Методы лучеврй терапии. Лучевое лечение рака шейки матки. Методики гамма-терапии Что такое внутритканевая интраоперационная лучевая терапия

19.07.2019

Способ лучевой терапии, при котором радиоактивное вещество во время лечения находится внутри ткани опухоли называется внутритканевым . В зависимости от используемого излучения различают гамма терапию и β-терапию.

Внутритканевая гамма терапия показана при хорошо ограниченных небольших опухолях, объем которых можно определить довольно точно. Особенно целесообразно применение внутритканевого лечения при опухолях подвижных органов (рак нижней губы, языка, молочной железы, наружных половых органов) или при опухолях, требующих локального облучения (рак внутреннего угла глаза, века). Для проведения внутритканевой гамма терапии используются радиоактивные гамма излучающие препараты Ra, Co, Cs в форме игл, отрезков проволоки, цилиндриков или гранул. Иглы имеют оболочку из нержавеющей стали, которая служит фильтром, наружный диаметр иглы 1,8 мм. Внедрение радиоактивных игл в ткань опухоли производится в операционной с обязательным соблюдением правил асептики и антисептики, а так же защиты персонала от излучения. Обязательна местная анестезия тканей вокруг опухоли, в ткань опухоли новокаин не вводится. Внедрение иглы вводится специальным инструментарием, погружается по ушко, а нитью, введенной в ушко, фиксируется к коже. В течение всего времени внутритканевого облучения больной находится в специальной активной палате. По достижении необходимой очаговой дозы радиоактивные иглы извлекаются потягиванием за нити.

Внутритканевая гамма терапия иглами не лишена недостатков. Кроме травматичности этой процедуры в тканях вокруг иглы за счет высокой дозы возникает некротический канал, вследствие чего источник излучения может смещаться и даже выпадать. Совершенствование и поиски новых форм препаратов привели к использованию при внутритканевой гамма терапии гранул из радиоактивного кобальта в нейлоновых трубочках. Нейлоновые трубочки имеют меньший наружный диаметр, минимально травмируют окружающие ткани и значительно сокращают время контакта персонала с радиоактивным веществом. Благодаря гибкости и эластичности источнику излучения можно придать форму, приближающуюся к конфигурации опухоли.

При внутритканевой гамма терапии оптимальной дозой во времени, т.е. мощностью дозы является 35-40 рад/час. Такая мощность дозы позволяет за 6-7 дней подвести к опухоли 6000-6500 рад. и вызвать радикальное повреждение опухоли.

Разновидностью внутритканевого облучения является радиохирургический метод . Сущность метода заключается в образовании доступа к опухоли и воздействии на нее радиоактивными препаратами или в облучении радиоактивными веществами ложа опухоли после ее удаления. Радиохирургический метод можно применять при различных локализациях опухолевого процесса I и II стадии, а также при опухолях, находящихся на границе неоперабельности, но без наличия отдаленных метастазов. Этот метод показан при метастазах рака полости рта, губы, гортани, в подчелюстные и шейные лимфатические узлы, при саркомах мягких тканей, раке наружных половых органов.



При радиохирургическом методе лечения применяются как гамма, так и β - излучатели. Форма радиоактивного препарата может быть самой разнообразной. Применяются иглы, нейлоновые трубочки с гранулами кобальта, гранулы Au, танталовая проволока, коллоидные радиоактивные растворы, а также рассасывающие нити импренированные ими.

Метод введения коллоидного раствора Au 198 при внутрикожных метастазах

При лечении некоторых воспалительных процессов и злокачественных новообразований кожи и слизистой оболочки радиоактивные препараты можно расположить либо непосредственно на поверхности патологического очага, либо отдалив их на расстояние не более 0,5-1,5 см. Такой способ облучения называется аппликационным. В зависимости от размеров и глубины поражения используется гамма излучающие радиоактивные препараты.

Аппликационная β-терапия применяется при лечении процессов, распространяющихся в поверхностных слоях (до 4 мм) кожи и слизистой оболочки (капиллярные ангиомы, гиперкератозы, лейкоплакии, нейродермиты, эрозии). β-излучение P, интрия, талия, прометия, стронция, ксенона действуют на патологический очаг, не облучая подлежащие ткани. Пластины различных размеров с радиоактивным веществом толщиной от 0,1 мм до 0,35 мм покрываются тонкой полиэтиленовой или теримновой пленкой.



Лечение больных с капиллярными ангиомами проводится в виде курса, состоящего из 6-9 ежедневных сеансов облучения. Ежедневная доза составляет 300-500 рад, а суммарная за весь курс 2000-3000 рад. Результаты лечения у детей обычно лучше, чем у взрослых. При экземе аппликационная β-терапия применяется лишь тогда, когда другие методы эффекта не дают. В результате лечения обычно уменьшается воспалительный процесс, инфильтрация кожи, ослабевает и исчезает зуд.

Аппликационная гамма терапия применяется в тех случаях, когда процесс располагается на глубине более 4 мм и показана при опухолях кожи и слизистой оболочки, рецидивах и метастазах в коже и подкожной клетчатке. При аппликационной гамма терапии радиоактивные препараты помещают в специальные маски-муляжи, моделирующие форму облучаемой поверхности. Муляж изготавливается из смеси воска и парафина. Пластина из этой массы толщиной в 0,5-1,0 см разогревается в горячей воде (до 40 0) и когда становится мягкой, накладывается на поверхность, подлежащую облучению. Чтобы поверхность излучения точно соответствовала патологическому очагу, ее очерчивают фуксином, после чего на муляже остается отпечаток контуров области, подлежащей облучению. Внутри этого контура укладываются радиоактивные препараты. Для получения равномерного дозного поля необходимо соблюдать определенные правила расположения препаратов. Чаще располагают препараты в виде прямоугольника или круга, но обязательно таким образом, чтобы площадь облучения превышала видимые размеры патологического очага. Аппликационная гамма терапия может проводиться путем непрерывного или фракционного облучения.

Наконец, необходимо отметить еще один метод лучевой терапии, основанный на избирательном поглощении тканями или органами тех или иных радиоактивных препаратов, получившего название внутреннего облучения . Радиоактивные препараты вводятся per.os, в/в, внутриартериально.

Метод внутреннего облучения

В настоящее время для внутриартериальной терапии применяются коллоидные растворы P, J, Au.

Радиоактивный Au 198 применяется при лечении лейкозов. Коллоидный раствор вводится внутривенно из расчета 0,5-1 мкюри на 1 кг веса больного, при суммарной дозе 5 мкюри. При необходимости повторный курс проводится через 4-6 месяцев, причем вводится 1/2 или 1/3 первоначальной дозы.

Радиоактивный J 131 применяется в основном при гипертиреозах II и III стадии, рецидивах опухоли после операции, при раке щитовидной железы как самостоятельный метод лечения, а также с профилактической целью в качестве пред- и послеоперационного лечения. Внутреннее облучение рад. J ограничивается воздействием ионизирующего излучения на гиперплазированные клетки щитовидной железы, не повреждая окружающие органы и ткани. При лечении тиреотоксикоза больной в течение 1,5-2 месяцев должен исключить из еды продукты, содержащие йод и не принимать йодистые препараты. Доза радиоактивных препаратов зависит от степени гиперфункции щитовидной железы. Необходимое для лечения количество J можно применить одномоментно или дробно 1,5-2 мкюри. При раке щитовидной железы с целью уменьшения митотической активности клеток за 2-3 недели до операции назначается 30-45 мкюри. После радикальной операции в ранних стадиях назначается J 131 по 5 мкюри каждые три недели до суммарной дозы 50-100 мкюри. При неоперабельном раке щитовидной железы вводится J по 50-60 мкюри каждые 2-3 недели до получения терапевтического эффекта.

Каждый из рассмотренных методов лучевой терапии имеет свои достоинства и недостатки. Так дистанционное облучение не обеспечивает в полной мере соотношение в поглощенных дозах. Даже, казалось бы, при благоприятных условиях облучается большой объем здоровых тканей, регенераторная способность которых значительно уменьшается.

Контактные методы облучения создают более благоприятное соотношение в дозах. Однако, при опухолях, распространяющихся на большую глубину, чем 1 см, применение контактных методов будет неэффективным. Поэтому, для более рационального облучения необходимо сочетать дистанционное облучение с одним из контактных методов. Такой способ лечения получил название сочетанного метода лучевой терапии.

В плане комбинированного лечения лучевая терапия может сочетаться с хирургическим вмешательством , химиотерапией или одновременно тем и другим. Последовательность ее применения зависит от стадии заболевания, клинической формы опухоли, ее локализации и общего состояния больного. Лучевая терапия может осуществляться в различных вариантах дистанционного, внутриполостного, внутритканевого облучения с электрокоагуляцией, резекцией или экстирпацией пораженного органа.

Отсюда различают следующие методы лучевой терапии:

· Самостоятельная лучевая терапия – лучевая, или химиотерапия;

· Сочетанная лучевая терапия – дистанционное облучение с облучение одним из контактных методов;

· Комбинированная лучевая терапия - лучевая терапия с хирургическим методом;

· Комплексная лучевая терапия - лучевая и химиотерапия.

Планирование лучевой терапии

n Результаты научных исследований позволяют планировать дозы и число фракций, при которых не будет превышен уровень толерантности нормальных тканей;

n Применять различные режимы фракционирования;

n Усиливать действие ионизирующего излучения на опухоль;

n Защищать окружающие ткани

При опросе выясняют, не проводилось ли больному в прошлом лучевое лечение . Если оно имело место, то следует узнать все подробности (когда и по какой методике выполняли лучевую терапию, какие отделы организма облучали, в какой суммарной дозе, какие осложнения наблюдались).

Нельзя полагаться только на сообщение больного - нужна выписка из истории болезни или письменная справка из медицинского учреждения, в котором он проходил лечение.

Это крайне важно, потому что при лечении опухолей повторный курс облучения можно проводить только через 60-70 дней после окончания первого и с учетом условий предыдущего облучения.

Впрочем, выше уже отмечалось, что эффективность повторных курсов низка. Первый курс должен быть максимально радикальным и по возможности единственным

На основании результатов всестороннего обследования больного онколог, лучевой терапевт (а нередко терапевт и гематолог) вырабатывают согласованную стратегию лечения. Она зависит от локализации опухоли, ее размеров, гистологической природы и стадии развития.

Опухоль небольшого размера может быть излечена с помощью как оперативного вмешательства, так и лучевой терапии.

В этом случае выбор метода зависит прежде всего от локализации новообразования и возможных косметических последствий вмешательства

К тому же нужно учитывать, что опухоли, исходящие из разных анатомических областей, различаются по своим биологическим характеристикам.

К числу опухолей, поддающихся радикальному лечению (радиокурабельные опухоли) относят рак кожи, губы, носоглотки, гортани, молочной железы, а также ретинобластомы медуллобластомы, семиномы, дисгерминомы яичника, локализованные лимфомы и лимфогранулематоз.

Лучевое уничтожение большой опухоли наталкивается на почти непреодолимые трудности ввиду лучевого повреждения ее сосудов и стромы с исходом в радиационный некроз.

В таких случаях прибегают к комбинированному лечению. Комбинация лучевого воздействия и оперативного вмешательства дает хорошие результаты при опухоли Вилмса и нейробластомах у детей, раке сигмовидной и прямой кишки (так называемый колоректальный рак), эмбриональном раке яичка, рабдомиосаркомах, саркомах мягких тканей.

Оперативное вмешательство очень важно для удаления остатка опухоли после лучевой терапии.

В то же время лучевая терапия показана при рецидиве раковой опухоли после хирургического или комбинированного лечения (рецидив рака кожи, нижней губы, шейки матки), а также при локальных метастазах в лимфатических узлах, костях, легких.

Предлучевой период

В предлучевом периоде проводят подготовку больного к лечению.

Ее следует начинать с психологической подготовки. Пациенту разъясняют необходимость лучевого воздействия, его эффективность, указывают на возможные изменения самочувствия и некоторые лучевые реакции, особенности режима и питания. Беседа с больным должна вселить в него надежду и уверенность в хороших результатах лечения

Дальнейшими этапами подготовки являются усиленное питание с потреблением большого количества жидкости, насыщение организма витаминами (в частности, не менее I г витамина С в сутки), санация облучаемых поверхностей и полостей.

n В местах, подлежащих облучению, кожа должна быть чистой, без ссадин и гнойничков.

n Все физиотерапевтические процедуры и медикаментозные средства для наружного применения типа мазей, болтушек отменяют.

n При облучении лицевого отдела головы проводят санацию полости рта.

n Запрещают употребление спиртных напитков и курение. При сопутствующем воспалительном процессе назначают антибиотики, при анемии - средства для ее коррекции.

Следующим ответственным этапом является клиническая тонометрия , описанная выше. Здесь же необходимо еще раз подчеркнуть, что в связи с появлением компьютерной и магнитно-резонансной томографии создаются принципиально новые возможности предельно точной наводки пучков излучения на мишень.

От анализа расположения мишени на плоскости совершается переход к объемному восприятию опухоли, от анатомической информации - к геометрическим представлениям, к построению сложных дозиметрических распределений, обеспечиваемых компьютерными программами

n На основании результатов клинико-радиобиологического анализа и топометрии подбирают такой вид излучения и такие физико-технические условия облучения, чтобы произошло поглощение намеченного количества энергии в опухоли при максимальном снижении дозы в окружающих тканях.

Иными словами, устанавливают оптимальную суммарную поглощенную дозу излучения, разовую дозу (дозу от каждого облучения), общую длительность лечения.

С учетом топографоанатомических особенностей опухоли и ее гистологической структуры выбирают дистанционное контактное или сочетанное облучение. Определяют технологию облучения и вид устройства (аппарата), которое будет использовано.

С лечащим врачом согласовывают условия проведения курса - амбулаторно или в стационаре.

С инженером-физиком врач по дозиметрическому плану намечает оптимальное распределение полей для дистанционного облучения.

Статическое облучение можно проводить через одно входное поле на поверхности тела (однопольное облучение) либо через несколько полей (многопольное облучение). Если поля расположены над облучаемой областью с разных сторон таким образом, чтобы опухоль оказалась в перекресте радиационных пучков, говорят о многопольном перекрестном облучении . Это наиболее распространенный способ. Он позволяет значительно увеличить очаговую дозу по сравнению с дозой в соседних органах и тканях.

Основная задача клинической топометрии является определение объема облучения на основе точной информации о локализации, размерах патологического очага, а также об окружающих здоровых тканях и представление всех полученных данных в виде анатомо-топографической карты (срезы) .

Карту выполняют в плоскости сечения тела пациента на уровне облучаемого объекта.

На срезе отмечают направления источников излучения при дистанционной лучевой терапии или расположение источников излучения при контактной терапии.

Выбор количества, локализации, формы и величины полей строго индивидуален. Он зависит от вида и энергии излучения, требуемых разовой и суммарной доз, размеров опухоли, величины зоны ее субклинического распространения. Наиболее часто используют два противолежащих поля, три поля (одно спереди или сзади и два сбоку), четыре поля с перекрещивающимися в очаге пучками.

При подвижном облучении источник радиации перемещается относительно больного. Наиболее распространены три способа подвижного облучения: ротационное, секторное и касательное.

При всех этих способах пучок излучения наведен на опухоль.

Лучевую терапию проводят с двух встречных фигурных полей сложной конфигурации, при необходимости с подключением третьего дополнительного поля. В поле облучения включают опухоль, Mts в лимфоузлах (бронхолегочных, корневых, верхних и нижних трахеальных, паратрахеальных) или зоны их локализации.

n После достижения суммарной очаговой дозы 45-50 Гр рекомендуется уменьшить поля облучения и довести дозу облучения до 70-80 Гр

Предлучевой период завершается окончательным оформлением лечебного плана. Лечебный план - это набор документов клинико-радиобиологического и клинико-дозиметрического планирования, включающий как карту дозного распределения в теле пациента, так и рентгенограммы, сделанные через входные поля и подтверждающие правильность наводки пучков излучения на очаг.

n К началу лучевого периода необходимо произвести разметку полей облучения на теле больного. Для этого пациенту придают то положение, которое он будет занимать во время лечебных облучений. Далее осуществляют наводку пучка излучения на опухоль (конечно, установка при этом не включена и облучение не проводят).

Во время укладки пациента на столе радиотерапевтического аппарата – лазерные центраторы или световые поля источников излучения совмещают с метками на поверхности тела.

n Центральная ось пучка должна проходить через центр входного поля и центр опухоли, поэтому наводку на очаг при статическом облучении называют центрацией.

В случае ротации облучение проводят по всему периметру тела больного. Достоинством метода является концентрация поглощенной дозы в очаге поражения с одновременным уменьшением дозы в окружающих тканях, особенно в коже. Однако интегральная поглощенная доза в организме пациента оказывается значительной. Условно можно считать, что ротационный метод является предельным вариантом многопольного перекрестного облучения, когда количество полей крайне велико. Метод показан при локализации опухоли вблизи срединной оси тела (например, при раке пищевода).

При секторном облучении источник перемещается относительно тела больного по дугев пределах выбранного угла -90°, 120°, 180° (рис. IV.8). Такойметод целесообразно применять при эксцентрическом расположении опухоли в теле больного (например, при раке легкого или мочевого пузыря). При касательном облучении центр вращения системы находится на небольшой глубине под поверхностью тела. Тем самым пучок из перемещающегося источника все время направляется по касательной относительно облучаемого отдела тела пациента. Это выгодно при облучении поверхностно расположенного очага достаточной протяженности (например, при диссеминации раковых узелков в коже грудной стенки после удаления молочной железы).

Центрацию можно осуществлять с помощью механических средств: тубуса-локализатора, стрелок-указателей или стержней, соединенных с радиационной головкой. Более удобны оптические методы центрации: световой пучок отбрасывается зеркалом в направлении пучка ионизирующего излучения и освещает поле на поверхности тела больного. Это световое поле совмещают с размеченным на коже запланированным полем и световыми «зайчиками»,направленными перпендикулярно к нему от дополнительных центраторов.

В последние годы созданы специальные аппараты – симуляторы, которыепризваны имитировать все движения источника излучения.

Симулятор- это рентгеновская установка, снабженная усилителем рентгеновского изображения и дисплеем для демонстрации изображения. Трубка может перемещаться по окружности вокруг больного.

Лучевой период - период проведения облучений при постоянном врачебном наблюдении за больным. Клиническое курирование пациента влучевом и послелучевом периодах крайне важно, т.к. позволяет видоизменять лечебный план и определять необходимое сопутствующее лечения.

n Для облучения каждого поля больному придают удобное положение. Исключительно важна иммобилизация пациента.

n Даже небольшое перемещение его ведет к изменению дозного распределения. Иммобилизацию осуществляют посредством разных приспособлений.

n Для фиксации головы и шеи применяют фиксирующие приспособления, изготовленные из термопластического материала. Его размягчают в горячей воде, а затем моделируют для соответствующего больного, после чего материал быстро затвердевает.

n Правильность наводки пучка проверяют с помощью симулятора или рентгенографии (в последнем случае на края намеченного поля помещают рентгеноконтрастные тонкие катетеры или свинцовые метки, чтобы получить их изображение на снимках).

n В процессе облучения врач или лаборант наблюдают за больным на экране телевизора.

n Переговорное устройство обеспечивает двустороннюю связь врача и больного. По окончании облучения больному предписывают отдых в течение 2 ч на свежем воздухе или в палате с хорошей вентиляцией.

n Информацию о каждом облучении записывают в историю болезни.

Стандартные карты изодоз показывают распределение поглощенной энергии в тканях при условии, что пучок излучения падает на облучаемую поверхность перпендикулярно к ней. Однако реальная поверхность тела человека на большинстве участков округло-выпуклая.

Для того, чтобы избежать искажения расчетного распределения дозы, используют компенсаторы, или болюсы, изготовленные из тканеэквивалентного материала (например парафина).

n Фильтр в форме клина позволяет изменять дозное распределение в тканях, так как под узкой частью клина поглощенная доза заметно выше, чем под расширенной.

n При распространенных опухолях иногда проводят неравномерное облучение с помощью решетчатых фильтров. Такой фильтр представляет собой свинцовую пластину с многочисленными отверстиями. Излучение попадает только на те участки поверхности тела, которые находятся под отверстиями. Под прикрытыми свинцом участками доза в 3-4 раза меньше и обусловлена только рассеянным излучением.

n При облучении объектов неправильной формы возникает необходимость в применении полей облучения сложной конфигурации.

n Такие ≪фигурные≫ поля можно получить с помощью свинцовых или вольфрамовых экранирующих блоков. Их размещают на специальных подставках, которые крепят к радиационной головке аппарата. С этой же целью используют фигурную экранирующую диафрагму, составленную из свинцовых блоков.

n Этим путем удается защитить особенно чувствительные к облучению органы: глаза, спинной мозг, сердце, гонады и др., которые могут оказаться вблизи зоны облучения.

n Иногда защитный свинцовый блок располагают в центральной части рабочего пучка. Он как бы расщепляет дозное поле на две половины. Это целесообразно, например, при облучении легких, когда нужно защищать от облучения спинной мозг и сердце.

Фракционированное облучение является основным методом подведения дозы при дистанционной терапии. Облучение проводят отдельными порциям, или фракциями.

Применяют различные схемы фракционирования дозы:

ü обычное(классическое ) мелкое фракционирование -- 1,8-2,0 Гр в зависимости от гистологического вида опухоли

ü Среднее фракционирование – 4,0-5,0 Гр в день 3 раза в неделю;

ü Крупное фракционирование -- 8,0-12,0 Гр в день 1-2 раза в неделю;

ü Интенсивно-концентрированное облучение – 4,0-5,0 ежедневно в течении 5 дней, (например в качестве предоперационной подготовки;

ü Ускоренное фракционарование – облучение 2-3- раза в сутки обычными фракциями с уменьшением суммарной дозы за весь курс лечения;

ü Гиперфракционирование, или мультифракционирование – дробление суточной дозы на 2-3- фракции с с уменьшением дозы за фракцию до 1,0-1,5 Гр с интервалом 4-6 часов, при этом продолжительность курса может не измениться, но доза повышается;

ü Динамическое фракционирование – облучение с различными схемами фракционирования на отдельных этапах лечения;

ü сплит-курсы – режим облучения с длительным перерывом на 2-4 недели в середине курса или после достижения определенной дозы;

ü Низкодозный вариант фотонного тотального облучения тела – от 0,1-0,2 до 1-2 Гр суммарно;

ü Высокодозный вариант фотонного тотального облучения тела от 1-2 до 5-6 Гр суммарно;

ü Низкодозный вариант фотонного субтотального облучения тела – от 1-1,5 Гр до 5-6 Гр суммарно;

ü Высокодозный вариант фотонного субтотального облучения тела от 1-3 до 18-20 Гр суммарно;

ü Электронное тотальное или субтотальное облучение кожи в различных режимах при ее опухолевом поражении

ü Величина дозы за фракцию имеет большее значение, чем общее время курса лечения. Крупные фракции более эффективны, чем мелкие. Укрупнение фракций при уменьшении их числа требует уменьшения суммарной дозы, если не изменяется общее время курса.

Таким образом, основная задача при проведении сеансов облучения – обеспечить точное воспроизведение на терапевтической установке запланированных условий облучения

Лучевая терапия: пред-, или послеперационное облучение, самостоятельное.

Показания к предоперационному облучению:

ü размеры опухоли более 3 см в диаметре;

ü метастазы;

ü фиксация к коже, изъязвления кожи;

ü быстрый рост опухоли

Цель – уменьшить объем опухоли, перевести ее в операбельную форму, уничтожить пролиферирующие клетки опухоли, снизить вероятность диссеминации опухолевых клеток во время операции.

В основе современной классификации методов лучевой терапии лежит вид ионизирующего излучения и способ его подведения к опухоли.

Поэтому лучевую терапию делят на контактную и дистанционную. При дистанционном методе источник излучения располагается на значительном расстоянии (от 30 до 150 см) от облучаемого объекта. При данном методе чаще всего используются гамма-лучи и он называется дистанционной гамма-терапией (ДГТ). ДГТ может проводится в статическом и подвижном режимах. Статическое облучение чаще всего осуществляют так называемым открытым полем, когда между источником и больным нет никаких преград. В целях защиты наиболее чувствительных к ионизирующему излучению тканей применяется многопольное облучение. Например, при лучевой терапии рака абдоминального отдела пищевода применяется 4-х польное облучение. Кроме статического облучения на практике широко применяется подвижное (динамическое) облучение, которое проводится в виде ротационного, маятникового, касательного, а также ротационного с переменной скоростью. Данная методика используется в основном при лечении опухолей, расположенных симметрично, например, рак средней трети пищевода, прямой кишки, шейки матки, мочевого пузыря. При использовании подвижного облучения уменьшается число лучевых реакций.

При дистанционной гамма-терапии в качестве источника ионизирующего облучения используется кобальт-60, период полураспада которого 5,5 лет, а средняя энергия квантов 1,25 МэВ. Облучение проводится на аппаратах «ЛУЧ-1», «АГАТ-Р», «АГАТ-С», «РОКУС». Максимальная доза возникает на глубине 5-6 мм, а слой половинного ослабления составляет 10 см.

При дистанционной рентгенотерапии используются рентгеновские лучи, генерируемые при напряжении 220-250 кв. В настоящее время данная методика не применяется в лечении опухолей, однако широко используется в лечении неопухолевых заболеваний.

Контактное облучение, при котором расстояние от источника излучения до облучаемой поверхности не превышает 7,5 см, в самостоятельном виде находит применение лишь при небольших опухолях. Обычно эти опухоли составляют не более 2 см в диаметре. Распределение энергии в облучаемых тканях происходит таким образом, при котором основная часть дозы поглощается опухолью. К контактным методам относятся близкофокусная рентгенотерапия, внутриполостная, аппликационная, внутритканевая лучевая терапия.

Короткодистанционная (близкофокусная) рентгенотерапия.

Проведение данного метода облучения показано при раке кожи, красной каймы нижней губы, полости рта, вульвы. При облучении используются мягкие рентгеновские лучи, генерируемые при напряжении 40-60 кв. Поля облучения при этом обычно не превышают 3 см в диаметре, разовая доза составляет 3-5 Гр.

Внутриполостная лучевая терапия проводится больным со злокачественными новообразованиями тела и шейки матки, прямой кишки, полости рта, пищевода. При внутриполостном облучении источник вводится непосредственно в соответствующую полость. В качестве источника ионизирующего излучения обычно используются кобальт-60 и цезий-137. Современная внутриполостная гамма-терапия осуществляется на шланговых установках типа «АГАТ-В», «АГАМ», «АННЕТ». При помощи пневматического устройства источники излучения поступают в интрастаты, находящиеся на расстоянии 0,5-2,0 см от опухоли.

Интракорпоральный метод основан на введении радиоактивных препаратов в виде макросуспензий из кобальта-60, растворов натрия-24, коллоидных растворов золота-198, иттрия-90. Данный метод применяется при опухолях плевры, первичном раке брюшины или метастатическом ее поражении, раке мочевого пузыря.

Аппликационная лучевая терапия. Данный метод применяется при лечении поверхностно расположенных опухолей (рак кожи нижней губы, гемангиомы мягких тканей). Для проведения аппликационной лучевой терапии используется муляж, который накладывается на опухоль. Он состоит из двух составных частей: основы и источника излучения. Основа состоит из парафина и воска и повторяет по форме ту поверхность, которую необходимо облучать. На наружной ее поверхности имеются бороздки, в которые укладывают радиоактивные препараты: кобальт-60, фосфор-32, иттрий-90, таллий-204, калифорний-252.

Внутритканевой метод является одним из эффективных методов лучевой терапии. Сущность его заключается во внедрении радиоактивных препаратов, например, в виде радионосных игл непосредственно в опухоль и реализации на этой основе интенсивного, сугубо локального облучения опухоли с резким спадом мощности дозы за ее пределами. Это способствует уменьшению лучевых нагрузок, снижению числа лучевых осложнений и увеличению эффективности лечения. Внутритканевая терапия показана при опухолях кожи, мягких тканей, всех отделов языка, дна полости рта, слизистой оболочки щеки, мягкого неба. При данном методе используются иглы с кобальтом-60, являющимся гамма-излучателем, и калифорнием-252, являющимся источником нейтронного излучения. Металлические футляры, в которые заключен источник, играет роль фильтра, задерживающего сопутствующие и мягкое гамма-излучения. Внедрение радиоактивных препаратов проводится с соблюдением обычных правил асептики и антисептики под проводниковой анестезией или общим наркозом. Время нахождения препаратов в тканях вычисляется с точностью до минут, в назначенное время их извлекают.

Радиохирургический метод или интраоперационный выполняется в 2-х вариантах:

  1. удаление опухоли и облучение ее ложа во время операции,
  2. облучение опухоли путем хирургического доступа без ее удаления

В этих целях используются высокоэнергетические электроны, генерируемые в линейных ускорителях. Путем регулирования энергии электронного пучка и применения тубусов, можно добиться облучения строго заданной мишени. Однократная доза излучения на область ложа опухоли или операционной раны, которая не вызывает осложнений, находится в пределах 13-15 Гр.

Метод избирательного накопления относится также к внутритканевой терапии. При этом радиоактивное вещество вводится в организм через рот или парентерально, включается в обменный цикл и избирательно поглощается определенными органами и тканями. Так, радиоактивный фосфор концентрируется в тканях костного мозга и высоко эффективен при эритремии и хронических лейкозах, миеломной болезни. Разовая доза-2 ГБк, суммарная-8-10 ГБк. Радиоактивный йод используется при лечении опухолей щитовидной железы и ее метастазах. Разовая доза - 2-3 ГБк, суммарная - 30-40 ГБк.

Курс лучевой терапии, когда в определенной последовательности применяются один из перечисленных дистанционных и контактных методов, называется сочетанным. Например, при раке шейки матки внутриполостной метод сочетается с дистанционной гамма-терапией, а при раке нижней губы 3 стадии дистанционная гамма-терапия проводится в сочетании с близкофокусной рентгенотерапией. Как правило, сочетанная лучевая терапия проводится по расщепленному курсу, на 1 этапе применяется дистанционная гамма-терапия в СОД-40 Гр, устраивается 2-х недельный перерыв. При выраженной положительной динамике на 2-м этапе проводят контактную лучевую терапию.

Поскольку результаты лечения только хирургического или только лучевого методов оставляют желать лучшего, в практику все шире внедряется хирургический метод с пред- или послеоперационным облучением. Такое лечение называется комбинированным.

Комбинированный метод применяется при злокачественных опухолях, характеризующихся местным распространением (рак языка, матки, молочной железы, прямой кишки и др.).

Как компонент комбинированного метода лучевая терапия позволяет:

Расширить показания к радикальному лечению местно распространенных опухолей

Повысить резектабельность при выполнении операций

Снизить частоту рецидивов

Способствовать повышению положительных результатов экономных органо-

сохраняющих операций

Облучение может проводится до операции или после нее.

К преимуществам предоперационного облучения опухоли и зон клинического и субклинического распространения ее относятся:

  1. Уменьшение опухоли в размерах, превращение неоперабельной опухоли в операбельную
  2. Снижение биологического потенциала опухоли из-за:

а) летального повреждения наиболее злокачественных высокопролиферирующих клеток

  1. Облитерация сосудов

Существует 3 формы предоперационного облучения:

1. Облучение операбельных опухолей

Лучевая терапия проводится по интенсивно концентрационной методике - ИКМ, подводится РОД-4-5 Гр в течении 1 недели до СОД-20-25 Гр, операция выполняется не позднее 72 часов

2. Облучение неоперабельных опухолей

Лучевая терапия проводится в режиме обычного или динамического фракционирования до СОД 40-30 Гр соответственно. Операция выполняется через 2-3 недели.

3. Облучение с отсроченной операцией выполняется при остеогенной саркоме. Подводится СОД 70-90 Гр. При условии отсутствия метастазов оперативное вмешательство проводится через 6 месяцев.

Послеоперационная лучевая терапия применяется для достижения «стерилизации» операционного поля от рассеянных в процессе операции злокачественных клеток и для эррадикации оставшихся злокачественных тканей после неполного удаления опухоли.

Послеоперационное облучение менее целесообразно, т.к. в зоне выполнения операции нарушен кровоток, возникают воспалительные изменения, снижается оксигенация.

Преимущества послеоперационного облучения заключаются в следующем:

1. Выбор объема и методики облучения проводят не вслепую, а на основании данных, полученных на операции,

2. Отсутствуют факторы, оказывающие отрицательное воздействие на заживление послеоперационных ран,

3. Оперативное вмешательство выполняют максимально быстро, сразу же после диагностики.

Для достижения лечебного эффекта при осуществлении послеоперационной лучевой терапии необходимо подведение высоких канцероцидных доз не менее 50-60 Гр, и очаговую дозу на область не удаленной опухоли или метастазов целесообразно увеличить до 65-70 Гр.

При локализации опухолей в тканях ЦНС, решетчатом лабиринте, ротоглотке (1 стадия), шейном отделе пищевода, в среднем ухе, забрюшинном пространстве целесообразно применять послеоперационную лучевую терапию независимо от стадии заболевания, т.к. в этих условиях невозможно выполнить абластичной операции.

Под комплексным методом лечения понимают использование лучевой терапии в сочетании с двумя различными методами лечения: химиотерапией, гормонотерапией, оперативным вмешательством.

МЕТОДЫ ЛЕЧЕНИЯ

ЛУЧЕВОЙ СОЧЕТАННЫЙ

контактный дистантный дистантная дистантная дистантная

Коротко- γ-терапия: Rg-терапия γ-терапия γ-терапия γ-терапия

Внутри- + внутри- + контактная дистанционная Rg-терапия; - статическая полостная тканевая Rg-терапия

Внутриполостной; - динамическая γ-терапия γ-терапия аппликационный;

Внутритканевой;

Внутрикорпоральный;

Метод избирательного

2
1 ФГБУ «НМИЦ радиологии» Минздрава России, Москва
2 МРНЦ им. А.Ф. Цыба – филиал ФГБУ НМИРЦ Минздрава России, г. Обнинск
3 МНИОИ им. П.А. Герцена – филиал ФГБУ НМИРЦ Минздрава России
4 НИИ урологии и интервенционной радиологии им. Н.А. Лопаткина – филиал ФГБУ НМИРЦ Минздрава России, Москва
5 ФГБУ «МРНЦ им. А.Ф. Цыба» – филиал ФГБУ НМИРЦ МЗ РФ, Обнинск
6 ГАУЗ ТО МКМЦ «Медицинский город», Тюмень
7 ФГБУ НМИРЦ Минздрава России, Москва

В настоящее время основными методами лечения локализованных форм рака предстательной железы (РПЖ) являются хирургический и лучевой. Брахитерапия представляет собой внутритканевую лучевую терапию, позволяющую при помощи малоинвазивного вмешательства подводить к пораженному органу высокоэффективную дозу облучения. При этом в зависимости от используемого источника различают низко- и высокомощностную брахитерапию. В данной статье отражены основные этапы исторического развития и становления брахитерапии РПЖ как за рубежом, так и в нашей стране. Приводится описание основных методик брахитерапии, применяемых в современной медицинской практике. Даны ссылки на методические рекомендации ведущих мировых сообществ по проведению контактной лучевой терапии при помощи источников излучения низкой мощности дозы. Описываются основные показания и противопоказания к брахитерапии при РПЖ. Представлены сводные данные по эффективности методики в зависимости от различных групп прогноза течения РПЖ. Впервые опубликованы объединенные результаты низкомощностной брахитерапии филиалов ФГБУ НМИРЦ Минздрава России. Приведены данные клинических испытаний российских источников
I-125 инициированных ФГБУ НМИРЦ в рамках программы импортозамещения.

Ключевые слова: рак предстательной железы, внутритканевая лучевая терапия, брахитерапия, показания, противопоказания, группы прогноза, объединенные результаты, российские микроисточники I-125.

Для цитирования: Каприн А.Д., Бирюков В.А., Черниченко А.В., Корякин А.В., Поляков В.А., Карякин О.Б., Галкин В.Н., Аполихин О.И., Иванов С.А., Сивков А.В., Ощепков В.Н., Алексеев Б.Я., Обухов А.А., Лепилина О.Г. Внутритканевая лучевая терапия (брахитерапия) рака предстательной железы. Собственный опыт работы Национального медицинского исследовательского радиологического центра Минздрава России // РМЖ. 2017. №27. С. 2011-2014

Interstitial radiotherapy therapy (brachytherapy) of prostate cancer. Own experience of the National Medical Research Radiological Center of the Ministry of Health of Russia
A.D. Kaprin 1 , V.A. Biryukov 2 , A.V. Chernichenko 3 , A.V. Koryakin 4 , V.A. Polyakov 3 , O.B. Karyakin 2 , V.N. Galkin 2 , O.I. Apolikhin 4 , S.A. Ivanov 2 , A.V. Sivkov 4 , V.N. Oschepkov 5 , B.Ya. Alekseev 1 , A.A. Obukhov 2 , O.G. Lepilina 2
1 National Medical Research Radiological Center, Moscow
2 Medical Radiological Research Center named after A.F. Tsyb, branch of National Medical Research Radiological Center, Obninsk
3 Moscow Scientific Oncological Institute named after P.A. Herzen, branch of National Medical Research Radiological Center
4 Research Institute of Urology and Interventional Radiology named after N.A. Lopatkin, branch of National Medical Research Radiological Center, Moscow
5 Multifield Clinical Medical Center "Medical City", Tyumen

Currently, the main methods of treatment of localized prostate cancer (PC) are surgery and radiation therapy. Brachytherapy is an interstitial radiation therapy, which allows to bring a highly effective dose of radiation to the affected organ using a minimally invasive intervention. There are low and high dose rate brachytherapy, depending on the source of radiation. This article reflects the main stages of the historical development of PC brachytherapy both abroad and in our country. The description of the main methods of brachytherapy used in modern medical practice is given. Reference is made to the methodological recommendations of the world"s leading communities on the contact radiation therapy with the use of low dose rate radiation sources. The main indications and contraindications to PC brachytherapy are described. Summary data on the effectiveness of the method are presented depending on different groups of the PC course prognosis. For the first time, the combined results of low dose rate brachytherapy received from the branches of the National Medical Research Radiological Center were published. The article provides the data of clinical trials of Russian I-125 sources initiated by National Medical Research Radiological Center within the program of import substitution.

Key words: prostate cancer, interstitial radiation therapy, brachytherapy, indications, contraindications, prognosis groups, combined results, Russian microsources I-125.
For citation: Kaprin A.D., Biryukov V.A., Chernichenko A.V. et al. Interstitial radiotherapy therapy (brachytherapy) of prostate cancer. Own experience of the National Medical Research Radiological Center of the Ministry of Health of Russia // RMJ. 2017. № 27. P. 2011–2014.

В статье рассмотрена роль внутритканевой лучевой терапии (брахитерапия) рака предстательной железы. Описываются основные показания и противопоказания к брахитерапии при. Представлены сводные данные по эффективности методики в зависимости от различных групп прогноза течения рака предстательной железы. Впервые опубликованы объединенные результаты низкомощностной брахитерапии филиалов ФГБУ НМИРЦ Минздрава России.

Введение

Рак предстательной железы (РПЖ) сохраняет лидирующие позиции среди онкологических заболеваний мужского населения как в России, так и в мире. Согласно данным Национального Российского центра информационных технологий и эпидемиологических исследований в области онкологии НМИРЦ Минздрава России РПЖ занимает 2-е место после рака трахеи, бронхов и легкого в мужской популяции. Следует отметить, что удельный вес больных с I‒II стадией РПЖ, т. е. локализованными формами рака, составляет 52,5% .
На сегодняшний день в соответствии с рекомендациями Европейской ассоциации урологов основными методами лечения при локализованном РПЖ являются: хирургия (радикальная простатэктомия) и лучевая терапия (дистанционная лучевая терапия и брахитерапия). Брахитерапия (контактная или внутритканевая лучевая терапия) представляет собой разновидность лучевой терапии, при которой радиоактивный источник излучения имплантируется и оказывает воздействие непосредственно внутри пораженного органа.
Брахитерапия в своем развитии прошла сложный путь взлетов и забвения, насчитывающий более 100 лет. В 1901 г. французский врач дерматолог Danlos воплотил в жизнь предложение известного физика Пьера Кюри, проведя лечение злокачественных новообразований кожи при непосредственном контакте с ними радиоактивным радием. В последующем в 1914 г. Pasteau и Degrais использовали иглы с радием для лечения РПЖ через открытый промежностный доступ. Barringer в 1917 г. выполнил брахитерапию путем широко распространенного в наши дни черескожного трансперинеального доступа.
В 2000 г. впервые в России в НИИ урологии и интервенционной радиологии им. Н.А. Лопаткина была проведена низкомощностная брахитерапия РПЖ. Позднее, в 2004 г., в Медицинском радиологическом научном центре им. А.Ф. Цыба впервые в России проведена брахитерапия с использованием стереотаксической 3D-приставки под контролем компьютерного томографа . В настоящее время внутритканевая лучевая терапия при РПЖ активно применяется и развивается во всех филиалах НМИРЦ Минздрава России. В 2016 г. на базе МРНЦ им. А.Ф. Цыба создан Центр брахитерапии, представляющий собой объединение лечебных, научно-методических и образовательных возможностей МРНЦ им. А.Ф. Цыба, использующее диагностические, лечебные и амбулаторно-поликлинические мощности центра, оказывающее высокотехнологичную медицинскую помощь в виде проведения контактной лучевой терапии (брахитерапии) опухолей различных локализаций.

Внутритканевая лучевая терапия (брахитерапия) рака предстательной железы

Основными видами брахитерапии при РПЖ являются: низкомощностная (выполняется имплантация микроисточников низкой мощности дозы, содержащих изотопы I-125, Pd-103, Cs-131, на постоянной основе) и высокомощностная (облучение опухоли происходит за счет временного контакта с тканью предстательной железы источников высокой мощности дозы, содержащих изотопы
Ir-192, Co-60, Cs-137).
Современная низкомощностная брахитерапия при РПЖ с первого применения в 1980-х годах претерпела ряд серьезных изменений в плане улучшения визуализации органа-мишени, развития компьютерных систем планирования и постимплантационного контроля. Все это существенно улучшило качество выполнения и отдаленные результаты брахитерапии.
При сопоставимых результатах лечения, по сравнению с оперативным вмешательством и дистанционной лучевой терапией, низкомощностная внутритканевая контактная лучевая терапия имеет свои преимущества: значительное сокращение пребывания пациента в стационаре, снижение числа осложнений со стороны мочеполовой системы и желудочно-кишечного тракта ‒ и соответственно обеспечивает более высокий уровень качества жизни данной категории больных.

Методика лечения

С 1983 г. основным способом проведения низкодозной брахитерапии в мире является череспромежностная имплантация радиоактивных источников под контролем ультразвука. В России официально зарегистрированы и применяются две методики брахитерапии: под контролем ультразвука и контролем компьютерной томографии .

Показания к применению

При локализованном РПЖ выделяют три прогностические группы, с учетом их характеристик проводится отбор пациентов для различных методов лечения, в т. ч. брахитерапии. Существуют ведущие мировые рекомендации по критериям включения/исключения больных на основании совокупности факторов риска. Основные из них: уровень ПСА, индекс Глисона, стадия Т (местная распространенность процесса). Европейская ассоциация урологов (EAU) считает возможным выполнение брахитерапии у пациентов с благоприятным прогнозом: клиническая стадия Т1–Т2аN0M0, общее значение баллов по шкале Глисона ≤6 (3+3) либо 7 (3+4) менее 33% биоптатов, ПСА ≤10 нг/мл . В рекомендациях Американской ассоциации брахитерапии (ABS) показания для проведения интерстициальной лучевой терапии значительно расширены и позволяют включать пациентов с Т2с, Т3 стадией, суммой баллов по шкале Глисона до 10 и уровнем ПСА до 50 нг/мл . Следует сразу оговориться, что для больных с неблагоприятным и промежуточным прогнозом ABS рекомендует проведение комбинированных методов лечения – сочетание брахитерапии с дистанционной лучевой терапией или гормонотерапией либо мультимодальное лечение, включающее все эти три метода (табл. 1).

Основными противопоказаниями к проведению имплантации микроисточников являются: наличие метастазов, ожидаемая продолжительность жизни менее 5 лет, относительными противопоказаниями ‒ наличие простатита, большой размер предстательной железы, заболевания прямой кишки (язвенный колит, проктит и т. д.), пожилой возраст пациента, выраженные дизурические явления (высокий балл по шкале IPSS, наличие остаточной мочи).
При использовании различных современных методик имплантации трансуректальная резекция в анамнезе и объем предстательной железы не являются ограничением в проведении брахитерапии . Hughes S. еt al. в своем исследовании показали, что наличие простатита не влияет на качество мочеиспускания после проведения имплантации, в то же время работа Grann et al. не выявила увеличения гастроинтестинальной токсичности у пациентов с воспалительными заболеваниями кишечника. Возраст пациента также не является лимитирующим фактором при проведении брахитерапии, т. к. переносимость процедуры практически сравнима для разных возрастных групп, в то время как хорошие результаты безрецидивной выживаемости среди более молодых пациентов расширяют возможности применения методики .

Брахитерапия рака предстательной железы в группе благоприятного прогноза

В соответствии с рекомендациями ведущих мировых организаций (ESTRO/EAU/EORTC, ABS) применение брахитерапии в монорежиме показано больным РПЖ с благоприятным прогнозом: ПСА <10нг/мл; индекс Глисона 6 либо 7(3+4) менее 33% биоптатов, стадия Т1с‒Т2а. Стандартным изотопом при выборе источника излучения у этой группы пациентов является 125 I. Преимущества применения микроисточников 103 Pd документально не подтверждены. Минимально допустимая терапевтическая доза на предстательную железу составляет 145 Гр.
При анализе данных зарубежных специалистов, проводивших брахитерапию в монорежиме в группе пациентов с низкой степенью риска, 10-летняя выживаемость без роста уровня ПСА составила 87–98% .

Брахитерапия РПЖ в группе промежуточного прогноза

В группе пациентов с промежуточным риском (ПСА >10 нг/мл, или индекс Глисона >7, или Т2b), используя низкомощностную брахитерапию в монорежиме, Blasko et al. отметили 9-летнюю среднюю безрецидивную выживаемость 82% . При этом добавление дистанционной лучевой терапии (ДЛТ) не повысило показателя выживаемости (84% против 85% соответственно) . В работе Potters et al. 12-летняя беспрогрессивная выживаемость составила 80% как в группе с монотерапией, так и в группе комбинированного лечения . Stone et al. также показали эффективность брахитерапии в монорежиме: 12-летнюю безрецидивную выживаемость 79,2% . В итоге, сопоставив эти работы, можно сделать вывод об отсутствии явных преимуществ комбинации брахитерапии с ДЛТ перед брахитерапией в монорежиме у пациентов с промежуточным прогнозом.

Собственный опыт применения низкомощностной брахитерапии

С 2000 по 2016 г. силами трех филиалов НМИРЦ было выполнено 1187 имплантаций микроисточниками I-125 как под ультразвуковым контролем так и под контролем спиральной компьютерной томографии.
Возраст пациентов, которым была проведена брахитерапия, составил от 47 до 77 лет, в среднем – 60,5 года. Сумма баллов по Глисону варьировала от 6 до 8. Среднее значение уровня простатспецифического антигена (ПСА) до лечения составило 8,3 нг/мл. Объем предстательной железы перед имплантацией зарегистрирован в пределах 13,0‒91,4 см 3 , в среднем ‒ 35,8 см 3 . Максимальная скорость потока мочи (Q max) в среднем отмечена в пределах 17,8 мл/с. Данные представлены в таблице 2.


Пациенты с благоприятным прогнозом по D’Amico составили 67,9% (806 больных). Пациенты промежуточной группы риска составили 23,2% (275 больных). Доля больных с неблагоприятным прогнозом заболевания составила 8,9% (106 больных). При проведении брахитерапии использовались микроисточники I-125 производства Amersham и Bebig с активностями от 0,2 мКи до 0,65 мКи. Применяемое для имплантации программное обеспечение ‒ VarySeed 7.1, 8,1 и PSID.
Безрецидивная выживаемость, определяемая по данным ПСА, при сроке наблюдения 60 мес. составила 96%.
Из осложнений следует отметить острую задержку мочеиспускания у 13 (1,1%) больных. Эпицистостомия в постимплантационном периоде проведена в 0,4% случаев (5 пациентов). Постлучевой уретрит III степени (RTOG) зарегистрирован у 4-х (0,34%) пациентов. У 3-х (0,25%) больных выявлена стриктура уретры. Явления лучевого ректита II степени (RTOG) отмечены в 0,1% случаев (1 пациент), III степени также в 0,1% случаев (1 пациент).
Таким образом, собственный опыт работы филиалов НМИРЦ показал результаты лечения, сравнимые с данными зарубежных авторов. Число и характер осложнений контактной лучевой терапии оказались ожидаемыми и не достигшими критических значений.
Следует отметить, что основным фактором, ограничивающим широкое применение брахитерапии в России, является высокая цена на микроисточники, производимые иностранными фирмами. В октябре 2015 г. в Национальном медицинском исследовательском радиологическом центре Минздрава России при участии Физико-энергетического института им. А.И. Лейпунского (АО «ГНЦ РФ –ФЭИ» ‒ Госкорпорация Росатом впервые в нашей стране проведено клиническое испытание микроисточников I-125 отечественного производства.
На сегодняшний день 36 больным РПЖ выполнена низкомощностная брахитерапия отечественными микроисточниками I-125 при стадиях T1‒Т2. Из 36 пациентов было 30 (83,3%) больных низкого онкологического риска по классификации D’Amico и 6 (16,7%) больных с промежуточным онкологическим риском. Возраст пациентов варьировал от 54 до 79 лет, в среднем составил 64,6 года. Уровень ПСА составил от 2,3 нг/мл до 18 нг/мл, в среднем – 8 нг/мл (стандартное отклонение среднего 3,44). Объем предстательной железы до брахитерапии колебался от 15 см3 до 60 см 3 , в среднем составил 35 см 3 (стандартное отклонение среднего 9,44). Максимальная скорость потока мочи, определяемая при урофлоуметрии до начала исследования, составила от 10 мл/с до 31 мл/с, средняя – 15,8 мл/с.
Все пациенты перед включением в исследование подписали информированное согласие. Больные были подробно проинформированы относительно методики проведения брахитерапии, возможных побочных реакций и мер по их предупреждению, а также прогноза заболевания.
Пациентам с низким онкологическим риском (30 больных) выполняли низкомощностную брахитерапию отечественными микроисточниками I-125 в монорежиме, при этом cуммарная доза облучения составила 145‒160 Гр. При выполнении низкомощностной брахитерапии нами использовались отечественные источники I-125 двух активностей – 0,55 мКи и 0,35 мКи. Во время процедуры брахитерапии пациентам имплантировали от 40 до 80 микроисточников, в зависимости от объема предстательной железы, среднее количество источников составило 57. Среднее время имплантации составило 85 мин. Длительность пребывания в условиях стационара не превышала 2-х суток, на следующий день после брахитерапии все пациенты выписывались домой.
Пациентам с промежуточным прогнозом (6 больных) проводилась низкомощностная брахитерапия отечественными микроисточниками I-125 в комбинации с лапароскопической тазовой лимфаденэктомией. Хирургическое вмешательство выполнялось за 4‒5 нед. до брахитерапии.
Проведена оценка лечения 36 пациентов, включенных в исследование. Все пациенты находились под наблюдением в филиалах НМИРЦ, где было выполнено лечение. На следующий день после низкомощностной брахитерапии пациентам выполнялась постимплантационная компьютерная томография с целью оценки качества и правильности установки отечественных микроисточников I-125. В дальнейшем повторная контрольная компьютерная томография осуществлялась через 5 нед. после брахитерапии. Было отмечено отсутствие дефектов имплантации микроисточников у наблюдаемых больных. Параллельно, с помощью разработанных в Центре уникальных технологий дозиметрии, проводился контроль безопасности отечественных микроисточников I-125, по данным которого они были признаны безопасными для медперсонала, выполнявшего брахитерапию .
Пациентам, включенным в исследование, регулярно проводился контроль ПСА. Зарегистрировано снижение уровня ПСА через 3, 6 и 12 мес. после имплантации у всех пациентов в среднем на 87% от исходного.
Отмеченные в ходе исследования побочные реакции были ожидаемыми. Наблюдалась дизурия I степени по классификации RTOG/EORTC. Только у одного (2,7%) из 36 пациентов через месяц после брахитерапии возникла острая задержка мочи, потребовавшая катетеризации мочевого пузыря. В последующем у больного консервативными методами удалось полностью восстановить акт мочеиспускания. Проявлений гастроинтестинальной токсичности среди пролеченных пациентов не зарегистрировано.
В настоящее время продолжено наблюдение за пациентами с целью получения отдаленных результатов лечения с помощью низкомощностной брахитерапии отечественными микроисточниками I-125. Необходимо отметить, что полученные в ходе испытаний результаты показывают клиническую эффективность, безопасность и соответствие отечественных микроисточников I-125 международным стандартам низкомощностной брахитерапии.
Таким образом, в заключение хотелось бы отметить, что методика брахитерапии благодаря профессионализму врачей-клиницистов, физиков и ученых-атомщиков продолжает играть значимую роль в лечении такого грозного заболевания, как РПЖ. Созданный на базе НМИРЦ Центр брахитерапии планирует расширить применение внутритканевой лучевой терапии в различных областях онкологии, продолжить традиционные направления научной деятельности Центра с целью улучшения качества и увеличения продолжительности жизни онкологических пациентов.

Литература

1. Каприн А.Д., Старинский В.В., Петрова Г.В. Состояние онкологической помощи населению России в 2014 году. Москва 2015 .
2. Koutrouvelis P.A. Breakthrouth in Prostate Cancer Treatment. 2006. 114 p.
3. Каприн А.Д., Паньшин Г.А., Альбицкий И. А. Миленин К.Н. и др. Новая медицинская технология: Брахитерапия (локализованного) рака предстательной железы. Разрешение ФС № 2009/218 от 27.07.2009 .
4. Цыб А.Ф., Карякин О.Б., Бирюков В.А., Неледов Д.В. и др. Новая медицинская технология: Внутритканевая лучевая терапия (брахитерапия) рака предстательной железы. Разрешение ФС № 2010/180 от 17.05.2010 .
5. Guidelines on Prostate Cancer – European Association of Urology. https://uroweb.org/guideline/prostate-cancer/
6. American Brachytherapy Society (ABS): Brachytherapy Guidelines https://www.americanbrachytherapy.org/guidelines/
7. Merrick G., Butler W., Lief J., Dorsey A. Temporal resolution of urinary morbidity following prostate brachytherapy // Int J Radiat Oncol Biol Phys. 2000. 47. Р.121-128.
8. Wallner K., Lee H., Wasserman S., Dattoli M. Low risk of urinary incontinence following prostate brachytherapy in patients with a prior transurethral prostate resection // Int J Radiat Oncol Biol Phys. 1997. Vol. 37(3). Р.565-569.
9. Hughes S., Wallner K., Merrick G. et al. Preexisting histologic evidence of prostatitis is unrelated to postimplant urinary morbidity // Int J Cancer. 2001. Vol. 96 Suppl. P.79-82.
10. Grann A., Wallner K. Prostate brachytherapy in patients with inflammatory bowel disease // Int J Radiat Oncol Biol Phys. 1998. Vol. 40(1). P.135-138.
11. Merrick G.S., Butler W.M., Wallner K.E. et al. Permanent interstitial brachytherapy in younger patients with clinically organ-confined prostate cancer // Urology. 2004. Vol. 64(4). P.754-759.
12. Grimm P.D., Blasko J.C., Sylvester J.E. et al. 10-year biochemical (prostate-specific antigen) control of prostate cancer with (125)I brachytherapy // Int J Radiat Oncol Biol Phys. 2001. Vol. 51(1). P.31-40.
13. Potters L., Morgenstern C., Calugaru E. et al. 12-year outcomes following permanent prostate brachytherapy in patients with clinically localized prostate cancer // J Urol. 2005. Vol. 173(5). P.1562-1566.
14. Stone N.N., Stone M.M., Rosenstein B.S. et al. Influence of pretreatment and treatment factors on intermediate to long-term outcome after prostate brachytherapy // J Urol. 2011. Vol. 185(2). P.495-500.
15. Vargas C., Swartz D., Vashi A. et al. Long-term outcomes and prognostic factors in patients treated with intraoperatively planned prostate brachytherapy // Brachytherapy. 2013. Vol. 12. P.120‒125.
16. Blasko J.C., Grimm P.D., Sylsvester J.E., Cavanagh W. The role of external beam radiotherapy with I-125/Pd-103 brachytherapy for prostate carcinoma // Radiother Oncol. 2000. Vol. 57(3). P.273-278.
17. Grimm P.D., Blasko J.C., Sylvester J.E. et al. 10- year biochemical (prostate-specific antigen) control of prostate cancer with (125)I brachytherapy // Int J Radiat Oncol Biol Phys. 2001. Vol. 51(1). P.31-40.
18. Бирюков В.А., Степаненко В.Ф., Карякин О.Б. и др. Результаты измерения локальных доз облучения медицинского персонала при проведении брахитерапии рака предстательной железы микроисточниками I-125 российского производства. Матер. междунар. науч.-практ. конф. «Современные проблемы радиационной медицины: от теории к практике». Гомель 2016. С. 47-48 .


Лучевая терапия: что это такое и каковы последствия – вопрос, который интересует людей, столкнувшихся с онкологическими проблемами.

Лучевая терапия в онкологии стала достаточно эффективным средством в борьбе за жизнь человека и широко используется по всему миру. Медицинские центры, оказывающие подобные услуги, высоко оцениваются специалистами. Осуществляется лучевая терапия в Москве и других городах России. Зачастую эта технология позволяет полностью устранить злокачественную опухоль, а в тяжелых формах болезни – продлить жизнь больному.

В чем заключается сущность технологии

Лучевая терапия (или радиотерапия)представляет собой воздействие ионизирующей радиации на очаг поражения тканей с целью подавления активности патогенных клеток. Такое воздействие может производиться с помощью рентгеновского и нейтронного излучения, гамма-излучения или бета-излучения. Направленный пучок элементарных частиц обеспечивается специальными ускорителями медицинского типа.

Во время лучевой терапии не происходит непосредственного распада клеточной структуры, но обеспечивается изменение ДНК, прекращающее деление клеток. Воздействие направлено на разрыв молекулярных связей в результате ионизации и радиолиза воды. Злокачественные клетки отличаются способностью к бурному делению и чрезвычайной активностью. В результате именно эти клетки, как наиболее активные, подвергаются действию ионизирующего излучения, а нормальные клеточные структуры не изменяются.

Усиление воздействия достигается еще и разным направлением излучения, что позволяет создавать максимальные дозы в очаге поражения. Наибольшее распространение такое лечение находит в области онкологии, где оно может выступать как самостоятельный способ или дополнять хирургические и химиотерапевтические методы. Например, лучевая терапия крови при различных видах её поражения, лучевая терапия при раке молочной железы или лучевая терапия головы показывают очень хорошие результаты на начальной стадии патологии и эффективно уничтожают остатки клеток после хирургического вмешательства на более поздних стадиях. Особенно важное направление радиотерапии – предотвращение метастаза раковых опухолей.

Нередко этот вид лечения применяется и для борьбы с другими видами патологий, не связанных с онкологией. Так радиотерапия показывает высокую эффективность при устранении костных наростов на ногах. Достаточно широко используется рентгенотерапия. В частности, подобное облучение помогает при лечении гипертрофированной потливости.

Особенности осуществления лечения

Основным источником направленного потока частиц для выполнения медицинских задач является линейный ускоритель – лучевая терапия осуществляется при наличии соответствующего оборудования. Технология лечения предусматривает неподвижное расположение больного в лежачем положении и плавное перемещение источника луча вдоль размеченного очага поражения. Такая методика позволяет направить поток элементарных частиц под разным углом и с разной радиационной дозой, при этом все перемещения источника контролирует компьютер по заданной программе.

Режим облучения, схема терапии и продолжительность курса зависит от вида, локализации и стадии злокачественного новообразования. Как правило, курсовое лечение длится 2-4 недели с проведением процедуры 3-5 дней в неделю. Продолжительность самого сеанса облучения составляет 12-25 минут. В некоторых случаях назначается одноразовое воздействие для купирования боли или иных проявлений запущенного рака.

По способу подачи луча на пораженные ткани различается поверхностное (дистанционное) и внутритканевое (контактное) воздействие. Дистанционное облучение заключается в размещении источников луча на поверхности тела. Поток частиц в этом случае вынужден проходить слой здоровых клеток и только после этого фокусироваться на злокачественных образованиях. С учетом этого при использовании этого способа возникают различные побочные эффекты, но, несмотря на это, он является наиболее распространенным.

Контактный метод основан на введении источника внутрь организма, именно в зону очага поражения. В этом варианте используются устройства в виде иглы, проволоки, капсулы. Они могут вводиться только на время процедуры или имплантироваться на длительный срок. При контактном способе воздействия обеспечивается направленный строго на опухоль луч, что снижает влияние на здоровые клетки. Однако по степени травматичности он превосходит поверхностный метод, а также требует специального оборудования.

Какие разновидности лучей можно использовать

В зависимости от задачи, которая ставится перед лучевой терапией, могут использоваться различные типы ионизирующего излучения:

1. Альфа-излучение. Помимо потока альфа-частиц, получаемых в линейном ускорителе, используются различные методики, основанные на введении изотопов, которые могут достаточно просто и быстро выводиться из организма. Наиболее широкое применение находят радон и продукты торона, имеющие непродолжительный период жизни. Среди различных методик выделяются следующие: радоновые ванны, употребление воды с изотопами радона, микроклизмы, вдыхание аэрозолей с насыщением изотопами, применение повязок с радиоактивной пропиткой. Находят использования мази и растворы на основе тория. Эти методы лечения используются при лечении сердечно-сосудистых, неврогенных и эндокринных патологий. Противопоказаны при туберкулезе и для беременных женщин.

2. Бета-излучение. Для получения направленного потока бета-частиц применяются соответствующие изотопы, например, изотопы иттрия, фосфора, таллия. Источники бета-излучения эффективны при контактном методе воздействия (внутритканевый или внутриполостной вариант), а также при наложении радиоактивных аппликаций. Так аппликаторы можно использовать при капиллярных ангиомах и ряде болезней глаз. Для контактного воздействия на злокачественные образования применяются коллоидные растворы на основе радиоактивных изотопов серебра, золота и иттрия, а также стержни длиной до 5 мм из этих изотопов. Наиболее широкое применение такой метод находит при лечении онкологии в брюшной полости и плевре.

3. Гамма-излучение. Данный вид лучевой терапии может основываться как на контактном методе, так и на дистанционном способе. Кроме того, применяется вариант интенсивного излучения: так называемый, гамма-нож. Источником гамма-частиц становится изотоп кобальта.

4. Рентгеновское излучение. Для осуществления терапевтического воздействия предназначаются источники рентгеновских лучей мощностью от 12 до 220 кэВ. Соответственно, с увеличением мощности излучателя повышается глубина проникновения лучей внутрь тканей. Рентгеновские источники с энергией 12- 55 кэВ нацелены на работу с небольших расстояний (до 8 см), а лечение охватывает поверхностные кожные и слизистые слои. Дальняя дистанционная терапия (расстояние до 65 см) осуществляется при увеличении мощности до 150 -220 кэВ. Дистанционное воздействие средней мощности предназначается, как правило, для патологий, не связанных с онкологией.

5. Нейтронное излучение. Способ осуществляется с применением специальных нейтронных источников. Особенностью такого излучения является способность соединяться с атомными ядрами и последующим испусканием квантов, оказывающих биологическое воздействие. Нейтронная терапия может также применяться в виде дистанционного и контактного воздействия. Такая технология считается наиболее перспективной при лечении обширных опухолей головы, шеи, слюнных желез, саркомы, опухолей с активным метастазированием.

6. Протонное излучение. Этот вариант основывается на дистанционном воздействии протонов с энергией до 800 МэВ (для чего применяются синхрофазотроны). Поток протонов имеет уникальную градацию дозы по глубине проникновения. Такая терапия позволяет лечить очаги очень малых размеров, что важно в офтальмологической онкологии и нейрохирургии.

7. Пи-мезонная технология. Этот метод является последним достижением медицины. Он основан на излучении отрицательно заряженных пи-мезонов, вырабатываемых на уникальном оборудовании. Данный способ пока освоен только в нескольких наиболее развитых странах.

Чем грозит лучевое воздействие

Лучевая терапия, особенно её дистанционная форма, приводит к ряду побочных эффектов, которые с учетом опасности основной болезни воспринимаются как неизбежное, но небольшое зло. Выделяются следующие характерные последствия лучевой терапии при раке:

  1. При работах с головой и в шейной зоне: вызывает чувство тяжести в голове, выпадение волосяного покрова, проблемы со слухом.
  2. Процедуры на лица и в шейной зоне: сухость в полости рта, дискомфорт в горле, болевые признаки при глотательных движениях, потеря аппетита, хрипота в голосе.
  3. Мероприятие на органах грудной области: кашель сухого типа, одышка, мышечные боли и болевые симптомы при глотательных движениях.
  4. Лечение в области молочной железы: опухание и болевые признаки в железе, кожные раздражения, мышечные боли, кашель, проблемы в горле.
  5. Процедуры на органах, относящихся к брюшной полости: похудение, тошнота, рвота, диарея, болевой синдром в брюшной зоне, потеря аппетита.
  6. Обработка органов малого таза: диарея, нарушение мочеиспускания, сухость влагалища, влагалищные выделения, болевые ощущения в прямой кишке, потеря аппетита.

Что следует учитывать во время курса лечения

Как правило, при проведении лучевого воздействия в зоне контакта с излучателем наблюдаются кожные нарушения: сухость, шелушение, покраснение, зуд, сыпь в виде мелких папул. Для устранения этого явления рекомендуются наружные средства, например, аэрозоль Пантенол. Многие реакции организма становятся менее выраженными при оптимизации питания. Рекомендуется исключить из рациона острые приправы, соления, кислую и грубую еду. Следует сделать упор на пище, готовящейся на паровой основе, вареной еде, измельченных или протертых ингредиентах.

Режим питания следует установить частым и дробным (небольшими дозами). Надо повысить потребление жидкости. Для снижения проявлений проблем в горле можно употреблять отвар ромашки, календулы, мяты; закапывать в носовые пазухи облепиховое масло, употреблять натощак растительное масло (1-2 ложки).

Во время прохождения курса лучевой терапии рекомендуется надевать одежду свободного покроя, что исключит механическое воздействие на участок установки источника облучения и натирание кожного покрова. Нижнее белье лучше всего выбирать из натуральных тканей — лен или хлопок. Не следует пользоваться русской баней и сауной, а при купании вода должна иметь комфортную температуру. Поберечься стоит и от длительного воздействия прямых солнечных лучей.

Что дает лучевая терапия

Конечно, лучевая терапия не может гарантировать излечения онкологии. Однако своевременное применение её методов позволяет получить значительный положительный результат. С учетом, что облучение приводит к снижению уровня лейкоцитов в крови, нередко у людей возникает вопрос, можно ли после лучевой терапии получить очаги вторичных опухолей. Такие явления являются крайне редкими. Реальный риск вторичной онкологии возникает через 18-22 года после облучения. В целом, лучевая терапия позволяет избавить онкологического больного от очень сильных болей в запущенных стадиях; снизить риск метастазирования; уничтожить остаточные аномальные клетки после хирургического вмешательства; реально побороть болезнь в начальной стадии.

Лучевая терапия считается одним из важнейших способов борьбы с раком. Современные технологии широко применяются по всему миру, и лучшие мировые клиники предлагают такие услуги.

Тема 4. Методы лучевой терапии

Контрольные вопросы 1. Дать определение и основную характеристику контактных методов

лучевой терапии.

2. Перечислить основные методы контактной лучевой терапии

3. Дать определение внутриполостных методов лучевой терапии

4. Перечислить виды внутриполостной γ терапии.

6. Дать понятие о внутриполостной β терапии, показания.

7. Дать понятие внутритканевой лучевой терапии, показания.

8. Описать метод внутритканевой γ терапии с использованием радиоактивных игл.

9. Внутритканевая γ терапия гранулами.

10.Внутритканевая γ терапия путём последовательного введения источников (afterloading).

11.Внутритканевая β терапия 12.Радиохирургический способ лечения опухолей, дать определение,

описание.

13.Дать понятие и описание аппликационного метода лучевой терапии, аппликационная γ и β терапия.

14.Близкофокусная рентгентерапия.

15.Метод избирательного накопления изотопов в тканях.

16.Дать понятие дистанционной лучевой терапии.

17.Статическая γ терапия.

18.Дистанционная γ терапия через свинцовую решетку. 19.Дистанционная γ терапия через свинцовый клиновидный фильтр. 20.Дистанционная γ терапия через свинцовую экранирующую диафрагму. 21.Дать характеристику подвижных методов дистанционной γ терапии 22.Ротационная γ терапия.

23.Секторная γ терапия, особенности планирования терапии.

24.Тангенциальное или эксцентрическое секторное облучение.

25.Терапия тормозным излучением высокой энергии.

26.Терапия быстрыми электронами высокой энергии.

27.Лучевая терапия тяжёлыми частицами.

28.Глубокая рентгентерапия.

4.1.Контактные методы лучевой терапии

Лучевая терапия может проводиться при нахождении источника ионизирующего излучения вне тела человека и в этом случае она называется дистанционной, или внутри тела, в таком случае лучевая терапия называется контактной. К контактным относятся следующие методы облучения:

- внутриполостной;

Внутритканевой;

- радиохирургический;

Аппликационный;

- избирательного накопления изотопов;

- близкофокусная рентгентерапия.

Контактные методы характеризуются резким падением величины дозы на ближайшем от источника облучения расстоянии. Поэтому объём облучаемых тканей не может превышать 1,5-2.0 см. Это обстоятельство заставляет сочетать этот метод с дистанционными способами облучения.

4.1.1. Внутриполостные методы облучения.

При ряде злокачественных новообразований (рак прямой кишки, рак шейки матки, рак эндометрия и других полостных органов) источник излучения можно подвести непосредственно в полость органа. Такой метод принято называть внутриполостным. Он может быть применён как самостоятельно, так и в сочетании с дистанционным облучением или оперативным методом лечения. Самостоятельно внутриполостной метод применяют для лечения опухолей, которые не проникают за пределы слизистой оболочки и обладают небольшими размерами (0,5-1,0 см). Возможно использование β или γ излучения для внутриполостного облучения.

4.1.1.1.Внутриполостная γ терапия. Для внутриполостной γ терапии применяются изотопы радия –226, кобальт –60, цезий –137.

Внутриполостная γ терапия может проводиться линейными, объёмными источниками, или по принципу последовательного введения аппликаторов и источников.

Линейный источник представляет собой цилиндр, изготовленный из изотопа, или нитки шаровидных бус, размещённых в одну линию. С целью уменьшения нагрузки на поверхность, источник должен на 0,5-2,0 см отстоять от поверхности. Это достигается путём расположения источника в резиновом зонде, вокруг которого расположен раздутый баллон с воздухом. Общая активность источника-1,8-2,0х10¹ºБк. Дозировка производится путём использования фильтра, меняя расстояние источник – слизистая, изменяя время экспозиции. К положительным характеристикам метода относится быстрое падение величины дозы в направление к оси

источника. Доза и мощность излучения рассчитываются математически. При помощи специальных таблиц.

Внутриполостная γ терапия объёмными источниками обладает более гомогенной характеристикой создаваемого дозного поля. В качестве источника излучения может применяться макросуспензия или взвесь радиоактивных бус Со –60. Бусы изготавливаются из Со-60 и затем гальванически покрываются никелем иди золотом. Покрытие поглощает β излучение.

Орган катетеризруется, после чего длинным пинцетом из контейнера достаётся бусинка на нитке. Бусинка вводится в полость органа индуктором, после чего нитка фиксируется к коже больного лейкопластырем. Больной помещается в «активную» палату. После истечения срока облучения бусинка вынимается потягиванием за нитку, после чего изотоп помещается обратно в контейнер. Расчёт дозы производится по специальным таблицам. Этот метод позволяет сконцентрировать высокую дозу на расстоянии 1-2 см от источника.

Внутриполостная γ терапия макросуспензией Со-60 производят при помощи резиновых баллонов, жидкость внутри которого содержит шарики Со-60 диаметром 2 мм. Макросуспензия изготавливается из желеобразного вязкого раствора, в котором удельный вес шариков примерно равен весу раствора. Резиновый баллон вводится в прямую кишку, после чего баллон присоединяется к аппарату, откуда желеобразная масса вместе с шариками Со-60 поступает в баллон. Расчёт доз производится по таблицам. Дозировка производится по времени, концентрации макросуспензии, объёму вводимой суспензии.

Приведённые выше методики внутриполостного облучения обладают рядом трудно устранимых отрицательных качеств: высокая радиационная опасность источников для персонала, невозможность формирования дозных полей, трудность фиксации источника относительно опухоли, что приводит к серьёзному сужению показаний для их использования, и эти методики рассматриваются только в историческом плане. Эти недостатки можно ликвидировать, при использовании методики с разделённым двухэтапным введением аппликаторов и, затем, изотопа. Методика получила название afterloading. Эта методика широко используется при проведении лучевой терапии рака шейки матки, эндометрия и прямой кишки. В настоящее время в России для лучевой терапии методом afterloading используются аппараты серии «Агат».

Процедура облучения состоит из трёх этапов: введение неактивной системы аппликаторов и фиксация их в месте облучения; рентгенологический контроль правильности введения аппликатора; введение в аппликатор изотопа. После введения аппликатора последний присоединяется к аппарату, откуда при помощи пневматики или тросика подаётся капсула с изотопом. Понятно, что введение изотопа и задача

времени облучения производится автоматически. После окончания облучения источник излучения возвращается в хранилище внутрь аппарата. Дозировку облучения производят по таблицам, доводя суммарную дозу до 50-60 Грей.

4.1.1.2. Внутриполостная β терапия. Для внутриполостной β терапии используют коллоидные растворы золота 198 или йода 90. Область применения ограничена небольшими папилломами не выходящими за пределы слизистой оболочки мочевого пузыря, при опухолевых выпотах в серозных полостях. Это обусловлено незначительной глубиной проникновения β частиц.

При проведении терапии через катетер специальным шприцом вводится коллоидный раствор Au198 на 3-4 часа. Расчёт доз довольно сложен, однако надо учитывать такие переменные факторы:

- объём мочевого пузыря увеличивается за время лучевой терапии с

50 до 250 мл;

- это влечёт за собой уменьшение концентрации изотопа;

- при растяжении тканей мочевого пузыря истончается стенка, и ранее недоступные для облучения слои становятся доступными.

Отрицательной стороной этого метода является непосредственный контакт изотопа с органами человека и вероятность сброса радиоактивных веществ в канализацию. Внутриполостное облучение может проводиться при непрерывном или фракционном режиме. Доза 50-60 Грей может быть подведена за 8-10 фракций (сеансов) по 4-5 Грей.

4.1.2. Внутритканевые методы терапии

Способ лучевой терапии при котором радиоактивное вещество во время лечения находится внутри ткани опухоли называется внутритканевым. Внутритканевая терапия показана при хорошо отграниченных, небольших по объёму опухолях, расположенных в доступном для манипуляций месте. Перспективно использование внутритканевой терапии в подвижных органах: нижняя губа, мужские и женские половые органы, язык, молочная железа. В качестве источника излучения используются изотопы Co 60, Ra-226, Cs 137, I 125. Внутритканевая лучевая терапия может проводиться при использовании изотопов в виде игл, проволоки или гранул. Основной задачей внутритканевой лучевой терапии является создание равномерного дозного поля.

4.1.2.1. Внутритканевая γ терапия с использованием игл содержащих радиоактивный изотоп. Как правило, игла выполняется из нержавеющей стали, диаметр 1,8 мм, внутри расположен штифт из изотопа кобальта, в хвостовой части иглы имеется отверстие для нитки.

Под местной анестезией стерильные иглы с помощью специального набора инструментов вводят в ткань опухоли и окружающие опухоль ткани. Расстояние между иглами составляет 1 см, слоями. Конфигурация зависит от размеров и формы опухоли. Если опухоль имеет толщину более 1 см то иглы располагаются в 2 или несколько слоёв. Нитка, завязанная на ушке фиксируется на коже, или прошивается за кожу. Правильность стояния источников должно подтверждаться рентгенологически. Больной располагается в «активной» палате. После подведения рассчитанной дозы игла удаляется путём простого потягивания за нить и помещается в хранилище радиоактивных веществ. Дозиметрия производится путём расчётов исходя из активности источника. При этом 2/3 всей дозы должно быть распределено по периферии опухоли, а 1/3 равномерно по всей площади. Расчёт доз для каждого слоя производится отдельно, но при расстоянии между слоями в 1,5, 2,0, 2,5 см происходит увеличение дозы на 25, 40, 50 %. Для жесткости фиксации иглы на коже могут располагаться апликаторы в виде пластин с отверстиями, в которых жестко фиксированы иглы.

К недостаткам метода можно отнести сложность расчёта доз, наличие некротического канала вокруг источника, что приводит к смещению и выпадению источников.

4.1.2.2.Внутритканевая γ терапия гранулами. Для внутритканевой γ терапии используются гранулы Со-60 и Au –198. Этот вид терапии лишен тех недостатков которые присущи для радиоактивных игл. Использование изотопа возможно при изготовлении из него гранул и помещение их в нейлоновые трубочки. Положительной стороной метода является минимальная травматизация тканей. Источником излучения являются гранулы Со-60 покрытые золотом, помещённые в нейлоновые трубочки. Золото и нейлон являются фильтрами для β и вторичного γ излучения. Диаметр гранул составляет 0,7 мм, толщина трубочки 1,3 мм. Чередуя активные и неактивные (алюминий) гранулы, можно добиться любой активности линейного источника. Методика внедрения гранул является радиохирургической манипуляцией, и производится в радиологической операционной. После инфильтрации тканей новокаином, производится прошивание опухоли нейлоновыми трубочками содержащими изотоп. Если опухоль толще 1,5 см, то производится прошивание дополнительным рядом швов. После экспозиции необходимой для получения 60 -70 Грей нить удаляют, а гранулы помещают в хранилище.

Внутритканевая γ терапия гранулами золота –198. У золота –198 основной спектр излучения – β и только 5%- излучения испускается в виде γ излучения. Гранулы диаметром 0,8 мм покрываются для фильтрации β излучения платиной. Учитывая незначительный, всего 2,7 дня, период полураспада, гранулы после имплантации в опухоль при помощи можно не извлекать, а оставлять на всю оставшуюся жизнь.

Оптимальной дозой при проведении лучевой терапии является доза 0,2-0,4 Гр/час, что позволяет за 6-7 дней набрать дозу 60-70 Гр.

Понятно, что эти методики внутритканевой терапии представляют опасность для персонала во время манипуляций и процедуры введения. Это сильно ограничивает их применение.

4.1.2.3. Внутритканевая γ терапия путём последовательного введения источников (afterloading). Методика последовательного введения полого инструмента с последующим заполнением последнего радиоактивным препаратом не нова и впервые была применена ещё в 1903 году. В современном исполнении эта методика выглядит как прошивание опухоли полыми нейлоновыми трубками, с последующим введением в них радиоактивной проволоки. Этим решаются главные задачи терапии: строгая геометрическая локализация трубок и сокращение пребывания персонала под действием ионизирующей радиации.

В современном исполнении эта методика представляет определённый интерес в связи с распространением органосохраняющих операций при раке молочной железы. Основным препятствием для их широкого распространения являются местные рецидивы, которые, в свою очередь обусловлены внутрипртоковому опухолевому компоненту. Выход был найден в сочетании органосохраняющего лечения и местной лучевой терапии. Во время операции производится прошивание краёв и дна раны полыми полимерными трубками. После операции в трубочки вводится источник излучения, обычно проволока или бусы из иридия 192(Ir 192). Полимерные, из силиконовой резины трубочки являются фильтром для β излучения. После получения расчётной дозы источник удаляется, трубки вынимаются. Лучевая терапия на парастернальную клетчатку и надключичные лимфоузлы проводится при с использованием дистанционной лучевой терапии.

4.1.2.4. Внутритканевая β терапия.

Внутритканевая β терапия это метод введения в опухоль жидких радиоактивных веществ. При проведении терапии должны учитываться такие факторы как период полураспада, спектр излучения, биологическая органная тропность, удельная активность, токсичность, пути выведения, период выведения изотопа из организма.

Для внутритканевой терапии используются изотопы с коротким периодом полураспада:

Иттрий (Y 90)

Серебро (Ag 111)

Лютеций (Lu 177)

Прометий (Pm 148)

Наиболее часто используются коллоидные растворы, они не вступают в обменные процессы, а значит не токсичны. Раствор вводится в

опухоль шприцом при помощи инъекции. Создаётся объёмное распределение изотопа по опухоли.

Методика введения: после новокаиновой блокады ровными рядами, через равный интервал, вкалываются иглы в опухоль. Для препятствия вытекания коллоидного раствора иглы вводят со смещением. Инфильтрацию производят по 0,5-0,7мл. коллоидного раствора на 1 см длинны канала. Больной располагается в «активной» палате. Решение об окончании терапии и отсутствии опасности для окружающих производится после контрольной дозиметрии.

Отрицательной стороной этого метода является невозможность создания равномерного распределения изотопа по опухоли, выведение изотопа в окружающую среду, опасность облучения для окружающих, сложность изготовления и транспортировки короткоживущих изотопов.

4.1.2.5. Радиохирургический метод. Одной из разновидностей внутритканевой терапии является интраоперационный или радиохирургический метод. Суть метода состоит в том, что во время операции создаётся доступ к опухоли. Этот метод может применяться при большом объёме опухоли, без видимых отдалённых метастазов. В качестве источника излучения используются или коллоидные растворы изотопов с коротким периодом полураспада, однако возможно использование игл, проволоки или полых трубочек с радиоактивными бусами. Понятно что предпочтение отдаётся методикам использующим короткоживущие изотопы, так как нет необходимости их удалять. Цель такой терапии может быть различная в зависимости от объёма выполняемой операции. При полном удалении опухоли, введение источников излучения в ложе патологического образования направлено на уничтожение клеток опухоли, оставшихся в ране. Однако, операция может использоваться и с целью создания подхода к опухоли чтобы внедрить радиоактивные изотопы. Принципиально, второй вариант радиохирургии практически не применяется в связи с тем, что при использовании УЗИ возможен доступ практически к любому органу без кожных разрезов, при помощи пункции. Отрицательной стороной этого метода является наличие лучевой нагрузки на персонал, в основном во время окончания операции.

4.1.3.Аппликационый метод облучения.

При расположении опухоли на поверхности слизистых оболочек, возможна лучевая терапия поверхностно расположенным источником, расположенным непосредственно на поверхности или в некотором отдалении. Такие методы лучевой терапии называются аппликационными.

4.1.3.1. Аппликационная β терапия. При расположении опухоли в поверхностных (до 4 мм) слоях, возможна лучевая терапия фосфором 32, иттрием 90, таллием 204, прометием 147, стронцием 90, ксеноном 144. Пластины изготавливаются из ионообменных смол в виде пластин различных размеров. Радиоактивное вещество располагается на поверхности в виде пластинки толщиной от 0,1 до 0,35 мм. В аппликаторах максимальная мощность располагается на поверхности, и сам аппликатор не должен превышать площадь опухоли более чем на 3-4 мм.

4.1.3.2. Аппликационная γ терапия применяется в случаях если патологический процесс более 4 мм ( 2-3 см). Для такой терапии необходимо изготовление муляжа, моделирующего поверхность опухоли. Чаще муляж изготавливают из парафина или пластмассы, контур опухоли очерчивается. После этого внутри этого контура укладывают радиоактивные изотопы. Облучаемая поверхность должна на 1-2 см превышать видимую границу опухоли. Препараты могут располагаться по одной окружности, по окружности и препаратом в центре, в виде концентрических окружностей. Возможно расположение в виде прямоугольника ил какой либо геометрической фигуры в зависимости от формы опухоли. Аппликационная терапия может проводиться непрерывно или в виде фракционного облучения. Суммарная доза 50-60 Грей, при разовой дозе 5-6 грей. Из отрицательных свойств этого вида лучевой терапии – наличие местной реакции в виде мукозита или влажного дерматита. Отрицательной стороной аппликационной лучевой терапии является контакт персонала с ионизирующим излучением в процессе изготовления аппликатора, а кроме того большую проблему представляет сам аппликаор, его утилизация, так как он опасен в связи с наведением вторичного излучения.

4.1.3. Близкофокусная рентгентерапия.

К близкофокусной рентгенотерапии с 1959 года по рекомендации МАГАТЭ относятся все методы лучевой дистанционной терапии с расстоянием источник – поверхность менее 20 – 30 см. Однако, многие исследователи относят к этому виду терапии только те дистанционные методы, которые имеют РИП (растояние источник-поверхность) менее 10 см. Близкофокусная рентгенотерапия отличается от глубокой тем, что генерирующее напряжение на электродах не превышает 60кв, расстояние от источника до поверхности не более 7,5 см, площадь облучения не более

5х5 см. Чаще всего показанием для этого вида лучевой терапии является опухоли кожи и видимых слизистых оболочек (рак, базалиомы).

Основным лучевым компонентом является коротковолновый, который собственно и обеспечивает терапевтический эффект. Длинноволновое или мягкое излучение убирается при помощи алюминиевого или медного фильтра толщиной 3,5 9, 12 мм. Для того, чтобы ввести количественную характеристику для близкофокусной терапии, то есть учитывать спектральную характеристику и различное расстояние от поверхности до источника вводится такое понятие слой половинной дозы. Этим термином обозначается слой ткани по оси основного луча, где доза излучения в 2 раза меньше, чем на его поверхности.

Дозиметрическая подготовка к близкофокусной терапии включает в себя следующие этапы.

- в зависимости от стадии и локализации выбирается кривая половинного поглощения по Шаулю (Chaoul)

- задаётся суммарная поглощённая доза в греях на глубине, соответствующего слою половинного ослабления

- вычисляется глубинная доза и количество сеансов облучения

- определение суммарной дозы (в 2 раза больше очаговой)

- устанавливается разовая поверхностная доза

- вычисляется время облучения.

К отрицательной стороне этого метода можно отнести высокую частоту лучевых реакций. Лучевые реакции при довольно высоких (100-80 Гр) очень часты, однако они зависят от режима фракционирования, то есть чем выше разовая доза, тем раньше и более выражена будет лучевая реакция.

4.1.4. Метод избирательного накопления изотопов в тканях.

При ряде заболеваний опухоль обладает способностью избирательного накопления в ткани определённые химические элементы, в том числе и радиоактивные изотопы. Для лучевой терапии возможно применение изотопов фосфора (Р - 32), йода (I - 131) и золото (Au - 198).

Радиоактивный фосфор применяется в виде раствора фосфорнокислого натрия (Na2 H P O32 ) применяется при гемобластозах (лимфомы, лейкозы). Вводится в растворе до 740× 10 6 Бк внутривенно1-2 раза в неделю в течении 4-6 недель. Повторные курсы облучения проводятся через 6-7 мес. Пациент в течении 7-8 дней помещается в «активную» палату. Суммарная доза 4000-6000 × 10 6 Бк Выведение изотопа из организма производится в основном через почки. После 7 суток выделяется около 50% изотопа.

Радиоактивное золото применяется в виде коллоидного раствора при лейкозах. Доза составляет 185-370× 10 6 Бк на 1 кг больного, суммарная доза не превышает 1850× 10 6 Бк.

Радиоактивный йод (I-131) применяется как самостоятельный метод лечения при раке щитовидной железы. Клетки рака щитовидной железы сохраняют способность к захвату I-131 даже находясь в отдалённых областях – метастазах. При распространённых формах рака щитовидной железы суммарная доза составляет от 37000× 10 6 до 55000× 10 6 Бк., при неоперабельных формах 18500× 10 6 Бк каждые 2-3 недели до

222000× 10 6 Бк.

4.2. Дистанционные методы лучевой терапии.

Дистанционной терапией по решению МАГАТЭ от 1959 года относят такие виды лучевой терапии, при которых расстояние РИП (расстояние источник-поверхность) более 10 см. Выделяют следующие виды дистанционной лучевой терапии злокачественных новообразований (по И.А. Переслегину и Ю.Х. Саркисяну):

3. Терапия быстрыми электронами А. Статическая Б. Подвижная

4. Рентгенотерапия

А. Статическая Б. Подвижная

4.2.1. Дистанционная γ - терапия.

Главными условиями к источнику для проведения γ терапии является следующие: источник должен обладать высокой энергией γ квантов, иметь большой период полураспада (годы), его получение не должно быть связано со значительными материальными затратами.

Основным источником для γ терапии является Со-60. Размер источника 2× 2 см что удобно для транспортировки изотопа и дозировке лучевой терапии. Активность установки с СО-60 теряет 1,1% активности в месяц, что обусловливает необходимость пересчёта доз 1 раз в 3 месяца.

Основным блоком терапевтической гамма γ является головка аппарата, где внутри свинцового кожуха находится блок изотопа Со-60. В одном месте в кожухе сделано коническое окно, снабжённое затвором из вольфрама. Применение источников большой мощности позволяет быстро проводить сеанс лучевой терапии, однако требует довольно большой толщины стенок кожуха (защиты). Внутри кожуха имеется приспособление для центрации луча.



© dagexpo.ru, 2024
Стоматологический сайт