость вещества, которая связана с диэлектрической проницаемостью e соотношением

В результате получаем выражение для квадрата показателя преломления вещества:

Вблизи каждой из собственных частот функция , определяемая формулой (6.24), терпит разрыв. Такое поведение показателя преломления обусловлено тем, что мы пренебрегли затуханием. Аналогично, как мы видели ранее, пренебрежение затуханием приводит к бесконечному росту амплитуды вынужденных колебаний при резонансе. Учет затухания избавляет нас от бесконечностей, и функция имеет вид, изображенный на рис. 6.11.

Рис. 6.11. Зависимость диэлектрической проницаемости среды от частоты электромагнитной волны

Учитывая связь частоты с длиной электромагнитной волны в вакууме

можно получить зависимость показателя преломления вещества п от длины волны в области нормальной дисперсии (участки 1–2 и 3–4 на рис. 6.7):

Длины волн, соответствующие собственным частотам колебаний , - постоянные коэффициенты.

В области аномальной дисперсии () частота внешнего электро­маг­нитного поля близка к одной из собственных частот колебаний молекулярных диполей, то есть возникает резонанс. Именно в этих областях (например, участок 2–3 на рис. 6.7) наблюдается существенное поглощение электромагнитных волн; коэффициент поглощения света веществом показан штриховой линией на рис. 6.7.

Понятие о групповой скорости. С явлением дисперсии тесно связано понятие о групповой скорости. При распространении в среде с дисперсией реальных электромагнитных импульсов, например известных нам цугов волн, испускаемых отдельными атомными излучателями, происходит их «расплывание» - расширение протяженности в пространстве и длительности во времени. Это связано с тем, что такие импульсы представляют собой не монохроматическую синусоидальную волну, а так называемый волновой пакет, или группу волн - совокупность гармонических составляющих с разными частотами и с разными амплитудами, каждая из которых распространяется в среде со своей фазовой скоростью (6.13).

Если бы волновой пакет распространялся в вакууме, то его форма и пространственно-временная протяженность оставались бы неизменными, а скоростью распространения такого цуга волн была бы фазовая скорость света в вакууме

Из-за наличия дисперсии зависимость частоты электромагнитной волны от волнового числа k становится нелинейной, и скорость распространения цуга волн в среде, то есть скорость переноса энергии, определяется производной

где - волновое число для «центральной» волны в цуге (обладающей наибольшей амплитудой).

Мы не будем выводить эту формулу в общем виде, но на частном примере поясним ее физический смысл. В качестве модели волнового пакета примем сигнал, состоящий из двух плоских волн, распространяющихся в одном направлении с одинаковыми амплитудами и начальными фазами , но различающихся частотами, сдвинутыми относительно «центральной» частоты на небольшую величину . Соответствующие волновые числа сдвинуты относительно «центрального» волнового числа на небольшую величину . Эти волны описываются выражениями.



© dagexpo.ru, 2024
Стоматологический сайт