Мера средней кинетической энергии теплового движения молекул. Температура - мера средней кинетической энергии молекул

21.09.2019

  • Из основного уравнения молекулярно-кинетической теории газа вытекает важное следствие: температура есть мера средней кинетической энергии молекул. Докажем это.

Для простоты будем считать количество газа равным 1 моль. Молярный объем газа обозначим через V M . Произведение молярного объема на концентрацию молекул представляет собой постоянную Авогадро N A , т. е. число молекул в 1 моль.

Умножим обе части уравнения (4.4.10) на молярный объем V M и учтем, что nV M = N A . Тогда

Формула (4.5.1) устанавливает связь макроскопических параметров - давления р и объема V M - со средней кинетической энергией поступательного движения молекул.

Вместе с тем полученное опытным путем уравнение состояния идеального газа для 1 моль имеет вид

Левые части уравнений (4.5.1) и (4.5.2) одинаковы, значит, должны быть равны и их правые части, т.е.

Отсюда вытекает связь между средней кинетической энергией поступательного движения молекул и температурой:

Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре. Чем выше температура, тем быстрее движутся молекулы.

Соотношение между температурой и средней кинетической энергией поступательного движения молекул (4.5.3) установлено для разреженных газов. Однако оно оказывается справедливым для любых веществ, движение атомов или молекул которых подчиняется законам механики Ньютона. Оно верно для жидкостей, а также для твердых тел, у которых атомы могут лишь колебаться возле положений равновесия в узлах кристаллической решетки.

При приближении температуры к абсолютному нулю энергия теплового движения молекул также приближается к нулю(1).

Постоянная Больцмана

В уравнение (4.5.3) входит отношение универсальной газовой постоянной R к постоянной Авогадро N А. Это отношение одинаково для всех веществ. Оно называется постоянной Больцмана, в честь Л. Больцмана, одного из основателей молекулярно-кинетической теории.

Больцман Людвиг (1844-1906) - великий австрийский физик, один из основоположников молекулярно-кинетической теории. В трудах Больцмана молекулярно-кинетическая теория впервые предстала как логически стройная, последовательная физическая теория. Больцман дал статистическое истолкование второго закона термодинамики. Им много сделано для развития и популяризации теории электромагнитного поля Максвелла. Борец по натуре, Больцман страстно отстаивал необходимость молекулярного истолкования тепловых явлений и принял на себя основную тяжесть борьбы с учеными, отрицавшими существование молекул.

Постоянная Больцмана равна

Уравнение (4.5.3) с учетом постоянной Больцмана записывается так:

Физический смысл постоянной Больцмана

Исторически температура была впервые введена как термодинамическая величина, и для нее была установлена единица измерения - градус (см. § 3.2). После установления связи температуры со средней кинетической энергией молекул стало очевидным, что температуру можно определять как среднюю кинетическую энергию молекул и выражать ее в джоулях или эргах, т. е. вместо величины Т ввести величину Т * так, чтобы

Определенная таким образом температура связана с температурой, выражаемой в градусах, следующим образом:

Поэтому постоянную Больцмана можно рассматривать как величину, связывающую температуру, выражаемую в энергетических единицах, с температурой, выраженной в градусах.

Зависимость давления газа от концентрации его молекул и температуры

Выразив из соотношения (4.5.5) и подставив в формулу (4.4.10), получим выражение, показывающее зависимость давления газа от концентрации молекул и температуры:

Из формулы (4.5.6) вытекает, что при одинаковых давлениях и температурах концентрация молекул у всех газов одна и та же.

Отсюда следует закон Авогадро: в равных объемах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

Средняя кинетическая энергия поступательного движения молекул прямо пропорциональна абсолютной температуре. Коэффициент пропорциональности - постоянную Болъцмана k ≈ 10 23 Дж/К - надо запомнить.

(1) При очень низких температурах (вблизи абсолютного нуля) движение атомов и молекул уже не подчиняется законам Ньютона. Согласно более точным законам движения микрочастиц - законам квантовой механики - абсолютный нуль соответствует минимальному значению энергии движения, а не полному прекращению какого-либо движения вообще.

Основное уравнение МКТ. Температура как мера средней кинетической энергии хаотического движения молекул.

Почему газ оказывает давление? Молекулы газа непрерывно хаотически движутся, сталкиваются со стенками сосуда и передают им свой импульс p=m v Давление – суммарный импульс, переданный молекулами 1 кв. м стенки за 1с.

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура – это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии. Возможность введения понятия температуры следует из опыта и носит название нулевого закона термодинамики . В системе тел, находящейся в состоянии термодинамического равновесия, объемы и давления могут быть различными, а температуры обязательно одинаковы. Таким образом, температура характеризует состояние термодинамического равновесия изолированной системы тел.

Температура Т , давление р и объём V макроскопические величины , характеризующие состояние огромного числа молекул, т.е. состояние газа в целом Газовые термометры. Чтобы проградуировать газовый термометр постоянного объема, можно измерить давление при двух значениях температуры (например, 0 °C и 100 °C), нанести точки p 0 и p 100 на график, а затем провести между ними прямую линию. Используя полученный таким образом калибровочный график, можно определять температуры, соответствующие другим значениям давления.

Экстраполируя график в область низких давлений, можно определить некоторую «гипотетическую» температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна –273,15 °С и не зависит от свойств газа . Английский физик У. Кельвин (Томсон) в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы (шкала Кельвина). В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута: T= t +273.15. Идеальный газ – газ, состоящий из молекул-шариков, исчезающе малых размеров, взаимодействующих между собой и со стенками только во время упругих столкновений. Идеальный газ (модель) 1. Совокупность большого числа молекул массой m0, размерами молекул пренебрегают (принимают молекулы за материальные точки) 2. Молекулы находятся на больших расстояниях друг от друга и движутся хаотически. 3. Молекулы взаимодействуют по законам упругих столкновений, силами притяжения между молекулами пренебрегают. 4. Скорости молекул разнообразны, но при определенной температуре средняя скорость молекул остается постоянной. Реальный газ 1. Молекулы реального газа не являются точечными образованиями, диаметры молекул лишь в десятки раз меньше расстояний между молекулами. 2. Молекулы не взаимодействуют по законам упругих столкновений

Представляем формулу основного уравнения молекулярно-кинетической теории (МКТ) газов:

(где n = N V – это концентрация частиц в газе, N – это число частиц, V – это объем газа, 〈 E 〉 – это средняя кинетическая энергия поступательного движения молекул газа, υ k v – это средняя квадратичная скорость, m 0 – это масса молекулы) связывает давление – макропараметр, достаточно просто измеряющийся с такими микропараметрами, как средняя энергия движения отдельной молекулы (или в другом выражении), как масса частицы и ее скорость. Но находя только лишь давление, нельзя установить кинетические энергии частиц отдельно от концентрации. Поэтому для нахождения в полном объеме микропараметров нужно знать еще какую-то физическую величину, связанную с кинетической энергией частиц, составляющих газ. За данную величину можно взять термодинамическую температуру.

Газовая температура

Для определения газовой температуры нужно вспомнить важное свойство, которое сообщает о том, что в условиях равновесия средняя кинетическая энергия молекул в смеси газов одинаковая для различных компонентов данной смеси. Из данного свойства следует то, что если 2 газа в различных сосудах находятся в тепловом равновесии, тогда средние кинетические энергии молекул данных газов одинаковые. Это свойство мы и будем использовать. К тому же в ходе экспериментов доказано, что для любых газов (при неограниченном числе), которые находятся в состоянии теплового равновесия, справедливо следующее выражение:

С учетом вышесказанного, используем (1) и (2) и получаем:

Из уравнения (3) следует, что величина θ , которой мы обозначили температуру, вычисляется в Д ж, в чем измеряется также и кинетическая энергия. В лабораторных работах температура в системе измерения вычисляется в кельвинах. Поэтому введем коэффициент, который уберет данное противоречие. Он обозначается k , измеряется в Д ж К и равняется 1 , 38 · 10 - 23 . Данный коэффициент называется постоянной Больцмана. Таким образом:

Определение 1

θ = k T (4) , где T – это термодинамическая температура в кельвинах .

Связь термодинамической температуры и средней кинетической энергией теплового движения молекул газа выражается формулой:

E = 3 2 k T (5) .

Из уравнения (5) видно, что средняя кинетическая энергия теплового движения молекул прямо пропорциональна температуре газа. Температура является абсолютной величиной. Физический смысл температуры заключается в том, что она, с одной стороны, определяется средней кинетической энергией, которая приходится на 1 молекулу. А с другой стороны, температура – это характеристика системы в целом. Таким образом, уравнение (5) показывает связь параметров макромира с параметрами микромира.

Определение 2

Известно, что температура – это мера средней кинетической энергии молекул.

Можно установить температуру системы, а затем рассчитать энергию молекул.

В условиях термодинамического равновесия все составляющие системы характеризуются одинаковой температурой.

Определение 3

Температура, при которой средняя кинетическая энергия молекул равняется 0 , давление идеального газа равняется 0 , называется абсолютным нулем температур . Абсолютная температура никогда не является отрицательной.

Пример 1

Необходимо найти среднюю кинетическую энергию поступательного движения молекулы кислорода, если температура T = 290 K . А также найти среднюю квадратичную скорость капельки воды диаметра d = 10 - 7 м, взвешенной в воздухе.

Решение

Найдем среднюю кинетическую энергию движения молекулы кислорода по уравнению, связывающему энергию и температуру:

E = 3 2 k T (1 . 1) .

Поскольку все величины заданы в системе измерения, проведем вычисления:

E = 3 2 · 1 , 38 · 10 - 23 · 10 - 7 = 6 · 10 - 21 Д ж.

Перейдем ко второй части задания. Положим, что капелька, взвешенная в воздухе, – это шар (рисунок 1 ). Значит, массу капельки можно рассчитать как:
m = ρ · V = ρ · π d 3 6 .

Рисунок 1

Найдем массу капельки воды. Согласно справочных материалов, плотность воды в нормальных условиях равняется ρ = 1000 к г м 3 , тогда:

m = 1000 · 3 , 14 6 10 - 7 3 = 5 , 2 · 10 - 19 (к г) .

Масса капельки чрезмерно маленькая, поэтому, сама капелька сравнима с молекулой газа, и тогда можно использовать при расчетах формулу средней квадратичной скорости капли:

E = m υ k υ 2 2 (1 . 2) ,

где 〈 E 〉 мы уже установили, а из (1 . 1) понятно, что энергия не зависит от разновидности газа, а зависит только лишь от температуры. Значит, мы можем применить полученную величину энергии. Найдем из (1 . 2) скорость:

υ k υ = 2 E m = 6 · 2 E π ρ d 3 = 3 2 k T π ρ d 3 (1 . 3) .

Рассчитаем:

υ k υ = 2 · 6 · 10 - 21 5 , 2 · 10 - 19 = 0 , 15 м с

Ответ: Средняя кинетическая энергия поступательного движения молекулы кислорода при заданной температуре равняется 6 · 10 - 21 Д ж. Средняя квадратичная скорость капельки воды при заданных условиях равняется 0 , 15 м / с.

Пример 2

Средняя энергия поступательного движения молекул идеального газа равняется 〈 E 〉 , а давление газа p . Необходимо найти концентрацию частиц газа.

Решение

В основу решения задачи положим уравнение состояния идеального газа:

p = n k T (2 . 1) .

Прибавим к уравнению (2 . 1) уравнение связи средней энергии поступательного движения молекул и температуры системы:

E = 3 2 k T (2 . 2) .

Из (2 . 1) выражаем необходимую концентрацию:

n = p k T 2 . 3 .

Из (2 . 2) выражаем k T:

k T = 2 3 E (2 . 4) .

Подставляем (2 . 4) в (2 . 3) и получаем:

Ответ: Концентрацию частиц можно найти по формуле n = 3 p 2 E .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Для того чтобы сравнить уравнение состояния идеального газа и основное уравнение молекулярно-кинетической теории , запишем их в наиболее совпадающем виде.

Из этих соотношений видно, что:

(1.48)

величина, которая называется постоянной Больцмана - коэффициент, позволяющий энергию движения молекул (конечно, среднюю) выражать в единицах температуры , а не только в джоулях , как до сих пор.

Как уже говорилось, «объяснить» в физике означает установить связь нового явления, в данном случае - теплового, с уже изученным - механическим движением. Это и есть объяснение тепловых явлений. Именно с целью находить такое объяснение в настоящее время разработана целая наука - статистическая физика . Слово «статистическая» означает, что объекты исследования - это явления, в которых участвует множество частиц со случайными (у каждой частицы) свойствами. Исследование таких объектов у человеческих множеств - народов, населения - предмет статистики.

Именно статистическая физика является основой химии как науки, а не как в поваренной книге - «слейте то и то, получится, что надо!» Почему получится? Ответ в свойствах (статистических свойствах) молекул.

Отметим, что, конечно, возможно использование найденных связей энергии движения молекул с температурой газа и в другом направлении для выявления свойства самого движения молекул, вообще свойств газа. Например, ясно, что внутри газа молекулы обладают энергией:

(1.50)

Эта энергия так и называется - внутренняя .Внутренняя энергия есть всегда! Даже когда тело покоится и не взаимодействует ни с какими другими телами, оно обладает внутренней энергией.

Если молекула - не «кругленький шарик», а представляет собой «гантель» (двухатомную молекулу), то кинетическая энергия представляет собой сумму энергии поступательного движения (только поступательное движение и рассматривалось фактически до сих пор) и вращательного движения (рис . 1.18 ).

Рис . 1.18. Вращение молекулы

Произвольное вращение можно представить себе как последовательное вращение сначала вокруг оси x , а затем вокруг осиz .

Запас энергии такого движения ничем не должен отличаться от запаса движения по прямой. Молекула «не знает» - летит она или крутится. Тогда во всех формулах необходимо вместо числа «три» ставить число «пять».

(1.51)

Такие газы, как азот, кислород, воздух и т. д., нужно рассматривать именно по последним формулам.

Вообще, если для строгой фиксации молекулы в пространстве нужно i чисел (говорят«i степеней свободы» ), то

(1.52)

Как говорят, «по пол kT на каждую степень свободы».

1.9. Растворенное вещество как идеальный газ

Представления об идеальном газе находят интересные приложения в объяснении осмотического давления , возникающего в растворе.

Пусть среди молекул растворителя находятся частицы какого-либо другого растворенного вещества. Как известно, частицы растворенного вещества стремятся занять весь доступный объем. Растворенное вещество расширяется совершенно так же, как расширяется газ ,чтобы занять предоставленный ему объем.

Подобно тому, как газ оказывает давление на стенки сосуда, растворенное вещество оказывает давление на ту границу, которая разделяет раствор от чистого растворителя . Такое дополнительное давление называетсяосмотическим давлением . Это давление можно наблюдать, если отделить раствор от чистого растворителяполунепроницаемой перегородкой , через которую легко проходит растворитель, но не проходит растворенное вещество (рис . 1.19 ).

Рис . 1.19. Возникновение осмотического давления в отсеке с растворенным веществом

Частицы растворенного вещества стремятся раздвинуть перегородку, и если перегородка мягкая, то она выпучивается. Если же перегородка жестко закреплена, то фактически смещается уровень жидкости, уровень раствора в отсеке с растворенным веществом повышается (см. рис . 1.19 ).

Подъем уровня раствора h будет продолжаться до тех пор, пока возникшее гидростатическое давлениеρgh (ρ- плотность раствора) не окажется равным осмотическому давлению. Имеется полное сходство между молекулами газа и молекулами растворенного вещества. И те, и другие находятся далеко друг от друга, и те, и другие движутся хаотически. Конечно, между молекулами растворенного вещества находится растворитель, а между молекулами газа ничего нет (вакуум), но это ведь не важно. Вакуум при выводе законов не использовался! Отсюда следует, чточастицы растворенного вещества в слабом растворе ведут себя так же, как молекулы идеального газа . Иначе говоря,осмотическое давление, оказываемое растворенным веществом ,равно давлению, которое производило бы это же вещество в газообразном состоянии в том же объеме и при той же температуре . Тогда получим, чтоосмотическое давление π пропорционально температуре и концентрации раствора (числу частицn в единице объема).

(1.53)

Этот закон называется законом Вант-Гоффа , формула (1.53 ) -формулой Вант-Гоффа .

Полное сходство закона Вант-Гоффа с уравнением Клапейрона–Менделеева для идеального газа очевидно.

Осмотическое давление, разумеется, не зависит от вида полупроницаемой перегородки или от рода растворителя. Любые растворы с одинаковой молярной концентрацией оказывают одинаковое осмотическое давление .

Сходство в поведении растворенного вещества и идеального газа обусловленно тем, что в разбавленном растворе частицы растворенного вещества практически не взаимодействуют между собой, как не взаимодействуют и молекулы идеального газа.

Величина осмотического давления часто довольно значительна. Например, если в литре раствора содержится 1 моль растворенного вещества, то по формуле Вант-Гоффа при комнатной температуре имеемπ ≈ 24 атм.

Если растворенное вещество при растворении разлагается на ионы (диссоциируется), то по формуле Вант-Гоффа

πV = NkT (1.54)

можно определить общее число N образовавшихся частиц - ионов обоих знаков и нейтральных (недиссоциированных) частиц. И, следовательно, можно узнать степень диссоциации вещества . Ионы могут быть сольватированы, но это обстоятельство не сказывается на справедливости формулы Вант-Гоффа.

Формулу Вант-Гоффа часто используют в химии для определения молекулярных масс белков и полимеров . Для этого к растворителю объемаV добавляютm грамм исследуемого вещества, измеряют давлениеπ. Из формулы

(1.55)

находят молекулярную массу.

Основное уравнение молекулярно-кинетической теории (МКТ) газов:

(где $n=\frac{N}{V}$ -- концентрация частиц в газе, N -- количество частиц, V- объем газа, $\left\langle E\right\rangle \ $-средняя кинетическая энергия поступательного движения молекул в газе, $\left\langle v_{kv}\right\rangle $- средняя квадратичная скорость, $m_0$- масса молекулы) связывает давление - макропараметр, который довольно легко измерять с микропараметрами -- средней энергией движения отдельной молекулы или, в другом написании, массой частицы и ее скоростью. Однако, измеряя только давление, невозможно определить кинетические энергии частиц в отдельности от концентрации. Следовательно, для того, чтобы в полном объеме мы имели возможность находить микропараметры, необходимо знание еще какой-то физической величины, которая связана с кинетической энергией частиц, составляющих газ. Таковой является термодинамическая температура.

Газовая температура

Для того, чтобы определить, что такое газовая температура, необходимо вспомнить важное свойство, которое говорит о том, что при равновесии средняя кинетическая энергия молекул в смеси газов одна и та же для различных компонент этой смеси. Из этого свойства вытекает то, что если два газа в разных сосудах находятся в тепловом равновесии, то средние кинетические энергии молекул этих газов одинаковы. Это свойство и используем. Кроме того, эксперименты доказали, что для любых газов (количество газов не ограничено), которые находятся в состоянии теплового равновесия, выполняется следующее соотношение:

Учитывая выше сказанное, используем (1) и (2), получим:

Из уравнения (3) получается, что величина $\theta $, которую мы вводим как температуру, измеряется, как и энергия, в Дж. На практике температура в системе СИ измеряется в кельвинах. Следовательно, введем коэффициент, который устранит это противоречие, его размерность будет $\frac{Дж}{К}$, обозначение k равен он $1,38\cdot {10}^{-23}$. Этот коэффициент называют постоянной Больцмана. Так:

\[\theta =kT\ \left(4\right),\]

где T -- термодинамическая температура в кельвинах.

И ее связь со средней кинетической энергией движения молекул газа очевидна:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(5\right).\]

Уравнение (5) показывает, что средняя энергия теплового движения молекул прямо пропорциональна температуре газа. Температуру назвали абсолютной. Ее физический смысл в том, что она определяется средней кинетической энергией приходящейся на одну молекулу. Это с одной стороны. С другой, температура является характеристикой системы в целом. Так уравнение (5) связывает параметры макромира с параметрами микромира. Говорят, что температура является мерой средней кинетической энергии молекул. Мы можем измерить температуру системы, а за тем вычислить энергию молекул.

Абсолютный ноль температур

В состоянии термодинамического равновесия все части системы имеют одинаковую температуру. Температура, при которой средняя кинетическая энергия молекул равна нулю, давление идеального газа равно нулю, называют абсолютным нулем температур. Абсолютная температура не может быть отрицательной.

Пример 1

Задание: Вычислить среднюю кинетическую энергию поступательного движения молекулы кислорода при температуре T=290K. Среднюю квадратичную скорость капельки воды диаметра d=${10}^{-7}м$, взвешенной в воздухе.

Найти среднюю кинетическую энергию движения молекулы кислорода можно используя уравнение, связывающее ее (энергию) и температуру:

\[\left\langle E\right\rangle =\frac{3}{2}kT\left(1.1\right).\]

Поведем расчет, так как все величины заданы в СИ:

\[\left\langle E\right\rangle =\frac{3}{2}\cdot 1,38\cdot {10}^{-23}\cdot {10}^{-7}=6\cdot {10}^{-21}\left(Дж\right).\]

Приступим ко второй части задачи. Капельку воды, которая взвешена в воздухе, можно считать шаром (рис.1). Следовательно, массу капельки найдем как $m=\rho \cdot V=\rho \cdot \pi {\frac{d}{6}}^3.$

Рассчитаем массу капельки воды, из справочных материалов плотность воды при нормальных условиях равна $\rho =1000\frac{кг}{м^3}$:$\ тогда$

Масса капельки очень мала, следовательно, саму капельку можно сравнить с молекулой газа и применить для расчета средней квадратичной скорости капли формулу:

\[\left\langle E\right\rangle =\frac{m{\left\langle v_{kv}\right\rangle }^2}{2}\ \left(1.2\right),\]

где $\left\langle E\right\rangle $ мы уже рассчитали, а из (1.1) очевидно, энергия не зависит от вида газа, зависит только от температуры, следовательно, мы можем использовать полученное значение энергии. Выразим из (1.2) скорость:$\ \cdot $

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\left\langle E\right\rangle }{m}}=\sqrt{\frac{6\cdot 2\left\langle E\right\rangle }{\pi \rho d^3}}=3\sqrt{\frac{2kT}{\pi \rho d^3}}\ \left(1.3\right)\]

Проведем расчёт:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\cdot 6\cdot {10}^{-21}}{5,2\cdot {10}^{-19}}}=0,15\ \left(\frac{м}{с}\right)\]

Ответ: Средняя кинетическая энергия поступательного движения молекулы кислорода при заданной температуре равна $6\cdot {10}^{-21}\ Дж$. Средняя квадратичная скорость капельки воды при заданных условиях равна 0,15 м/с.

Пример 2

Задание: Средняя энергия поступательного движения молекул идеального газа равна $\left\langle E\right\rangle .\ $Давление газа p. Найдите концентрацию частиц газа.

К нему добавим уравнение связи средней энергии поступательного движения молекул и температуры системы:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(2.2\right)\]

Из (2.1) выразим искомую концентрацию:

Из $\left(2.2\right)\ $выразим $kT$:

Подставим (2.4) в (2.3):

Ответ: Концентрация частиц газа может быть найдена как $n=\frac{3p}{2\left\langle E\right\rangle }$.



© dagexpo.ru, 2024
Стоматологический сайт