Материал защита от магнитного поля. Магнитный экран

21.09.2019

Защитные мероприятия от воздействия МП в основном включают экранирование и защиту «временем» . Экраны должны быть замкнутыми и изготавливаться из магнитомягких материалов. В ряде случаев достаточно выведения работающего из зоны воздействия МП, так как с удалением источника ПМП и ПеМП их значения быстро убывают.

Как средства индивидуальной защиты от действия магнитных полей можно использовать различные дистанционные средства управления, деревянные клещи и другие манипуляторы дистанционного принципа действия. В ряде случаев могут применяться различные блокирующие устройства, предотвращающие нахождение персонала в магнитных полях с индукцией выше рекомендованных величин.

Основная мера защиты – предупредительная:

Необходимо исключить продолжительное пребывание (регулярно по несколько часов в день) в местах повышенного уровня магнитного поля промышленной частоты;

Кровать для ночного отдыха максимально удалять от источников продолжительного облучения, расстояние до распределительных шкафов, силовых электрокабелей должно быть 2,5 – 3 метра;

Если в помещении или в смежном есть какие-то неизвестные кабели, распределительные шкафы, трансформаторные подстанции – удаление должно быть максимально возможным, оптимально – промерить уровень электромагнитных излучений до того, как жить в таком помещении;

При установке полов с электроподогревом выбирать системы с пониженным уровнем магнитного поля.

Структура мер защиты от действия магнитных полей

Наименование мер защиты

Коллективная защита

Индивидуальная защита

Организацион- ные меры защиты

Лечебно-профилактические мероприятия

Применение средств наглядного предупреждения о наличии МП

Проведение медицинского освидетельствования при приеме на работу

Вывешивание плакатов, памяток с перечнем основных мер предосторожности

Периодические медицинские обследования и врачебные наблюдения за персоналом

Проведение лекций по безопасности труда при работе с источниками МП и профилактике переоблучений от их воздействия

Объективная информация об уровне интенсивностей на рабочем месте и четкое представление об их возможном влиянии на состояние здоровья работающих

Снижение уровня воздействия сопутствующих производственных факторов

Проведение инструктажа по правилам техники безопасности при работе в условиях воздействия МП

Мероприятия по защите «временем»

Разработка оптимального режима труда и отдыха коллектива с организацией рабочего времени с минимально возможным контактом по времени с МП

Нахождение в контакте с МП только по производственной необходимости с четкой регламентацией по времени и пространству совершаемых действий

Мероприятия по защите за счет рационального размещения объектов

Размещение магнитных материалов и магнитных устройств на достаточном расстоянии (1,5-2 м) друг от друга и от рабочих мест

Предупреждение создания дополнительных источников МП («магнитомягкие» материалы) за счет выведения их из зоны действия МП мощных установок

Инженерно-технические меры защиты

Хранение и транспортировка магнитных изделий в «ярмах», приспособлениях или устройствах, полностью или частично замыкающих МП

Использование инструментов, манипуляторов индивидуального пользования с дистанционным принципом действия

Применение замкнутых экранов из магнитомягких материалов

Применение блокирующих устройств, позволяющих отключать аппаратуру, генерирующую МП, в случае попадания различных участков тела в зону индукции сильных МП

Список используемой литературы:

Довбыш В. Н., Маслов М. Ю., Сподобаев Ю. М. Электромагнитная безопасность элементов энергетических систем.2009 г.

Кудряшов Ю. Б., Перов Ю. Ф. Рубин А. Б. Радиационная биофизика: радиочастотные и микроволновые электромагнитные излучения. Учебник для ВУЗов. - М.: ФИЗМАТЛИТ, 2008 г.

Сайт http://ru.wikipedia.org

СанПиН 2.1.8/2.2.4.2490-09. Электромагнитные поля в производственных условиях Введ. 2009–05–15. М. : Изд-во стандартов, 2009 г.

СанПиН 2.2.2.542–96 "Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организация работы"

Аполлонский, С. М. Электромагнитная безопасность технических средств и человека. М-во образования и науки Рос. Федерации, Гос. образоват. учреждение высш. проф. образования "Сев.-Зап. гос. заоч. техн. ун-т". Санкт-Петербург: Изд-во СЗТУ, 2011

Принципы экранирования магнитного поля

Для экранирования магнитного поля применяются два метода:

Метод шунтирования;

Метод магнитного поля экраном.

Рассмотрим подробнее каждый из этих методов.

Метод шунтирования магнитного поля экраном.

Метод шунтирования магнитного поля экраном применяется для защиты от постоянного и медленно изменяющего переменного магнитного поля. Экраны изготавливаются из ферромагнитных материалов с большой относительной магнитной проницательностью (сталь, пермаллой). При наличии экрана линии магнитной индукции проходят в основном по его стенкам (рисунок 8.15), которые обладают малым магнитным сопротивлением по сравнению с воздушным пространством внутри экрана. Качество экранирования зависит от магнитной проницаемости экрана и сопротивления магнитопровода, т.е. чем толще экран и чем меньше швов, стыков, идущих поперек направления линий магнитной индукции, эффективность экранирования будет выше.

Метод вытеснения магнитного поля экраном.

Метод вытеснения магнитного поля экраном применяется для экранирования переменных высокочастотных магнитных полей. При этом используются экраны из немагнитных металлов. Экранирование основано на явлении индукции. Здесь явление индукции полезно.

Поставим на пути равномерного переменного магнитного поля (рисунок 8.16, а) медный цилиндр. В нем возбудятся переменные ЭД, которые, в свою очередь, создадут переменные индукционные вихревые токи (токи Фуко). Магнитное поле этих токов (рисунок 8.16,б) будет замкнутым; внутри цилиндра оно будет направлено навстречу возбуждающему полю, а за его пределами – в ту же сторону, что и возбуждающее поле. Результирующее поле (рисунок 8.16, в) оказывается ослабленным у цилиндра и усиленным вне его, т.е. происходит вытеснение поля из пространства, занимаемого цилиндром, в чем и заключается его экранирующее действие, которое будет тем эффективнее, чем меньше электрическое сопротивление цилиндра, т.е. чем больше протекающие по нему вихревые токи.

Благодаря поверхностному эффекту («скинэффекту») плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону

, (8.5)

где (8.6)

– показатель уменьшения поля и тока, которое называется эквивалентной глубиной проникновения.

Здесь – относительная магнитная проницаемость материала;

– магнитная проницаемость вакуума, равная 1.25*10 8 гн*см -1 ;

– удельное сопротивление материала, Ом*см;

– частота, Гц.

Величиной эквивалентной глубины проникновения удобно характеризовать экранирующий эффект вихревых токов. Чем меньше х 0 , тем больше создаваемое ими магнитное поле, вытесняющее из пространства занятого экраном, внешнее поле источника наводки.

Для немагнитного материала в формуле (8.6) =1, экранирующий эффект определяется только и . А если экран сделать из ферромагнитного материала?

При равных эффект будет лучше, так как >1 (50..100) и х 0 будет меньше.

Итак, х 0 является критерием экранирующего эффекта вихревых токов. Представляет интерес оценить, во сколько раз плотность тока и напряженность магнитного поля становится меньше на глубине х 0 по сравнению, чем на поверхности. Для этого в формулу (8.5) подставим х=х 0 , тогда

откуда видно, что на глубине х 0 плотность тока и напряженность магнитного поля падают в е раз, т.е. до величины 1/2.72, составляющей 0.37 от плотности и напряженности на поверхности. Так как ослабление поля всего в 2.72 раза на глубине х 0 недостаточно для характеристики экранирующего материала , то пользуются еще двумя величинами глубины проникновения х 0,1 и х 0,01 , характеризующими падение плотности тока и напряжения поля в 10 и 100 раз от их значений на поверхности.

Выразим значения х 0,1 и х 0,01 через величину х 0 , для этого на основание выражения (8.5) составим уравнение

И ,

решив которые получим

х 0.1 =х 0 ln10=2.3x 0 ; (8.7)

х 0.01 =х 0 ln100=4.6x 0

На основании формул (8.6) и (8.7) для различных экранирующих материалов в литературе приведены значения глубин проникновения. Эти же данные, с целью наглядности, приведем и мы в виде таблицы 8.1.

Из таблицы видно, что для всех высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5..1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует исходить не из электрических свойств материала, а руководствоваться соображениями механической прочности, жесткости, стойкости против коррозии, удобства стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобства пайки, сварки и пр.

Из данных таблицы следует, что для частот больше 10 МГЦ пленка из меди и тем более из серебра толщиной меньше 0.1 мм дает значительный экранирующий эффект . Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированного гетинакса или другого изоляционного материала с нанесенным на него медным или серебряным покрытием.

Сталь можно использовать в качестве экранов, только нужно помнить, что из-за большого удельного сопротивления и явления гистерезиса экран из стали может вносить в экранирующие цепи значительные потери.

Фильтрация

Фильтрация является основным средством ослабления конструктивных помех, создаваемых в цепях питания и коммутации постоянного и переменного тока ЭС. Предназначенные для этой цели помехоподавляющие фильтры позволяют снижать кондуктивные помехи, как от внешних, так и от внутренних источников. Эффективность фильтрации определяется вносимым затуханием фильтра:

дБ,

К фильтру предъявляются следующие основные требования:

Обеспечение заданной эффективности S в требуемом частотном диапазоне (с учетом внутреннего сопротивления и нагрузки электрической цепи);

Ограничение допустимого падения постоянного или переменного напряжения на фильтре при максимальном токе нагрузки;

Обеспечение допустимых нелинейных искажений питающего напряжения, определяющих требования к линейности фильтра;

Конструктивные требования – эффективность экранирования, минимальные габаритные размеры и масса, обеспечение нормального теплового режима, стойкость к механическим и климатическим воздействиям, технологичность конструкции т.д.;



Элементы фильтра должны выбираются с учетом номинальных токов и напряжений электрической цепи, а также вызванных в них бросков напряжений и токов, вызванных нестабильностью электрического режима и переходными процессами.

Конденсаторы. Применяются как самостоятельные помехоподавляющие элементы и как параллельные звенья фильтров. Конструктивно помехоподавляющие конденсаторы делятся на:

Двухполюсные типа К50-6, К52-1Б, ЭТО, К53-1А;

Опорные типа КО, КО-Е, КДО;

Проходные некоаксиальные типа К73-21;

Проходные коаксиальные типа КТП-44, К10-44, К73-18, К53-17;

Конденсаторные блоки;

Основной характеристикой помехоподавляющего конденсатора является зависимость его импеданса от частоты. Для ослабления помех в диапазоне частот примерно до 10МГц можно использовать двухполюсные конденсаторы с учетом малой длины их выводов. Опорные помехоподавляющие конденсаторы применяются до частот 30-50 МГц. Симметричные проходные конденсаторы используются в двухпроводной цепи до частот порядка 100 МГц. Проходные конденсаторы работают в широком диапазоне частот примерно до 1000 Мгц.

Индуктивные элементы . Применяются как самостоятельные элементы подавления помех и как последовательные звенья помехоподавляющих фильтров. Конструктивно наиболее распространены дроссели специальных видов:

Витковые на ферромагнитном сердечнике;

Безвитковые.

Основной характеристикой помехоподавляющего дросселя является зависимость его импеданса от частоты. При низких частотах рекомендуется применение магнитодиэлектрических сердечников марок ПП90 и ПП250, изготовленных на основе м-пермалоя. Для подавления помех в цепях аппаратуры с токами до 3А рекомендуется использовать ВЧ- дроссели типа ДМ, при больших номинальных значениях токов – дроссели серии Д200.

Фильтры. Керамические проходные фильтры типа Б7, Б14, Б23 предназначены для подавления помех в цепях постоянного, пульсирующего и переменного токов в диапазоне частот от 10 МГц до 10ГГц. Конструкции таких фильтров представлены на рисунке 8.17


Вносимые фильтрами Б7, Б14, Б23 затухания в диапазоне частот 10..100 МГц возрастает приблизительно от 20..30 до 50..60 дБ и в диапазоне частот свыше 100 МГц превышает 50 дБ.

Керамические проходные фильтры типа Б23Б построены на основе дисковых керамических конденсаторов и безвитковых ферромагнитных дросселей (рисунок 8.18).

Безвитковые дроссели представляют собой трубчатый ферромагнитный сердечник из феррита марки 50 ВЧ-2 , одетый на проходной вывод. Индуктивность дросселя составляет 0.08…0.13 мкГн. Корпус фильтра выполнен из керамического материала УФ-61, имеющего высокую механическую прочность. Корпус металлизирован слоем серебра для обеспечения малого переходного сопротивления между наружной обкладкой конденсатора и заземляющей резьбовой втулкой, с помощью которой осуществляется крепление фильтра. Конденсатор по наружному периметру припаян к корпусу фильтра., а по внутреннему – к проходному выводу. Герметизация фильтра обеспечивается заливкой торцов корпуса компаундом.

Для фильтров Б23Б:

номинальные емкости фильтров – от 0.01 до 6.8 мкФ,

номинальное напряжение 50 и 250В,

номинальный ток до 20А,

Габаритные размеры фильтра:

L=25мм, D= 12мм

Вносимое фильтрами Б23Б затухание в диапазоне частот от 10 кГц до 10 МГц возрастает приблизительно от 30..50 до 60..70 дБ и в диапазоне частот свыше 10 МГц превышает 70 дБ.

Для бортовых ЭС перспективным является применение специальных помехоподавляющих проводов с ферронаполнителями, имеющими высокую магнитную проницаемость и большие удельные потери. Так у проводов марки ППЭ вносимое затухание в диапазоне частот 1…1000 МГц возрастает с 6 до 128 дБ/м.

Известна конструкция многоштыревых разъемов, в которых на каждый контакт устанавливается по одному П-образному помехоподавляющему фильтру.

Габаритные размеры встроенного фильтра:

длина 9.5 мм,

диаметр 3.2 мм.

Вносимое фильтром затухание в 50-омной цепи составляет 20 дБ на частоте 10МГц и до 80 дБ на частоте 100МГц.

Фильтрация цепей питания цифровых РЭС.

Импульсные помехи в шинах питания, возникающие в процессе коммутации цифровых интегральных схем (ЦИС), а также проникающие внешним путем, могут приводить к появлению сбоев в работе устройств цифровой обработки информации.

Для снижения уровня помех в шинах питания применяются схемно-конструкторские методы:

Уменьшение индуктивности шин «питание», с учетом взаимной магнитной связи прямого и обратного проводников;

Сокращение длин участков шин «питания», которые являются общими для токов для различных ЦИС;

Замедление фронтов импульсных токов в шинах «питание» с помощью помехоподавляющих конденсаторов;

Рациональная топология цепей питания на печатной плате.

Увеличение размеров поперечного сечения проводников приводит к уменьшению собственной индуктивности шин, а также снижает их активное сопротивление. Последнее особенно важно в случае шины «земля», в которая является обратным проводником для сигнальных цепей. Поэтому в многослойных печатных платах желательно выполнить шины «питание» в виде проводящих плоскостей, расположенных в соседних слоях (рисунок 8.19).

Навесные шины питания, применяемые в печатных узлах на цифровых ИС, имеют большие поперечные размеры по сравнению с шинами, выполненными в виде печатных проводников, а следовательно, и меньшую индуктивность и сопротивление. Дополнительными преимуществами навесных шин питания являются:

Упрощенная трассировка сигнальных цепей;

Повышение жесткости ПП за счет создания дополнительных ребер, выполняющих роль ограничителей, которые предохраняют ИС с навесными ЭРЭ от механических повреждений при монтаже и настройке изделия (рисунок 8.20).

Высокой технологичностью отличаются шины «питания», изготовленные печатным способом и крепящиеся на ПП вертикально (рисунок 6.12в).

Известны конструкции навесных шин, установленных под корпус ИС, которые располагаются на плате рядами (рисунок 8.22).

Рассмотренные конструкции шин «питания» обеспечивают также большую погонную емкость, что приводит к уменьшению волнового сопротивления линии «питания» и, следовательно, снижению уровня импульсных помех.

Разводка питания ИС на ПП должно осуществляться не последовательно (рисунок 8.23а), а параллельно (рисунок 8.23б)

Необходимо использовать разводку питания в виде замкнутых контуров (рис.8.23в). Такая конструкция приближается по своим электрическим параметрам к сплошным плоскостям питания. Для защиты от влияния внешнего помехонесущего магнитного поля по периметру ПП следует предусмотреть внешний замкнутый контур.


Заземление

Система заземления – это электрическая цепь, обладающая свойством сохранять минимальный потенциал, являющийся уровнем отсчета в конкретном изделии. Система заземления в ЭС должна обеспечивать сигнальные и силовые цепи возврата, защитить людей и оборудование от неисправностей в цепях источников питания, снимать статические заряды.

К системам заземления предъявляют следующие основные требования:

1) минимизация общего импеданса шины «земля»;

2) отсутствие замкнутых контуров заземления, чувствительных к воздействию магнитных полей.

В ЭС требуется как минимум три раздельные цепи заземления:

Для сигнальных цепей с низким уровнем токов и напряжений;

Для силовых цепей с высоким уровнем потребляемой мощности (источники питания, выходные каскады ЭС и т.д.)

Для корпусных цепей (шасси, панелей, экранов и металлизации).

Электрические цепи в ЭС заземляются следующим способами: в одной точке и в нескольких точках, ближайших к опорной точке заземления (рисунок 8.24)

Соответственно системы заземления могут быть названы одноточечной и многоточечной.

Наибольший уровень помех возникает в одноточечной системе заземления с общей последовательно включенной шиной «земля» (рисунок 8.24 а).

Чем дальше удалена точка заземления, тем выше её потенциал. Её не следует применять для цепей с большим разбросом потребляемой мощности, так как мощные ФУ создают большие возвратные токи заземления, которые могут влиять на малосигнальные ФУ. При необходимости наиболее критичный ФУ следует подключить как можно ближе к точке опорного заземления.

Многоточечную систему заземления (рисунок 8.24 в) следует использовать для высокочастотных схем (f≥10Мгц), подключая ФУ РЭС в точках, ближайших к опорной точке заземления.

Для чувствительных схем применяется схема с плавающим заземлением (рисунок 8.25). Такая заземляющая система требует полной изоляции схемы от корпуса (высокого сопротивления и низкой емкости), в противном случае она оказывается малоэффективной. В качестве источников питания схем могут использоваться солнечные элементы или аккумуляторы, а сигналы должны поступать и покидать схему через трансформаторы или оптроны.

Пример реализации рассмотренных принципов заземления для девятидорожечного цифрового накопителя на магнитной ленте показан на рисунке 8.26.

Здесь имеются следующие шины земли: три сигнальные, одна силовая и одна корпусная. Наиболее восприимчивые к помехам аналоговые ФУ (девять усилителей считывания) заземлены с помощью двух разделенных шин «земля». Девять усилителей записи, работающих с большими, чем усилители считывания, уровнями сигналов, а также ИС управления и схемы интерфейса с изделиями передачи данных подключены к третьей сигнальной шине «земля». Три двигателя постоянного тока и их схемы управления, реле и соленоиды соединены с силовой шиной «земля». Наиболее восприимчивая схема управления двигателем ведущего вала подключена ближе других к опорной точке заземления. Корпусная шина «земля» служит для подключения корпуса и кожуха. Сигнальная, силовая и корпусная шины «земля» соединяются вместе в одной точке в источнике вторичного электропитания. Следует отметить целесообразность составления структурных монтажных схем при проектировании РЭС.

Экранирование магнитного поля.

Метод шунтирования. -Метод магнитного поля экраном.

Метод шунтирования магнитного поля экраном применяется для защиты от постоянного и медленно изменяющего переменного магнитного поля. Экраны изготавливаются из ферромагнитных материалов с большой относительной магнитной проницательностью (сталь, пермаллой). При наличии экрана линии магнитной индукции проходят в основном по его стенкам, которые обладают малым магнитным сопротивлением по сравнению с воздушным пространством внутри экрана. Чем толще экран и, чем меньше швов, стыков, тем экранирование эффективнее. Метод вытеснения магнитного поля экраном применяется для экранирования переменных высокочастотных магнитных полей. При этом используются экраны из немагнитных металлов. Экранирование основано на явлении индукции.

Если поставить на пути равнопеременного магнитного моля медный цилиндр, в котором возбудятся переменные вихревые индукционные токи(токи Фуко). Магнитное поле этих токов будет замкнутым; внутри цилиндра оно будет направлено навстречу возбуждающему полю, а за его пределами – в ту же сторону, что и возбуждающее поле. Результирующее поле оказывается ослабленным у цилиндра и усиленным вне его, т.е. происходит вытеснение поля из пространства, занимаемого цилиндром, в чем и заключается его экранирующее действие, которое будет тем эффективнее, чем меньше электрическое сопротивление цилиндра, т.е. чем больше протекающие по нему вихревые токи.

Благодаря поверхностному эффекту («скинэффекту») плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону

Где

μ– относительная магнитная проницаемость материала; μ˳– магнитная проницаемость вакуума, равная 1.25*108 гн*см-1; ρ– удельное сопротивление материала, Ом*см; ƒ– частота, Гц.

Для немагнитного материала μ = 1. И экранирующий эффект определяется только по ƒ и ρ.

Экранирование является активным методом защиты информации. Экранирование магнитного поля (магнитостатическое экранирование) используется при необходимости подавить наводки на низких частотах от 0 до 3..10 кГц. Эффективность магнитостатического экранирования повышается при применении многослойных экранов.

Эффективность магнитного экранирования зависит от частоты и электрических свойств материала экрана. Чем ниже частота, тем слабее действует экран, тем большей толщины приходится его делать для достижения одного и того же экранирующего эффекта. Для высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5 ... 1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует учитывать механическую прочность, жесткость, стойкость против коррозии, удобство стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобство пайки, сварки и пр. Для частот выше 10 МГц медная и тем более серебряная пленка толщиной более 0,1 мм дает значительный экранирующий эффект. Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированного гетинакса или другого изоляционного материала с нанесенным на него медным или серебряным покрытием. Для изготовления экранов используются: металлические материалы, материалы-диэлектрики, стёкла с токопроводящим покрытием, специальные металлизированные ткани, токопроводящие краски. Металлические материалы (сталь, медь, алюминий, цинк, латунь), применяемые для экранирования, изготавливаются в виде листов, сеток и фольги.

Все эти материалы удовлетворяют требованию устойчивости против коррозии при использовании соответствующих защитных покрытий. Наиболее технологичными являются конструкции экранов из стали, так как при их изготовлении и монтаже можно широко использовать сварку или пайку. Металлические листы должны быть между собой электрически соединены по всему периметру. Шов электросварки или пайки должен быть непрерывным, с тем чтобы получить цельносварную конструкцию экрана. Толщина стали выбирается исходя из назначения конструкции экрана и условий его сборки, а также из возможности обеспечения сплошных сварных швов при изготовлении. Экраны из стали обеспечивают ослабление электромагнитного излучения более чем на 100 дБ. Сетчатые экраны проще в изготовлении, удобны для сборки и эксплуатации. Для защиты от коррозии сетки целесообразно покрывать антикоррозийным лаком. К недостаткам сетчатых экранов следует отнести невысокую механическую прочность и меньшую эффективность экранирования по сравнению с листовыми. Для сетчатых экранов пригодна любая конструкция шва, обеспечивающая хороший электрический контакт между соседними полотнищами сетки не реже чем через 10-15 мм. Для этой цели может применяться пайка или точечная сварка. Экран, изготовленный из лужёной низкоуглеродистой стальной сетки с ячейкой 2,5-3 мм, даёт ослабление порядка 55-60 дБ, а из такой же двойной (с расстоянием между наружной и внутренней сетками 100 мм) около 90 дБ. Экран, изготовленный из одинарной медной сетки с ячейкой 2,5 мм, имеет ослабление порядка 65-70 дБ

Использование: для получения пространства без магнитного поля, обеспечивающего повышение качества экранирования. Магнитный экран выполнен в виде оболочки с люком, причем оболочка расположена соосно с установленным вертикально кольцом постоянного магнита с осевой намагниченностью или двух расположенных подвижно относительно кольца оболочек, выполненных из композиционного или диамагнитного материала. Изобретение может применяться в медицине для снятия нагрузки в период магнитных бурь, а технике при производстве однородных постоянных магнитов, полупроводников, при производстве и настройке радиоэлектронной аппаратуры. 3 з.п ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для получения пространства без магнитного поля, в котором производятся настройка и испытание, например, датчиков феррозондового типа радиоизмерительной аппаратуры. Известны магнитные экраны из ферромагнитных материалов, для эффективной работы которых используют, например, размагничивающую катушку индуктивности, намотанную на корпус, и источник питания. Сравнительно часто для уменьшения остаточного магнитного поля экран, выполненный из нескольких слоев ферромагнитного материала, снабжен дополнительной размагничивающей обмоткой. Недостатком подобных систем является обязательная связь экрана с источником электрической энергии, которая при этом используется с низкой эффективностью. Для снижения энергетических затрат находят применение экраны, выполненные из сверхпроводящего материала или содержащие сверхпроводящие обмотки. При этом существенно усложняется конструкция и исключается использование экрана в полевых условиях. В качестве прототипа использовано устройство экранированной комнаты для магнитных измерений, которое содержит каркас с закрепленным на нем многослойным ферромагнитным экраном, опорные колонны на фундаменте, приборы освещения. Однако в этом случае по мере необходимости при намагничивании слоев магнитным полем Земли к вершинам углов каждого слоя подключается источник питания. Таким образом, в этом как и в других случаях магнитное поле Земли играет отрицательную роль. Для защиты от него и создают различные экраны. Цель изобретения - повышение качества экранирования. Это достигается тем, что магнитный экран выполнен в виде оболочки с люком, причем оболочка расположена соосно с кольцом постоянного магнита с осевой намагниченностью или две расположенные подвижно относительно кольца оболочки, выполненные из композиционного или диамагнитного материала, например из меди. На фиг. 1 показан постоянный кольцевой магнит; на фиг.2 - топография магнитного поля кольца. Постоянный кольцевой магнит 1 выполнен с внутренним радиусом R и толщиной , на опоре 2 на расстоянии S от кольца установлены оболочки 3 с люками 4 для доступа внутрь оболочки. На фиг.2 показана топография магнитного поля кольца с осевой намагниченностью, имеющего специфические области l и k. Персонал размещает в оболочке 3 используемые для работы (настройки) приборы (при необходимости размещается и сам) и устанавливает ее на расстоянии S, определяемом характерными размерами кольца R и . При этом расположение оболочек совпадает с областями l и k, в которых магнитное поле кольца равно нулю. Эти области являются магнитным вакуумом. Вертикальное размещение кольца упрощает его монтаж и взаимное расположение оболочек. При этом магнитное поле кольца может как совпадать, так в общем случае и не совпадать с магнитным полем Земли. Материал оболочек выбирается из учета его нейтральности к магнитному полю. В частности, таким материалом может быть либо композиционный, либо диамагнитный материал. Использование постоянного магнита с осевой намагниченностью в виде кольца и заданное расположение оболочек позволяют создать объемы без магнитного поля, которые, например, могут найти применение в медицине для снятия нагрузки в период магнитных бурь, в технике для производства и настройки радиоэлектронной аппаратуры, в перспективных производствах (изготовление однородных, постоянных магнитов, полупроводников, БИС и др.).

Формула изобретения

1. МАГНИТНЫЙ ЭКРАН, выполненный в виде оболочки с люком, отличающийся тем, что оболочка расположена соосно с кольцом постоянного магнита с осевой намагниченностью на расстоянии s = (2-2,5), где s - расстояние от плоскости симметрии кольца до центра естественного расслоения магнитного поля указанного кольца, в котором расположен магнитный экран с совмещением его центра с центром естественного расслоения магнитного поля от магнитного источника (кольца); - толщина кольца, а радиус оболочки соизмерим с радиусом центрального отверстия кольцевого постоянного магнита. 2. Экран по п.1, отличающийся тем, что он содержит расположенные соосно и подвижно относительно постоянного магнита две оболочки. 3. Экран по пп.1 и 2, отличающийся тем, что оболочки выполнены из композиционного материала. 4. Экран по пп.1 и 2, отличающийся тем, что оболочки выполнены из диамагнитного материала, например из меди.

Само собой разумеется, что намагничивание ферромагнитных, парамагнитных и диамагнитных тел происходит не только тогда, когда мы помещаем их внутрь соленоида, но и вообще всегда, когда вещество помещается в магнитное иоле. Во всех этих случаях к магнитному полю, которое существовало до внесения в него вещества, добавляется магнитное поле, обусловленное намагничиванием этого вещества, в результате чего магнитное поле изменяется. Из сказанного в предыдущих параграфах ясно, что наиболее сильные изменения поля происходят при внесении в него ферромагнитных тел, в частности железа. Изменение магнитного поля вокруг ферромагнитных тел очень удобно наблюдать, пользуясь картиной линий поля, получаемой при помощи железных опилок. На рис. 281 изображены, например, изменения, наблюдающиеся при внесении куска железа прямоугольной формы в магнитное поле, которое раньше было однородным. Как видим, поле перестает быть однородным и приобретает сложный характер; в одних местах оно усиливается, в других – ослабляется.

Рис. 281. Изменение магнитного поля при внесении в него куска железа

148.1. Когда на современных судах устанавливают и выверяют компасы, то вводят поправки к показаниям компаса, зависящие от формы и расположения частей судна и от положения компаса не нем. Объясните, почему это необходимо. Зависят ли поправки от сорта стали, примененной при постройке судна?

148.2. Почему суда, снаряжаемые экспедициями для исследования магнитного поля Земли, строят не стальные, а деревянные и для скрепления обшивки применяют медные винты?

Очень интересна и практически важна картина, которая наблюдается при внесении в магнитное поле замкнутого железного сосуда, например полого шара. Как видно из рис. 282, в результате сложения внешнего магнитного поля с полем намагнитившегося железа поле во внутренней области шара почти исчезает. Этим пользуются для создания магнитной защиты или магнитной экранировки, т. е. для защиты тех или иных приборов от действия внешнего магнитного поля.

Рис. 282. Полый железный шар внесен в однородное магнитное поле

Картина, которую мы наблюдаем при создании магнитной защиты, внешне напоминает создание электростатической защиты при помощи проводящей оболочки. Однако между этими явлениями есть глубокое принципиальное различие. В случае электростатической защиты металлические стенки могут быть сколь угодно тонкими. Достаточно, например, посеребрить поверхность стеклянного сосуда, помещенного в электрическое поле, чтобы внутри сосуда не оказалось поля, которое обрывается на поверхности металла. В случае же магнитного поля тонкие железные стенки не являются защитой для внутреннего пространства: магнитные поля проходят сквозь железо, и внутри сосуда оказывается некоторое магнитное поле. Лишь при достаточно толстых железных стенках ослабление поля внутри полости может сделаться настолько сильным, что магнитная, защита приобретает практическое значение, хотя и в этом, случае поле внутри не уничтожается полностью. И в этом случае ослабление поля не есть результат обрыва его на поверхности железа; линии магнитного поля отнюдь не обрываются, но по-прежнему остаются замкнутыми, проходя сквозь железо. Изображая графически распределение линий магнитного поля в толще железа и в полости, получим картину (рис. 283), которая и показывает, что ослабление поля внутри полости есть результат изменения направления линий поля, а не их обрыва.



© dagexpo.ru, 2024
Стоматологический сайт