Нерешенные проблемы. Величайшая нерешённая задача современной физики: почему гравитация такая слабая

24.09.2019


Удастся ли обнаружить гравитационные волны?

Некоторые обсерватории заняты поиском свидетельств существования гравитационных волн. Если такие волны удастся найти, данные колебания самой пространственно-временной структуры будут указывать на происходящие во Вселенной катаклизмы вроде взрыва сверхновых, столкновений черных дыр, а возможно, еще неведомых событий. За подробностями обращайтесь к статье У. Уэйта Гиббса «Пространственно-временная рябь».

Каково время жизни протона?

Некоторые теории, не укладывающиеся в рамки стандартной модели (см. гл. 2), предсказывают распад протона, и для обнаружения такого распада было сооружено несколько детекторов. Хотя самого распада пока не наблюдалось, нижняя граница периода полураспада у протона оценивается величиной 10 32 лет (значительно превышающей возраст Вселенной). С появлением более чувствительных датчиков, возможно, удастся обнаружить распад протона или же придется отодвинуть нижнюю границу периода его полураспада.

Возможны ли сверхпроводники при высокой температуре?

Сверхпроводимость появляется при падении у металла электрического сопротивления до нуля. В таких условиях установившийся в проводнике электрический ток течет без потерь, которые свойственны обычному току при прохождении в проводниках вроде медного провода. Явление сверхпроводимости впервые наблюдалось при крайне низкой температуре (чуть выше абсолютного нуля, - 273 °C). В 1986 году ученым удалось сделать сверхпроводящими материалы при температуре кипения жидкого азота (-196 °C), что уже допускало создание промышленных изделий. Механизм данного явления понят еще не до конца, но исследователи пытаются добиться сверхпроводимости при комнатной температуре, что позволит уменьшить потери электроэнергии.

Проблемы химии

Как состав молекулы определяет ее облик?

Знание орбитального строения атомов в простых молекулах позволяет довольно легко определить внешний вид молекулы. Однако теоретические исследования облика сложных молекул, особенно биологически важных, пока не проводились. Один из аспектов данной проблемы - укладка белков, рассматриваемая в Списке идей, 8.

Каковы химические процессы при раке?

Биологические факторы вроде наследственности и внешней среды, вероятно, играют большую роль в развитии рака. Зная происходящие в раковых клетках химические реакции, возможно, удастся создать молекулы для прерывания этих реакций и выработки у клеток сопротивляемости раку.

Как молекулы обеспечивают связь в живых клетках?

Для оповещения в клетках задействуются молекулы нужной формы, когда через «подгонку» в виде комплиментарности и происходит передача сообщения. Белковые молекулы наиболее важны, так что вид их укладки и определяет их облик [конформацию]. Поэтому более глубокое знание белковой укладки поможет решить вопрос со связью.

Где на молекулярном уровне задается старение клетки?

Другая биохимическая проблема старения, возможно, связана с ДНК и белками, занятыми «починкой» ДНК, которая урезается в ходе неоднократной репликации (см.: Список идей, 9. Генетические технологии).

Проблемы биологии

Как развивается целый организм из одной оплодотворенной яйцеклетки?

На данный вопрос, похоже, удастся ответить, как только будет решена главная задача из гл. 4: каково устроение и предназначение протеома? Конечно, каждому организму свойственны свои особенности в устроении белков и их предназначении, но наверняка удастся отыскать и много общего.

Что вызывает массовые вымирания?

За последние 500 млн. лет пять раз происходило полное исчезновение видов. Наука продолжает доискиваться причин этого. Последнее вымирание, случившееся 65 млн. лет назад, на рубеже мелового и третичного периодов, связано с исчезновением динозавров. Как ставит вопрос Дэвид Роп в книге Вымирание: подкачали гены или удача? (см.: Источники для углубленного изучения), вызвано ли вымирание большинства живших в ту пору организмов генетическими факторами или же неким катаклизмом? Согласно выдвинутой отцом и сыном, Луисом и Вальтером, Альваресами гипотезе, 65 млн. лет назад на Землю упал огромный метеорит (примерно 10 км в поперечнике). Произведенный им удар поднял огромные облака пыли, которые стали помехой фотосинтезу, что привело к гибели многих растений, а значит, и составляющих одну пищевую цепочку животных, вплоть до громадных, но уязвимых динозавров. Подтверждение этой гипотезы - большой метеоритный кратер, обнаруженный в южной части Мексиканского залива в 1993 году. Возможно ли, что и предыдущие вымирания были следствием подобных столкновений? Исследования и споры продолжаются.

Динозавры были теплокровными или холоднокровными животными?

Британский профессор анатомии Ричард Оуэн ввел понятие «динозавр» (что значит «ужасные ящеры») в 1841 году, когда было найдено всего три неполных скелета. Воссозданием облика вымерших животных занялся британский художник-анималист и ваятель Бенджамин Уотерхаус Гаукинс. Поскольку первые найденные особи имели зубы, как у игуаны, его чучела напоминали огромных игуан, вызвав настоящий переполох среди посетителей.

А ведь ящерицы холоднокровные пресмыкающиеся, и поэтому сначала решили, что таковыми были и динозавры. Затем несколько ученых предположили, что по меньшей мере некоторые динозавры относились к теплокровным животным. Доказательств не было вплоть до 2000 года, когда в Южной Дакоте обнаружили окаменевшее сердце динозавра. Имевшее четырехкамерное устройство, это сердце подтверждает предположение о теплокровных динозаврах, поскольку в сердце ящериц всего три камеры. Однако, чтобы убедить остальной мир в верности такого предположения, необходимы дополнительные свидетельства.

Что лежит в основе человеческого сознания?

Будучи предметом изучения гуманитарных наук, данный вопрос выходит далеко за рамки настоящей книги, однако многие наши научные коллеги берутся за его изучение.

Как и следовало ожидать, существует несколько подходов к трактовке человеческого сознания. Сторонники редукционизма утверждают, что мозг представляет собой огромное множество взаимодействующих молекул и что в итоге мы разгадаем правила их работы (см. статью Крика и Коха «Проблема сознания» [В мире науки. 1992. № 11–12]).

Другой подход восходит к квантовой механике. Согласно ему, мы не в состоянии постичь нелинейность и непредсказуемость работы мозга, пока не уясним связи между атомным и макроскопическим уровнями поведения материи (см. книгу Роджера Пенроуза Новый ум короля: О компьютерах, мышлении и законах физики [М., 2003]; а также Тени разума: В поисках науки о сознании. [М., 2003]).

В соответствии с давним подходом человеческому уму присуща мистическая составляющая, недоступная научному объяснению, так что наука вообще не способна постичь человеческое сознание.

В связи с недавней работой Стивена Вулфрема по созданию упорядоченных образов постоянным применением одних и тех же простых правил (см. гл. 5) не стоит удивляться, что данный подход используют по отношению к человеческому сознанию; так появится еще одна точка зрения.

Проблемы геологии

Что вызывает большие перемены в климате Земли наподобие повсеместного потепления и ледниковых периодов?

Ледниковые периоды, свойственные Земле последние 35 млн. лет, наступали примерно каждые 100 тыс. лет. Ледники надвигаются и отступают по всему северному умеренному поясу, оставляя памятные знаки в виде рек, озер и морей. 30 млн. лет назад, когда по Земле бродили динозавры, климат был значительно теплее нынешнего, так что деревья росли даже вблизи Северного полюса. Как уже говорилось в гл. 5, температура земной поверхности зависит от равновесного состояния приходящей и уходящей энергий. Многие факторы влияют на это равновесие, включая излучаемую Солнцем энергию, обломки в космосе, между которыми пробирается Земля, падающее излучение, изменения земной орбиты, атмосферные изменения и колебания в количестве излучаемой Землей энергии (альбедо).

Вот в каком направлении ведутся исследования, особенно с учетом разгоревшихся в последнее время споров по поводу парникового эффекта. Теорий много, а истинного понимания происходящего нет до сих пор.

Можно ли предсказывать извержения вулканов или землетрясения?

Некоторые вулканические извержения поддаются прогнозу, например недавнее (1991) извержение вулкана Пинатубо на Филиппинах, но другие недоступны для современных средств, по - прежнему заставая вулканологов врасплох (например, извержение вулкана Сент - Хеленс, штат Вашингтон, 18 мая 1980 года). Многие факторы вызывают извержения вулканов. Нет единого теоретического подхода, который был бы верен для всех вулканов.

Землетрясения предсказать еще труднее, нежели извержения вулканов. Некоторые известные геологи даже сомневаются в возможности составить надежный прогноз (см.: Список идей, 13. Предсказание землетрясений).

Что происходит в земном ядре?

Две нижние оболочки Земли, внешнее и внутреннее ядро, недоступны для нас ввиду глубокого залегания и высокого давления, что исключает прямые измерения. Все сведения о земных ядрах геологи получают на основе наблюдений за поверхностью и общей плотностью, составом и магнитными свойствами, а также исследований с помощью сейсмических волн. К тому же помогает изучение железных метеоритов ввиду сходства процесса их формирования с земным. Недавние результаты, полученные с помощью сейсмических волн, выявили различную скорость волн в северо-южном и восточно-западном направлениях, что указывает на слоистое твердое внутреннее ядро.

Проблемы астрономии

Одиноки ли мы во Вселенной?

Несмотря на отсутствие каких-либо экспериментальных свидетельств существования внеземной жизни, теорий на этот счет хватает с избытком, как и попыток обнаружить весточки от далеких цивилизаций.

Как эволюционируют галактики?

Как уже упоминалось в гл. 6, Эдвин Хаббл классифицировал все известные галактики согласно их внешнему облику. Несмотря на тщательность описания их нынешнего состояния, данный подход не позволяет понять эволюцию галактик. Выдвинуто несколько теорий, призванных объяснить формирование спиральных, эллиптических и неправильных галактик. Эти теории зиждутся на физике газовых облаков, предшествовавших галактикам. Моделирование на суперЭВМ позволило кое-что уяснить, но пока не привело к единой теории образования галактик. Создание такой теории требует дополнительных исследований.

Распространены ли сходные с Землей планеты?

Математические модели предсказывают существование сходных с Землей планет от единиц до миллионов в пределах Млечного Пути. Мощные телескопы обнаружили более 70 планет за пределами Солнечной системы, но большинство из них величиной с Юпитер или крупнее. По мере совершенствования телескопов удастся отыскать и другие планеты, что поможет определить, какая из математических моделей больше соответствует действительности.

Каков источник всплесков Y-излучения?

Примерно один раз в сутки наблюдается сильнейшее γ-излучение, которое зачастую оказывается мощнее всех прочих, взятых вместе (γ-лучи схожи с видимым светом, но у них значительно выше частота и энергия). Данное явление впервые зафиксировано в конце 1960-х, но о нем не сообщали до 1970-х годов, поскольку все датчики использовались для контроля за соблюдением запрета на проведение ядерных испытаний.

Поначалу астрономы считали, что источники этих выбросов находятся в пределах Млечного Пути. Высокаяинтенсивность излучения вызвала предположение о близости ее источников. Но по мере накопления данных становилось очевидным, что эти выбросы шли отовсюду, а не были сосредоточены в плоскости Млечного Пути.

Зафиксированная в 1997 году благодаря космическому телескопу Хаббла вспышка указывала на то, что она исходила из периферии слабо светящейся галактики, удаленной на несколько миллиардов световых лет. Поскольку источник находился вдали от центра галактики, он вряд ли был черной дырой. Как считают, эти всплески γ- излучения исходят от обычных звезд, содержащихся в диске галактики, возможно, вследствие столкновения нейтронных звезд или иных, еще нам неизвестных небесных тел.

Почему Плутон столь разительно непохож на все прочие планеты?

Четыре внутренние планеты - Меркурий, Венера, Земля и Марс - относительно невелики, каменисты и близки к Солнцу. Четыре внешние планеты - Юпитер, Сатурн, Уран и Нептун - велики, газообразны и удалены от Солнца. Теперь о Плутоне. Плутон мал (подобно внутренним планетам) и удален от Солнца (подобно внешним планетам). В этом смысле Плутон выпадает из общего ряда. Он обращается вокруг Солнца поблизости от области, именуемой поясом Койпера, содержащим много тел, сходных с Плутоном (некоторые астрономы называют их Плутино).

Недавно несколько музеев решили лишить Плутона статуса планеты. Пока не удастся нанести на карту больше других тел из пояса Койпера, споры вокруг статуса Плутона не утихнут.

Каков возраст Вселенной?

Возраст Вселенной можно оценить несколькими способами. Одним способом возраст химических элементов в составе Млечного Пути оценивается по результатам радиоактивного распада элементов с известным периодом полураспада на основе предположения, что элементы синтезируются (внутри сверхновых больших звезд) с постоянной скоростью. По данному способу возраст Вселенной определен 14,5±3 млрд. лет.

Другой способ включает оценку возраста звездных скоплений на основе некоторых допущений относительно поведения и удаления скоплений. Возраст самых древних скоплений исчисляется 11,5± 1,3 млрд. лет, а для Вселенной - 11–14 млрд.

Возраст Вселенной, определяемый по скорости ее расширения и расстоянию до самых удаленных объектов, составляет 13–14 млрд. лет. Недавнее открытие ускоренного расширения Вселенной (см. гл. 6) делает эту величину более неопределенной.

Недавно разработан еще один метод. Космический телескоп Хаббла, работая на пределе своих возможностей, измерил температуру старейших белых карликов в шаровом скоплении М4. (Этот способ схож с оценкой времени, прошедшего после прогорания костра, по температуре золы.) Выходило, что возраст древнейших белых карликов составляет 12–13 млрд. лет. Если предположить, что первые звезды образовались не ранее, чем через 1 млрд. лет после «большого взрыва», возраст Вселенной составляет 13–14 млрд. лет, а оценка служит проверкой показателей, полученных другими методами.

В феврале 2003 года получены данные с уилкинсоновского зонда микроволновой анизотропии (WMAP), позволившие наиболее точно вычислить возраст Вселенной: 13,7±0,2 млрд. лет.

Существуют ли множественные вселенные?

В соответствии с одним возможным решением рассмотренной в гл. 6 проблемы ускоренного расширения Вселенной получается множество вселенных, населяющих обособленные «браны» (многомерные мембраны). При всей своей умозрительности данная идея дает широкий простор для всевозможных домыслов. Более подробно о множественных вселенных можно узнать из книги Мартина Риса Наша космическая обитель.

Когда Земле предстоит очередная встреча с астероидом?

О Землю постоянно ударяются космические осколки. И поэтому так важно знать, какой величины небесные тела падают на нас и сколь часто. Тела с поперечником 1 м входят в атмосферу Земли несколько раз в месяц. Они часто взрываются на большой высоте, выделяя энергию, равную взрыву небольшой атомной бомбы. Примерно один раз в столетие к нам прилетает тело 100 м в поперечнике, оставляя после себя большую память (ощутимый удар). После взрыва подобного небесного тела в 1908 году над сибирской тайгой, в бассейне реки Подкаменная Тунгуска [Красноярский край], были повалены деревья на площади около 2 тыс. км 2 .

Удар небесного тела с поперечником 1 км, случающийся раз в миллион лет, может привести к огромным разрушениям и даже вызвать климатические изменения. Столкновение с небесным телом размером 10 км в поперечнике, вероятно, и привело к исчезновению динозавров на рубеже меловой и третичной эпох 65 млн. лет назад. Хотя тело такого размера может появиться лишь раз в 100 млн. лет, на Земле уже предпринимают шаги, чтобы не быть застигнутыми врасплох. Разрабатываются проекты «Околоземные объекты» (NEOs) и «Наблюдение за околоземными астероидами» (NEAT), в соответствии с которыми к 2010 году удастся отслеживать 90 % астероидов с поперечником более 1 км, общее число которых, по различным оценкам, находится в пределах 500-1000. Другая программа, «Spacewatch», осуществляемая Аризонским университетом, состоит в наблюдении за небом в поисках возможных «кандидатов» на столкновение с Землей.

За более подробными сведениями обращайтесь на узлы Всемирной Паутины: http://neat.jpl . nasa. gov, http://neo.jpl.nasa.gov и http://apacewatch.Ipl . arizona. edu/

Что было до «большого взрыва»?

Поскольку время и пространство ведут свой отчет с «большого взрыва», понятие «до» не имеет никакого смысла. Это равносильно вопросу, что находится северней Северного полюса. Или, как бы выразилась американская писательница Гертруда Стайн, нет никакого «затем» затем. Но подобные трудности не останавливают теоретиков. Возможно, до «большого взрыва» время было мнимым; вероятно, не было вообще ничего, и Вселенная возникла из флуктуации вакуума; или же произошло столкновение с другой «браной» (см. затронутый ранее вопрос о множественных вселенных). Таким теориям трудно найти экспериментальное подтверждение, поскольку огромная температура первоначального огненного шара не допускала создания каких - либо атомных или субатомных образований, которые могли бы существовать до начала расширения Вселенной.

Примечания:

Оккама бритва - принцип, согласно которому всему следует искать наиболее простое истолкование; чаще всего этот принцип формулируется так: «Без необходимости не следует утверждать многое» (pluralitas non est ponenda sine necessitate) или: «То, что можно объяснить посредством меньшего, не следует выражать посредством большего» (frustra fit per plura quod potest fieri per pauciora). Обычно приводимая историками формулировка «Сущностей не следует умножать без необходимости» (entia non sunt multiplicandasine necessitate) - в сочинениях Оккама не встречается (это слова Дюрана из Сен-Пурсена, ок. 1270–1334 - французского богослова и доминиканского монаха; очень схожее выражение впервые встречается у французского монаха-францисканца Одо Риго, ок. 1205–1275).

Так называемые топологические туннели. Другие названия этих гипотетических объектов - мосты Эйнштейна - Розена (1909–1995), Подольского (1896–1966), горловины Шварцшильда (1873–1916). Туннели могут связывать как отдельные, сколь угодно отдаленные области пространства нашей Вселенной, так и области с различными моментами начала ее раздувания. В настоящее время продолжается дискуссия о реализуемости туннелей, об их проходимости и эволюции.

Койпер Джерард Петер (1905–1973) - нидерландский и американский астроном. Открыт спутник Урана - Миранду (1948), спутник Нептуна - Нереиду (1949), углекислым газ в атмосфере Марса, атмосферу у спутника Сатурна Титана. Составил несколько детальные атласов фотографий Луны. Выявил много двойных звезд и белых карликов.

Спутник, названным в память об инициаторе данного эксперимента - астрофизике Дэвиде Т. Уилкинсоне. Вес 840 кг. Быт запущен в июне 2001 года на околосолнечную орбиту, в точку Лагранжа L2 (1,5 млн. км от Земли), где гравитационные силы Земли и Солнца равны друг другу и условия прецизионные наблюдений всего неба наиболее благоприятны. От Солнца, Земли и Луны (наиболее близких источников тепловые шумов) приемная аппаратура защищена большим круглым экраном, на освещенной стороне которого размещены солнечные батареи. Такая ориентация сохраняется в течение всего полета. Два приемные зеркала площадью 1,4x1,6 м, поставленные «спина к спине», просматривают небо в стороне от оси ориентации. В результате вращения станции вокруг собственной оси за сутки просматривается 30 % небесной сферы. Разрешающая способность WMAP в 30 раз выше, чем у предыдущего спутника СОВЕ (Cosmic Background Explorer), запущенного НАСА в 1989 году. Размер измеряемой ячейки на небе равен 0,2x0,2°, что сразу сказалось на точности небесные карт. Во много раз повысилась и чувствительность приемной аппаратуры. Например, массив данных СОВЕ, полученных за 4 года, в новом эксперименте набирается всего за 10 дней.

В течение нескольких секунд наблюдался ослепительный яркий болид, перемещавшийся по небу с юго-востока на северо-запад. На пути движения болида, который был виден на огромной территории Восточной Сибири (в радиусе до 800 км), остался мощный пылевой след, сохранявшийся в течение нескольких часов. После световых явлений был слышен взрыв на расстоянии свыше 1000 км. Во многих селениях ощущалось сотрясение почвы и построек, подобное землетрясению, раскалывались оконные стекла, с полок падала домашняя утварь, качались висевшие предметы и т. д. Многие люди, а также домашние животные были сбиты с ног воздушной волной. Сейсмографы в Иркутске и в ряде мест Западной Европы зарегистрировали сейсмическую волну. Воздушная взрывная волна была зафиксирована на барограммах, полученных на многих сибирских метеорологических станциях, в Петербурге и ряде метеорологических станций Великобритании. Эти явления наиболее полно объясняет кометная гипотеза, согласно которой они были вызваны вторжением в земную атмосферу небольшой кометы, двигавшейся с космической скоростью. По современным представлениям, кометы состоят из замерзших воды и различных газов с примесями включений никелистого железа и каменистого вещества. Г. И. Петров в 1975 году определил, что «тунгусское тело» было весьма рыхлым и не более чем в 10 раз превышало плотность воздуха у поверхности Земли. Оно представляло собой рыхлый ком снега радиусом 300 м и плотностью менее 0,01 г/см. На высоте около 10 км тело превратилось в газ, рассеявшийся в атмосфере, что объясняет необычайно светлые ночи в Западной Сибири и в Европе после этого события. Упавшая на землю ударная волна вызвала повал леса.

Стайн Гертруда (1874–1946) - американская писательница, теоретик литературы!. Модернист. Формально - экспериментальная проза («Становление американцев», 1906–1908, издана 1925) в русле литературы! «потока сознания». Биографическая книга «Автобиография Элис Б. Токлас» (1933). Стайн принадлежит выражение «потерянное поколение» (на рус. яз.: Стайн Г. Автобиография Элис Б. Токлас. СПб., 2000; Стайн Г. Автобиография Элис Б. Токлас. Пикассо. Лекции в Америке. М., 2001).

Намек на слова there is no there, there из 4-й главы! повести 1936 года (опубликована в 1937 году) «Биография всех», являющейся продолжением ее знаменитого романа «Автобиография Элис Б. Токлас».

Экология жизни. Помимо стандартных логических задач вроде «если дерево падает в лесу и никто не слышит, издает ли оно звук?», бесчисленные загадки

Помимо стандартных логических задач вроде «если дерево падает в лесу и никто не слышит, издает ли оно звук?», бесчисленные загадки продолжают волновать умы людей, занятых во всех дисциплинах современной науки и гуманитарных науках.

Вопросы вроде «существует ли универсальное определение «слова»?», «существует ли цвет физически или проявляется только у нас в умах?» и «какова вероятность, что солнце встанет завтра?» не дают людям спать. Мы собрали эти вопросы во всех сферах: медицине, физике, биологии, философии и математике, и решили задать их вам. Сможете ответить?

Почему клетки совершают самоубийство?

Биохимическое событие, известное как апоптоз, иногда называют «запрограммированной смертью клетки» или «клеточным суицидом». По причинам, которые наука в полной мере не осознает, клетки обладают возможностью «решить умереть» весьма организованным и ожидаемым образом, который полностью отличается от некроза (клеточной смерти, вызванной болезнью или травмой). Порядка 50-80 миллиардов клеток умирают в результате запрограммированной смерти клеток в человеческом организме каждый день, но механизм, который за ними стоит, и даже само это намерение непонятны в полной мере.

С одной стороны, слишком много запрограммированных смертей клеток приводит к атрофии мышц и к мышечной слабости, с другой же - отсутствие должного апоптоза позволяет клеткам пролиферировать, что может привести к раку. Общая концепция апоптоза была впервые описана немецким ученым Карлом Фогтом в 1842 году. С тех пор в понимании этого процесса был достигнут нехилый прогресс, но полноценного объяснения ему так и нет.

Вычислительная теория сознания

Некоторые ученые приравнивают деятельность ума к способу, которым компьютер обрабатывает информацию. Таким образом, в середине 60-х годов была разработана вычислительная теория сознания, и человек начал бороться с машиной всерьез. Проще говоря, представьте, что ваш мозг - это компьютер, а сознание - операционная система, которая им управляет.

Если погрузиться в контекст информатики, аналогия будет простой: в теории, программы выдают данные, основанные на серии входной информации (внешние раздражители, взгляд, звук и т. д.) и памяти (которую можно одновременно посчитать физическим жестким диском и нашей психологической памятью). Программы управляются алгоритмами, которые имеют конечное число шагов, повторяющихся в соответствии с различными вводными. Как и мозг, компьютер должен делать репрезентации того, что не может физически рассчитать - и это один из сильнейших аргументов в пользу этой теории.

Тем не менее вычислительная теория отличается от репрезентативной теории сознания тем, что не все состояния являются репрезентативными (вроде депрессии), а значит, и не смогут отвечать на воздействие компьютерного характера. Но эта проблема философская: вычислительная теория сознания работает отлично, пока речь не заходит о «перепрограммировании» мозгов, которые в депрессии. Мы не можем сбросить себя до заводских настроек.

Сложная проблема сознания

В философских диалогах «сознание» определяется как «квалиа» и проблема квалиа будет преследовать человечество, наверное, всегда. Квалиа описывает отдельные проявления субъективного сознательного опыта - например, головную боль. Мы все испытывали эту боль, но нет никакого способа измерить, испытывали ли мы одинаковую головную боль, и вообще, был ли этот опыт единым, ведь опыт боли основан на нашем восприятии ее.

Хотя было проделано множество научных попыток определить сознание, никто так и не разработал общепринятую теорию. Некоторые философы подвергали сомнению саму возможность этого.

Проблема Гетье

Проблема Гетье звучит так: «Является ли обоснованное истинное убеждение знанием?». Эта логическая головоломка входит в число самых неприятных, потому что требует от нас задуматься о том, является ли истина универсальной константой. Также она поднимает массу мысленных экспериментов и философских аргументов, в том числе и «обоснованное истинное убеждение»:

Субъект А знает, что предложение Б истинно тогда и только тогда, если:

Б является истиной,

и А считает, что Б является истиной,

и А убежден, что вера в истинность Б обоснована.

Критики проблем вроде Гетье считают, что невозможно обосновать что-то, что не является истиной (поскольку «истина» считается понятием, которое возводит аргумент в незыблемый статус). Сложно определить не только что для кого-то значит истинность, но и что значит вера в то, что это так. И это серьезно повлияло на все, от криминалистики до медицины.

Все цвета - у нас в голове?

Одним из самых сложных в человеческом опыте остается восприятие цвета: действительно ли физические объекты в нашем мире обладают цветом, который мы распознаем и обрабатываем, или же процесс наделения цветом происходит исключительно у нас в головах?

Мы знаем, что существование цветов обязано разным длинам волн, но когда дело доходит до нашего восприятия цвета, нашей общей номенклатуры и простого факта, что наши головы, вероятно, взорвутся, если мы вдруг встретимся с никогда не виданным доселе цветом в нашей универсальной палитре, эта идея продолжает удивлять ученых, философов и всех остальных.

Что такое темная материя?

Астрофизики знают, чем темная материя не является, но это определение их совсем не устраивает: хотя мы не можем видеть ее даже с помощью самых мощных телескопов, мы знаем, что во Вселенной ее больше, чем обычной материи. Она не поглощает и не излучает свет, но разница в гравитационных эффектах крупных тел (планет и т. п.) навела ученых на мысль, что что-то невидимое играет роль в их движении.

Теория, впервые предложенная в 1932 году, сводилась по большей части к проблеме «недостающей массы». Существование черной материи остается недоказанным, но научное сообщество вынуждено принимать ее существование как факт, чем бы она ни была.

Проблема восхода солнца

Какова вероятность того, что завтра взойдет солнце? Философы и статистики задаются этим вопросом тысячелетия, пытаясь вывести неопровержимую формулу для этого ежедневного события. Этот вопрос предназначен для демонстрации ограничений теории вероятности. Трудность возникает, когда мы начинаем задумываться о том, что есть много различий между предварительным знанием одного человека, предварительным знанием человечества и предварительным знанием Вселенной того, встанет ли солнце.

Если p - это долгосрочная частота восходов солнца, и к p применяется равномерное распределение вероятностей, тогда величина p увеличивается с каждым днем, когда солнце на самом деле встает и мы видим (личность, человечество, Вселенная), что это происходит.

137 элемент

Названный в честь Ричарда Фейнмана, предлагаемый окончательный элемент периодической таблицы Менделеева «фейнманиум» представляет собой теоретический элемент, который может стать последним возможным элементом; чтобы выйти за пределы №137, элементам придется двигаться быстрее скорости света. Выдвигались предположения, что элементам выше №124 не будет хватать стабильности на существование в течение более нескольких наносекунд, а значит такой элемент, как фейнманиум, будет уничтожаться в процессе спонтанного деления, прежде чем его можно будет изучить.

Что еще более интересно, так это то, что номер 137 был не просто так выбран в честь Фейнмана; он считал, что этот номер обладает глубоким смыслом, так как «1/137 = почти точно значению так называемой константы тонкой структуры, безразмерной величины, которая определяет силу электромагнитного взаимодействия».

Большим вопросом остается, сможет ли такой элемент существовать за пределами сугубо теоретического и произойдет ли это на нашем веку?

Существует ли универсальное определение слова «слово»?

В лингвистике слово - это небольшое высказывание, которое может обладать каким-либо смыслом: в практическом или буквальном смысле. Морфема, которая чуть меньше, но с помощью которой все еще можно сообщать смысл, в отличие от слова, не может оставаться особняком. Вы можете сказать «-ство» и понять, что это значит, но едва ли разговор из таких обрезков будет иметь смысл.

Каждый язык в мире имеет свой собственный лексикон, который делится на лексемы, являющиеся формами отдельных слов. Лексемы чрезвычайно важны для языка. Но опять же, в более общем смысле, мельчайшей единицей речи остается слово, которое может стоять особняком и будет иметь смысл; правда, остаются проблемы с определением, к примеру, частиц, предлогов и союзов, поскольку они особым смыслом вне контекста не обладают, хотя и остаются словами в общем смысле.

Паранормальные способности за миллион долларов

С момента начала в 1964 году порядка 1000 человек приняли участие в «Паранормальном испытании» (Paranormal Challenge), но никто так и не взял приз. Образовательный фонд Джеймса Рэнди предлагает миллион долларов любому, кто сможет научно подтвердить сверхъестественные или паранормальные способности. На протяжении многих лет масса медиумов пытались проявить себя, но им категорически отказывали. Чтобы все удалось, претендент должен получить одобрение от учебного института или другой организации соответствующего уровня.

Хотя ни один из 1000 претендентов не смог доказать наличие наблюдаемых психических паранормальных способностей, которые можно было засвидетельствовать научно, Рэнди сказал, что «очень немногие» из конкурсантов посчитали, что их провал был обусловлен отсутствием талантов. По большей части все сводили неудачи к нервозности.

Проблема в том, что этот конкурс едва ли кто-нибудь когда-нибудь выиграет. Если кто-то будет обладать сверхъестественными способностями, это значит, что их нельзя объяснить естественным научным подходом. Улавливаете?опубликовано

Актуальные проблемы – значит важные для данного времени. Когда-то актуальность проблем физики была совсем иной. Решались вопросы типа «почему ночью становится темно», «почему дует ветер» или «почему вода мокрая». Давайте посмотрим, над чем ломают головы ученые в наши дни.

Несмотря на то, что мы можем все полнее и подробнее объяснить окружающий мир, вопросов со временем становится все больше. Ученые устремляют мысли и приборы в глубины Вселенной и дебри атомов, находя там такие вещи, которые пока не поддаются объяснению.

Нерешенные проблемы физики

Часть актуальных и нерешенных вопросов современной физики носит чисто теоретический характер. Некоторые проблемы теоретической физики просто невозможно проверить экспериментально. Еще одна часть – это вопросы, связанные с экспериментами.

Например, эксперимент не согласуется с ранее разработанной теорией. Существуют также прикладные задачи. Пример: экологические проблемы физики, связанные с поиском новых источников энергии. Наконец, четвертая группа – чисто философские проблемы современной науки, ищущие ответ на «главный вопрос смысла жизни, Вселенной и всего такого».


Темная энергия и будущее Вселенной

Согласно сегодняшним представлениям Вселенная расширяется. Причем по данным анализа реликтового излучения и излучения сверхновых, расширяется с ускорением. Расширения происходит за счет темной энергии. Темная энергия – это неопределенный вид энергии, который был введен в модель Вселенной для объяснения ускоренного расширения. Темная энергия не взаимодействует с материей известными нам способами, и ее природа – большая загадка. Есть два представления о темной энергии:

  • Согласно первому она заполняет Вселенную равномерно, то есть является космологической константой и имеет постоянную энергетическую плотность.
  • Согласно второму динамическая плотность темной энергии меняется в пространстве и времени.

В зависимости от того, какое из представлений о темной энергии верно, можно предположить дальнейшую судьбу Вселенной. Если плотность темной энергии растет, то нас ждет Большой разрыв , в котором вся материя развалится.

Еще один вариант – Большое сжатие , когда гравитационные силы победят, расширение остановится и сменится сжатием. При таком сценарии все, что было во Вселенной, сначала коллапсирует в отдельные черные дыры, а потом схлопнется в одну общую сингулярность.

Множество неразрешенных вопросов связано с черными дырами и их излучением. Читайте отдельную об этих загадочных объектах.


Материя и антиматерия

Все, что мы наблюдаем вокруг себя – материя , состоящая из частиц. Антиматерия – это вещество, состоящее из античастиц. Античастица – это двойник частицы. Единственное отличие частицы и античастицы – это заряд. Например, заряд электрона – отрицательный, тогда как его двойник из мира античастиц – позитрон – имеет такой же по величине положительный заряд. Получить античастицы можно в ускорителях частиц, однако никто не встречал их в природе.

При взаимодействии (столкновении) материя и антиматерия аннигилируют, в результате образуются фотоны. Почему во Вселенной преобладает именно вещество – большой вопрос современной физики. Предполагается, что эта асимметрия возникла в первые доли секунды после Большого взрыва.

Ведь если бы вещества и антивещества было поровну, все частицы бы аннигилировали, оставив в результате только фотоны. Есть предположения, что дальние и совсем неизученные области Вселенной заполнены антивеществом. Но так ли это, еще предстоит выяснить, проведя огромную мозговую работу.

Кстати! Для наших читателей сейчас действует скидка 10% на


Теория всего

Есть ли теория, которая может объяснить абсолютно все физические явления на элементарном уровне? Наверное, есть. Другой вопрос - можем ли мы до нее додуматься. Теория всего , или Теория Великого объединения – это теория, которая объясняет значения всех известных физических констант и объединяет 5 фундаментальных взаимодействий:

  • сильное взаимодействие;
  • слабое взаимодействие;
  • электромагнитное взаимодействие;
  • гравитационное взаимодействие;
  • поле Хиггса.

Кстати, о том, что такое и почему он так важен, вы можете почитать в нашем блоге.

Среди множества предложенных теорий всего ни одна не прошла экспериментальную проверку. Одним из самых перспективных направлений в этом вопросе является объединение квантовой механики и общей теории относительности в теорию квантовой гравитации . Однако данные теории имеют разные области применения, и пока что все попытки их объединения приводят к расходимости, которую не удается убрать.


Сколько существует измерений?

Мы привыкли к трехмерному миру. Можем двигаться в известных нам трех измерениях вперед-назад, вверх и вниз, чувствуя себя комфортно. Однако существует M-теория , согласно которой есть аж 11 измерений, лишь 3 из которых доступны нам.

Представить это достаточно сложно, если не невозможно. Правда, для таких случаев существует математический аппарат, который помогает справиться с проблемой. Чтобы не взорвать мозг себе и вам, мы не будем приводить математические выкладки из М-теории. Лучше приведем цитату физика Стивена Хокинга:

Мы всего лишь развитые потомки обезьян на маленькой планете с ничем не примечательной звездой. Но у нас есть шансы постичь Вселенную. Это и делает нас особенными.

Что говорить о далеком космосе, когда знаем далеко не все о нашем родном доме. Например, до сих пор нет четкого объяснения происхождению и периодической инверсии его полюсов.

Загадок и задач очень много. Такие же нерешенные задачи есть и в химии, астрономии, биологии, математике, философии. Разгадывая одну тайну, мы получаем две взамен. В этом и есть радость познания. Напомним, что с любой задачей, какой бы она не была сложной, вам помогут справиться . Проблемы обучения физике, как и любой другой науке, решаются гораздо легче, чем фундаментальные научные вопросы.

Разве наука и техника не одно и то же? Нет, они различны.

Хотя техника, определяющая современную культуру, развивается благодаря постижению наукой Вселенной, техника и наука руководствуются разными побуждениями. Рассмотрим основные различия между наукой и техникой. Если занятия наукой вызваны желанием человека познать и понять Вселенную, то технические новшества - стремлением людей изменить условия своего существования, чтобы добыть себе пропитание, помочь другим, а нередко и совершить насилие ради личной выгоды.

Люди зачастую одновременно занимаются «чистой» и прикладной наукой, но в науке можно вести фундаментальные исследования без оглядки на конечный результат. Британский премьер - министр Уильям Гладстон заметил как-то Майклу Фарадею по поводу его основополагающих открытий, связавших воедино электричество и магнетизм: «Все это весьма занятно, но каков в этом прок?» Фарадей ответил: «Сэр, я не знаю, но однажды вы от этого выгадаете». Почти половину нынешнего богатства развитым странам принесла связь электричества с магнетизмом.


Прежде чем научные достижения станут достоянием техники, требуется принять во внимание дополнительные соображения: разработка какого устройства возможна, что допустимо построить (вопрос, по сути, относящийся к области этики). Этика же принадлежит к совершенно иной области умственной деятельности человека: гуманитарным наукам. Основное различие между естествознанием и гуманитарными науками состоит в объективности. Естествознание стремится изучать поведение Вселенной по возможности объективно, тогда как перед гуманитарными науками такой цели или требования нет. Перефразируя слова ирландской писательницы XIX века Маргарет Волф Хангерфорд, можно сказать: «Красота [и истина, и справедливость, и благородство, и…] видится всеми по-разному».

Наука далеко не монолитна. Естественные науки заняты изучением как окружающей среды, так и самих людей, поскольку они функционально подобны иным формам жизни. А гуманитарные науки исследуют рациональное (эмоциональное) поведение людей и их установки, которые необходимы им для социального, политического и экономического взаимодействия. На рис. 1. 1 графически представлены эти взаимосвязи.

Как бы ни способствовало такое стройное изложение пониманию существующих связей, действительность всегда оказывается значительно сложнее. Этика помогает определить, что исследовать, какие исследовательские методы, приемы использовать и какие эксперименты недопустимы ввиду таящейся в них угрозы благополучию людей. Политэкономия и политология также играют огромную роль, поскольку наука может изучать лишь то, что культура склонна поощрять как орудия производства, рабочую силу или что - то, политически приемлемое.


Рис. 1.1. Сферы умственной деятельности

Механизм работы науки

Успех науки в изучении Вселенной складывается из наблюдений и выдвижения идей. Такого рода взаимообмен именуют научным методом (рис. 1.2).


Рис. 1.2. Научный метод

В ходе наблюдения то или иное явление воспринимается органами чувств при помощи приборов или без них. Если в естествознании наблюдения ведутся за множеством подобных предметов (например, атомов углерода), то науки о человеке имеют дело с меньшим числом различных субъектов (например, людей, пусть даже однояйцевых близнецов).

После сбора данных наш ум, стремясь их упорядочить, начинает строить образы или объяснения. В этом и заключается работа человеческой мысли. Данный этап именуют этапом выдвижения гипотезы. Построение общей гипотезы на основе полученных наблюдений ведется посредством индуктивного умозаключения, которое содержит обобщение и поэтому считается самым ненадежным видом умозаключения. И как бы ни пытались искусственно строить выводы, в рамках научного метода подобного рода деятельность ограничена, поскольку на последующих этапах гипотеза сталкивается с действительностью.

Зачастую гипотеза целиком или отчасти формулируется на языке, отличающемся от обиходной речи, языке математики. Для приобретения математических навыков требуется приложить большие усилия, иначе несведущим в математике людям при объяснении научных гипотез понадобится перевод математических понятий на повседневный язык. К сожалению, при этом смысл гипотезы может существенно пострадать.

После построения гипотезу можно использовать для предсказания некоторых событий, которые должны произойти, если гипотеза верна. Такое предсказание выводится из гипотезы посредством дедуктивного умозаключения. Например, второй закон Ньютона гласит, что F = mа. Если m равно 3 единицам массы, а а - 5 единицам ускорения, то F должна равняться 15 единицам силы. Выполнение математических расчетов на данном этапе могут взять на себя вычислительные машины, работающие на основе дедуктивного метода.

Следующий этап - проведение опыта, чтобы выяснить, подтверждается ли предсказание, сделанное на предыдущем этапе. Некоторые опыты провести довольно просто, но чаще - крайне затруднительно. Даже изготовив сложное и дорогостоящее научное оборудование для получения весьма ценных данных, нередко бывает нелегко найти деньги, а затем запастись терпением, необходимым для обработки и осмысления огромного массива этих данных. Естествознание обладает преимуществом: здесь можно обособить изучаемый предмет, тогда как наукам о человеке и обществе приходится иметь дело с многочисленными переменными, зависящими от различных взглядов (пристрастий) многих людей.

После завершения опытов их результаты сверяются с предсказанием. Поскольку гипотеза носит общий, а экспериментальные данные - частный характер, то результат, когда опыт согласуется с предсказанием, не доказывает гипотезу, а лишь подтверждает ее. Однако если исход опыта не согласуется с предсказанием, определенная сторона гипотезы оказывается ложной. Эта черта научного метода, именуемая фальсифицируемостью (опровергаемостью), накладывает на гипотезы определенное жесткое требование. Как выразился Альберт Эйнштейн, «никаким количеством экспериментов нельзя доказать теорию; но достаточно одного эксперимента, чтобы ее опровергнуть».

Оказавшуюся ложной гипотезу необходимо каким - то образом пересмотреть, т. е. слегка изменить, основательно переработать или же вовсе отбросить. Крайне трудно бывает решить, какие изменения здесь уместны. Пересмотренным гипотезам предстоит снова проделать тот же путь, и либо они устоят, либо от них откажутся в ходе дальнейших сопоставлений предсказания с опытом.

Другая сторона научного метода, не позволяющая сбиться с пути, - воспроизведение. Любой наблюдатель с соответствующей выучкой и подобающим оснащением должен суметь повторить опыты или предсказания и получить сравнимые результаты. Иначе говоря, науке свойственны постоянные перепроверки. Например, коллектив ученых из Национальной лаборатории им. Лоуренса Калифорнийского университета в Беркли пытался получить новый химический элемент, обстреливая свинцовую мишень мощным лучом ионов криптона и затем изучая полученные вещества. В 1999 году ученые объявили о синтезе элемента с порядковым номером 118.

Синтез нового элемента - это всегда важное событие. В данном случае его синтез мог подтвердить бытовавшие представления о стабильности тяжелых элементов. Однако ученые других лабораторий Общества по изучению тяжелых ионов (Дармштадт, Германия), Большого государственного ускорителя тяжелых ионов Кайенского университета (Франция) и Лаборатория атомной физики Физико - химического института Рикэн (Япония) - не смогли повторить синтез элемента 118. Расширенный коллектив лаборатории в Беркли повторил опыт, но ему также не удалось воспроизвести полученные ранее результаты. В Беркли перепроверили исходные экспериментальные данные посредством программы с видоизмененным кодом и не сумели подтвердить наличия элемента 118. Пришлось отзывать свою заявку. Данный случай свидетельствует, что научный поиск бесконечен.

Порой наряду с опытами перепроверяются и гипотезы. В феврале 2001 года Брукхэйвенская национальная лаборатория в Нью-Йорке сообщила об опыте, в котором магнитный момент мюона (подобно электрону отрицательно заряженной частицы, но значительно более тяжелой) слегка превышает величину, предопределенную стандартной моделью физики элементарных частиц (подробнее об этой модели см. гл. 2). А поскольку предположения стандартной модели о многих иных свойствах частиц очень хорошо согласовывались с опытными данными, такое расхождение по поводу величины магнитного момента мюона разрушало основу стандартной модели.

Предсказание магнитного момента у мюона стало следствием сложных и долгих расчетов, независимо проведенных учеными в Японии и Нью-Йорке в 1995 году. В ноябре 2001 года эти расчеты повторили французские физики, которые обнаружили ошибочный отрицательный знак у одного из членов уравнения и разместили свои результаты в Интернете. В итоге Брукхэйвенская группа перепроверила собственные вычисления, признала ошибку и опубликовала исправленные результаты. В итоге удалось сократить расхождение между предсказанием и опытными данными. Стандартной модели вновь предстоит выдержать испытания, которые ей готовит непрекращающийся научный поиск.

Научный метод в действии

Рассмотрим шаг за шагом классический пример работы научного метода.

Наблюдение

Наблюдение. Дж. Дж. Томсон, руководитель Кавендишской лаборатории (1884–1919) в Англии, изучал поведение светового луча в электронно-лучевой трубке (прообразе современной приемной телевизионной ЭЛТ). Поскольку луч: 1) отклонялся в сторону положительно заряженных электрических пластин и 2) при ударе о них вызывал вспышки света, выходило, что он состоял из отрицательно заряженных частиц - электронов, как назвал их ирландский физик XIX века Джордж Фицджеральд в своих замечаниях по поводу опыта Томсона. (Название электрон в качестве единицы электрического заряда предложил другой ирландский физик, Джордж Стони.)

Гипотеза

Гипотеза. Поскольку атомы не обладают зарядом (нейтральны), а Томсон открыл внутри них отрицательно заряженные частицы, он заключил, что атом должен иметь и положительный заряд. В 1903 году Томсон создал теорию, согласно которой положительный заряд «размазан» по всему атому, а отрицательно заряженные электроны в виде вкраплений находятся посреди положительно заряженного вещества. Такая картина напоминала традиционное британское блюдо, поэтому получила название «томсоновская модель атома в виде пудинга с изюмом».

Предсказание

Предсказание. Эрнст Резерфорд был специалистом по положительно заряженным частицам, именуемым α-частицами. В начале XX века он предсказал, что обстрел этими частицами атомов, состоящих из редкого и «размазанного» положительного заряда, согласно томсоновской модели «пудинга с изюмом» будет напоминать броски бильярдными шарами в туман. Большая часть шаров пройдет напрямую, и лишь их толика отклонится на крайне малую величину.

Опыт

Опыт. В 1909 году Ганс Гейгер и Эрнест Марсден стали обстреливать α-частицами тонкую золотую фольгу. Результаты оказались совершенно отличными от ожидаемых. Некоторые α-частицы отклонялись на большие величины, а отдельные даже отскакивали обратно. Резерфорд заметил, что это «столь же неправдоподобно, как если бы вы выстрелили пятнадцатифунтовым снарядом в папиросную бумагу, а снаряд отскочил бы обратно и убил вас самих».

Повтор

Повтор. На смену томсоновской модели атома пришла резерфордовская модель по образцу Солнечной системы, где положительный заряд был сосредоточен в сравнительно крошечном ядре посредине атома, а электроны (подобно планетам) обращались по круговым орбитам вокруг ядра (подобного Солнцу). В XX веке, после очередных предсказаний и опытов резерфордовскую модель атома в виде Солнечной системы сменили иные модели. Когда опытные данные не согласовывались с предсказаниями существовавшей гипотезы, приходилось пересматривать гипотезу.

Так толкование открытых Исааком Ньютоном законов механики и классических гипотез Джеймса Клерка Максвелла о природе электричества и магнетизма привело к заманчивому предположению об абсолютном характере пространства и времени. Теория относительности Эйнштейна заменила эти удобные абсолютные величины противоречащими интуиции и философски неблагонадежными относительными величинами. Основная причина, вынудившая признать существование относительности, заключалась в соответствии предсказаний данной теории опытным данным.

Несмотря на распространенность того или иного представления, известность сторонников какой-либо теории, непривлекательность новой теории, политические взгляды авторов идей или трудность их понимания, незыблемым остается одно: верховенство данных опыта.

Сложности

Представленный здесь научный метод - рациональная реконструкция функционирования науки в действительности. Подобная идеализация, естественно, отличается от происходящего на самом деле, например, при большом числе участников, когда этапы разделяются длительными промежутками времени. И все же у нас есть возможность многое увидеть.

Здесь необходимо учитывать ряд сложностей. Прежде всего, наука выдвигает несколько философских предположений, с которыми не согласны некоторые философы. Наука допускает существование объективной реальности, не зависящей от наблюдателя. Иначе без такой объективности одни и те же наблюдения и опыты, повторенные в различных лабораториях, могли бы разниться, и тогда исследователям невозможно было бы прийти к согласию. Далее, наука полагает, что Вселенной управляют некие незыблемые законы, и человек в состоянии постичь эти законы. Если управляющие Вселенной законы лишены определенности или мы не в состоянии постичь их, все усилия науки по выдвижению любых гипотез окажутся тщетными. Но поскольку наше понимание этих законов, похоже, углубляется, а основанные на них предсказания находят подтверждения в опытах, такие предположения выглядят вполне разумными.

Научные гипотезы строятся в связи с событиями, происходящими на протяжении длительного промежутка времени, в том числе с минувшими, которые нельзя проверить опытом. Обычно такую трудность обходят, выдвигая перекрестные гипотезы из различных отраслей знаний в поисках взаимного согласия. Например, оцениваемый в более чем 4 млрд. лет возраст Земли подтверждается астрономическими вычислениями содержания гелия в недрах Солнца, геологическими измерениями тектоники плит и биологическими наблюдениями за ростом коралловых отложений.

При объяснении определенного события - особенно при отсутствии опытных данных для некоторых явлений (например, о далеком прошлом, у которого не было летописцев, или о недоступных уголках Вселенной) - может выдвигаться сразу несколько гипотез. Щекотливое положение, когда много гипотез невозможно экспериментально подтвердить, разрешается на основе принципа научной бережливости [лат. principium parsimoniae], именуемого бритвой Оккама.


Английский философ Уильям из Оккама [местечка в английском графстве Сэррей] (1285–1349) был францисканским монахом и часто в своих философских сочинениях пользовался средневековым правилом: «Сущностей не следует умножать без необходимости». Военные дали этому правилу более простое и непосредственное выражение - KISS: Keep It Simple, Stupid («He усложняй, болван»), или Keep It Short and Sweet («Будь краток и мил»). В любом случае оно служит руководством при отсутствии опытных данных. Если есть несколько гипотез и невозможно провести опыты, которые бы позволили выбрать между ними, останавливаются на самой простой.

Опыт доказывает правильность такого подхода. Например, в 1971 году космический зонд Uhur по измерению рентгеновского излучения неожиданно выявил мощный поток рентгеновских лучей со стороны созвездия Лебедя, обозначенный Лебедь X -1. Видимого источника этого излучения, которое исходило как бы из пустоты близ звезды-сверхгиганта HDE 226868, удаленной от Земли на 8 тыс. световых лет, не наблюдалось. (Разъяснение обозначения HDE см.: Список идей, 14. Составление звездных каталогов.) Согласно одной гипотезе, всему виной был невидимый спутник звезды HDE 226868. Этот призрак притягивал массу, которую исторгала из себя HDE 226868. При втягивании этого вещества невидимым спутником его температура повышалась до такой степени, что спутник начинал излучать радиоволны. Другая гипотеза требовала по меньшей мере двух невидимых тел, взаимодействующих с HDE 226868, - невидимую из-за своей блеклости обычную звезду и вращающуюся нейтронную звезду (ядро звезды, которая после завершения отпущенного ей срока сжимается в состоящий из нейтронов шар), именуемую пульсаром. Эти три тела, расположенные определенным образом, и могли быть источниками наблюдавшегося радиоизлучения.

Удаленность Лебедя X -1 не позволяет проводить непосредственную проверку, тем более что само это излучение происходило 8 тыс. лет назад. Тогда какая же из соперничающих гипотез справедлива? Согласно экспериментальным данным - обе. Но, пользуясь бритвой Оккама, мы видим, что лучше всего здесь подходит более простое объяснение, ограничивающееся одним небесным телом. Таким образом, Лебедь X-1 стал первым зарегистрированным примером невидимого спутника, известного как черная дыра. Впоследствии при схожих обстоятельствах удалось обнаружить более 30 таких объектов.

Принцип «Бритва Оккама» вступает в действие лишь при отсутствии опытного подтверждения. Его задача - помочь выбрать простейшую гипотезу, согласующуюся с наблюдениями. Однако она не может исключить прочие гипотезы, подтверждаемые даже более сложными данными. Ведь она не способна заменить получаемое в опыте подтверждение. Естественно, бритва Оккама уступает обстоятельным опытным данным, но порой это единственное, что у нас есть.

Нерешенные проблемы

Теперь, уяснив, как наука вписывается в умственную деятельность человека и как она функционирует, можно видеть, что ее открытость позволяет различными путями идти к более полному постижению Вселенной. Возникают новые явления, по поводу которых гипотезы хранят молчание, и, чтобы нарушить его, выдвигаются новые гипотезы, полные свежих идей. На их основе уточняются предсказания. Создается новое экспериментальное оборудование. Вся эта деятельность приводит к появлению гипотез, более точно отражающих поведение Вселенной. И все это ради одной цели - понять Вселенную во всем ее многообразии.

Научные гипотезы можно рассматривать как ответы на вопросы об устройстве Вселенной. Наша же задача состоит в исследовании пяти крупнейших проблем, не решенных до настоящего времени. Под словом «крупнейшие» подразумеваются проблемы, имеющие далеко идущие последствия, самые важные для нашего дальнейшего понимания, или обладающие наиболее весомым прикладным значением. Мы ограничимся одной крупнейшей нерешенной проблемой, взятой из кажсдой пяти отраслей естествознания, и попытаемся описать, каким образом можно ускорить их решение. Конечно, науки о человеке и обществе, гуманитарные и прикладные, имеют свои нерешенные проблемы (например, природа сознания), но данный вопрос выходит за рамки этой книги.

Вот отобранные нами в каждой из пяти отраслей естествознания крупнейшие нерешенные проблемы и то, чем мы руководствовались в своем выборе.

Физика. Связанные с движением свойства массы тела (скорость, ускорение и момент наряду с кинетической и потенциальной энергией) нам хорошо известны. А природа самой массы, присущей многим, но не всем элементарным частицам Вселенной, нам не понятна. Крупнейшая нерешенная задача физики такова: почему одни частицы обладают массой [покоя], а другие - нет?

Химия. Изучение химических реакций живых и неживых тел ведется широко и весьма успешно. Крупнейшая нерешенная задача химии такова: какого рода химические реакции подтолкнули атомы к образованию первых живых существ?

Биология. Недавно удалось получить геном, или молекулярный чертеж, многих живых организмов. Геномы несут информацию об общих белках, или протеоме, живых организмов. Крупнейшая нерешенная задача биологии такова: каково строение и предназначение протеома?

Геология. Модель тектоники плит удовлетворительно описывает последствия взаимодействия верхних оболочек Земли. Но атмосферные явления, особенно тип погоды, похоже, не поддаются попыткам создать модели, ведущие к получению надежных прогнозов. Крупнейшая нерешенная задача геологии такова: возможен ли точный долговременный прогноз погоды?

Астрономия. Хотя многие стороны общего устройства Вселенной хорошо известны, в ее развитии еще много неясного. Недавнее открытие, что скорость расширения Вселенной возрастает, приводит к мысли, что она будет расширяться бесконечно. Крупнейшая нерешенная задача астрономии такова: почему Вселенная расширяется со все большей скоростью?

Многие иные занимательные вопросы, связанные с этими задачами, будут возникать попутно, и некоторые из них сами могут в будущем стать крупнейшими. Об этом идет речь в заключительном разделе книги: «Список идей».

Уильям Гарвей, английский врач XVII века, определивший природу кровообращения, сказал: «Все, что мы знаем, бесконечно мало по сравнению с тем, что нам пока неведомо» [ «Анатомическое исследование о движении сердца и крови у животных», 1628]. И это верно, поскольку вопросы множатся быстрее, чем на них успевают ответить. По мере расширения освещаемого наукой пространства увеличивается и обступающий его мрак.

Примечания:

Старейшая национальная лаборатория им. Лоуренса в Беркли, основанная изобретателем циклотрона Эрнстом Орландо Лоуренсом в 1931 году. Находится в ведении Министерства энергетики США

Оккама бритва - принцип, согласно которому всему следует искать наиболее простое истолкование; чаще всего этот принцип формулируется так: «Без необходимости не следует утверждать многое» (pluralitas non est ponenda sine necessitate) или: «То, что можно объяснить посредством меньшего, не следует выражать посредством большего» (frustra fit per plura quod potest fieri per pauciora). Обычно приводимая историками формулировка «Сущностей не следует умножать без необходимости» (entia non sunt multiplicandasine necessitate) - в сочинениях Оккама не встречается (это слова Дюрана из Сен-Пурсена, ок. 1270–1334 - французского богослова и доминиканского монаха; очень схожее выражение впервые встречается у французского монаха-францисканца Одо Риго, ок. 1205–1275).

Где сможете, помимо прочего, присоединиться к проекту и принять участие в его обсуждении .

Список Эта страница по шкале оценок статей Проекта:Физика имеет уровень «список» .

Высокая

Важность этой страницы для проекта Физика : высокая

Статья является переводом соответствующей английской версии. Лев Дубовой 09:51, 10 марта 2011 (UTC)

Эффект «Пионера» [ править код ]

Нашли объяснение эффекту Пионера . Стоит убрать теперь его из списка? Русские идут! 20:55, 28 августа 2012 (UTC)

Объяснений эффекту есть много, ни одно из них не является на данный момент общепризнанным. Имхо пусть повисит пока:) Evatutin 19:35, 13 сентября 2012 (UTC) Да, но, как я понял, это первое объяснение, которое согласуется с наблюдаемым отклонением в скорости. Хотя я согласен, что надо подождать. Русские идут! 05:26, 14 сентября 2012 (UTC)

физика элементарных частиц [ править код ]

Поколения материи:

Зачем нужны три поколения частиц, до конца всё-таки неясно. Не ясна иерархия констант связей и масс этих частиц. Не ясно, есть ли еще другие поколения, кроме этих трёх. Неизвестно, существуют ли другие частицы, о которых мы не знаем. Не ясно, почему бозон Хиггса, только что открытый на Большом Адроном Коллайдере, такой легкий. Есть и другие важные вопросы, на которые Стандартная Модель не дает ответа.

Частица Хиггса [ править код ]

Частицу Хиггса тоже уже нашли. --195.248.94.136 10:51, 6 сентября 2012 (UTC)

Пока физики осторожничают с выводами, возможно он не один там, исследуются разные каналы распада - имхо пусть пока повисит... Evatutin 19:33, 13 сентября 2012 (UTC) Только решённые проблемы, бывшие в списке, перемещаются в раздел Нерешённые проблемы современной физики#Проблемы, решённые за последние десятилетия .--Arbnos 10:26, 1 декабря 2012 (UTC)

Масса нейтрино [ править код ]

Известно давно. Но ведь раздел и называется Проблемы, решённые за последние десятилетия - кажется, что была проблема решена не так давно, после находящихся в списке порталов.--Arbnos 14:15, 2 июля 2013 (UTC)

Проблема горизонта [ править код ]

Это ты называешь "одинаковая температура": http://img818.imageshack.us/img818/1583/img606x341spaceplanck21.jpg ??? Это тоже самое что сказать "Проблема 2+2=5". Это вовсе не проблема, так как это неверное утверждение в корне.

  • Думаю будет полезен новый ролик "Space" : http://video.euronews.com/flv/mag/130311_SESU_121A0_R.flv
Что самое интересное, что WMAP показывал точно такой же снимок еще 10 лет назад. У кого дальтонизм, поднимите руку.

Законы аэрогидродинамики [ править код ]

Предлагаю добавить ещё одну нерешённую проблему в список - причём даже относящуюся к классической механике, которая обычно считается совершенно изученной и простой. Проблема резкого несоответствия теоретических законов аэрогидродинамики экспериментальным данным. Результаты моделирования, выполняемого по уравнениям Эйлера, не соответствует результатам, получаемым в аэродинамических трубах. В итоге в аэрогидродинамике сейчас вообще нет рабочих систем уравнений, по которым можно было бы делать аэродинамические расчёты. Есть ряд эмпирических уравнений, которые неплохо описывают эксперименты лишь в узких рамках ряда условий и нет возможности делать расчёты в общем случае.

Ситуация даже абсурдная - в XXI веке все разработки по аэродинамике ведутся через испытания в аэродинамических трубах, в то время как во всех остальных областях техники давно обходятся лишь точными расчётами, не перепроверяя их потом экспериментально. 62.165.40.146 10:28, 4 сентября 2013 (UTC) Валеев Рустам

Не надо, задач, для которых не хватает вычислительных мощностей, хватает и в других областях, в термодинамике, например. Принципиальных сложностей нет, просто модели чрезвычайно сложны. --Renju player 15:28, 1 ноября 2013 (UTC)

Несуразицы [ править код ]

ПЕРВАЯ

Является ли пространство-время принципиально непрерывным или дискретным?

Очень плохо сформулирован вопрос. Пространство-время либо непрерывное, либо дискретное. Пока ответить на этот вопрос современная физика не может. В этом и состоит проблема. Но в данной формулировке спрашивается совершенно другое: тут оба варианта берутся как единое целое «непрерывным или дискретным » и спрашивается: «Является ли пространство-время принципиально непрерывным или дискретным ?». Ответ - да, пространство-время является непрерывным или дискретным. И у меня возникает вопрос, а зачем было такое спрашивать? Нельзя так формулировать вопрос. Видимо, автор плохо пересказал Гинзбурга. И что имеется ввиду под «принципиально »? >> Kron7 10:16, 10 сентября 2013 (UTC)

Можно переформулировать как "Является ли пространство непрерывным или оно дискретно?". Такая формулировка вроде бы исключает приведённый Вами смысл вопроса. Dair T"arg 15:45, 10 сентября 2013 (UTC) Да, это совсем другое дело. Поправил. >> Kron7 07:18, 11 сентября 2013 (UTC)

Да, пространство-время является дискретным, так как непрерывным может быть только абсолютно пустое пространство, а пространство-время далеко не является пустым

;ВТОРАЯ
Отношение инерциальная масса/гравитационная масса для элементарных частиц В соответствии с принципом эквивалентности общей теории относительности, отношение инертной массы к гравитационной для всех элементарных частиц равно единице. Однако, экспериментального подтверждения этого закона для многих частиц не существует.

В частности, мы не знаем, каков будет вес макроскопического куска антивещества известной массы .

Как понимать это предложение? >> Kron7 14:19, 10 сентября 2013 (UTC)

Вес, как известно, это сила, с которой тело действует на опору или подвес. Масса измеряется в килограммах, вес в ньютонах. В невесомости тело массой в один килограмм будет иметь нулевой вес. Вопрос о том, каков будет вес куска антивещества заданной массы, таким образом, не является тавтологией. --Renju player 11:42, 21 ноября 2013 (UTC)

Ну что там непонятного? И надо снять вопрос: чем отличается пространство от времени? Яков176.49.146.171 19:59, 23 ноября 2013 (UTC)И надо убрать вопрос о машине времени: это антинаучная ахинея. Яков176.49.75.100 21:47, 24 ноября 2013 (UTC)

Гидродинамика [ править код ]

Гидродинамика - один из разделов современной физики, наряду с механикой, теорией поля, квантовой механикой и др. Кстати, методы гидродинамики активно используются и в космологии, при изучении проблем мироздания, (Ryabina 14:43, 2 ноября 2013 (UTC))

Вы, возможно, путаете сложность вычислительных задач с принципиально нерешенными проблемами. Так, задача N тел до сих пор не решена аналитически, в ряде случаев представляет существенные сложности при приближённом численном решении, но никаких принципиальных загадок и тайн мироздания не содержит. В гидродинамике нет сложностей принципиальных, есть только вычислительные и модельные, зато в изобилии. В общем, давайте аккуратнее разделять тёплое и мягкое. --Renju player 07:19, 5 ноября 2013 (UTC)

Вычислительные проблемы относятся к нерешённым вопросам математики, а не физики. Яков176.49.185.224 07:08, 9 ноября 2013 (UTC)

Минус-вещесво [ править код ]

К теоретическим вопросам физики я бы добавил гипотезу о минус-веществе. Гипотеза эта чисто математическая : масса может иметь отрицательное значение. Как всякая чисто математическая гипотеза она логически непротиворечива. Но, если взять философию физики, то в этой гипотезе содержиться замаскированный отказ от детерминированности. Хотя, возможно, есть ещё неоткрытые законы физики, описывающие минус-вещество. --Яков 176.49.185.224 07:08, 9 ноября 2013 (UTC)

Шо цэ такэ? (откуда взяли?) --Tpyvvikky ..у математиков и время может быть отрицательным.. и шо теперь

Сверхпроводимость [ править код ]

Какие проблемы с БКШ , что в статье написано про отсутствие «полностью удовлетворительной микроскопической теории сверхпроводимости»? Ссылка при этом на учебник 1963 года издания, чуть-чуть устаревший источник для статьи о современных проблемах физики. Я пока этот пассаж убираю. --Renju player 08:06, 21 августа 2014 (UTC)

Холодный ядерный синтез [ править код ]

"Каково объяснение спорных докладов об избыточном тепле, излучении и трансмутациях?" Объяснение в том, они недостоверны/неверны/ошибочны. Во всяком случае, по стандартам современной науки. Ссылки мёртвые. Удалено. 95.106.188.102 09:59, 30 октября 2014 (UTC)

Копия [ править код ]

Копия статьи http://ensiklopedia.ru/wiki/%D0%9D%D0%B5%D1%80%D0%B5%D1%88%D1%91%D0%BD%D0%BD%D1%8B%D0%B5_%D0%BF%D1%80%D0%BE%D0%B1%D0%BB%D0%B5%D0%BC%D1%8B_%D1%81%D0%BE%D0%B2%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D0%B9_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B8 .--Arbnos 00:06, 8 ноября 2015 (UTC)

Абсолютное время [ править код ]

Согласно СТО нет никакого абсолютного времени, поэтому вопрос о возрасте Вселенной (да и о будущем Вселенной) не имеет смысла. 37.215.42.23 00:24, 19 марта 2016 (UTC)

Боюсь, вы не в теме. Soshenkov (обс.) 23:45, 16 марта 2017 (UTC)

Гамильтонов формализм и дифференциальная парадигма Ньютона [ править код ]

1. Является ли самой фундаментальной проблемой физики тот удивительный факт, что (до сих пор) все фундаментальные теории выражаются через гамильтонов формализм?

2. Является ли ещё более удивительным и совершенно необъяснимым фактом зашифрованная во второй анаграмме гипотеза Ньютона о том, что законы природы выражаются через дифференцитальные уравнения ? Является ли эта гипотеза исчерпывающей или она допускает иные математические обобщения?

3. Проблема биологической эволюции - следствие фундаментальных физических законов, или это самостоятельный феномен? Не является ли феномен биологической эволюции прямым следствием дифференциальной гипотезы Ньютона? Soshenkov (обс.) 23:43, 16 марта 2017 (UTC)

Пространство, время и масса [ править код ]

Что такое "пространство" и "время"? Каким образом массивные тела "искривляют" пространство и влияют на время? Каким образом "искривлённое" пространство взимодействует с телами, вызывая всемирное тяготение, и фотонами, изменяя их траекторию? И при чём тут энтропия? (Пояснение. ОТО даёт формулы, по которым можно, например, рассчитать релятивистские поправки для часов глобальной навигационной спутниковой системы, но она даже не ставит перечисленные вопросы. Если рассматривать аналогию с термодинамикой газа, то ОТО соответствует уровню термодинамики газа на уровне макроскопических параметров (давление, плотность, температура), а тут нужен аналог на уровне молекулярно-кинетической теории газа. Может, гипотетические теории квантовой гравитации объяснят искомое...) P36M AKrigel /обс 17:36, 31 декабря 2018 (UTC) Интересно узнать причины и увидеть ссылку на дискуссию. Я поэтому здесь и спросил, известная нерешённая проблема, в обществе более известная, чем большинство из статьи (по моему субъективному мнению). Даже детям о ней рассказывают в образовательных целях: в Москве в «Экспериментариуме» отдельный стенд с этим эффектом. Несогласные, отзовитесь, пожалуйста. Jukier (обс.) 06:33, 1 января 2019 (UTC)

    • Тут всё просто. "Серьёзные" научные журналы опасаются публиковать материалы по спорным и неясным вопросам, чтобы не потерять свою репутацию. Статьи в прочих изданиях никто не читает и опубликованные в них результаты ни на что не влияют. Полемика публикуется вообще в исключительных случаях. Авторы учебников стараются избегать писать о том, чего они не понимают. Энциклопедия - не место для дискуссий. Правила ВП требуют, чтобы материал статей был основан на АИ, а в спорах между участниками был достигнут консенсус. Ни то ни другое требование в случае публикации статьи по нерешенным вопросам физики достигнуть невозможно. Трубка Ранка лишь частный пример большой проблемы. В теоретической метеорологии дело обстоит более серьёзно. Вопрос о термическом равновесии в атмосфере - базовый, его замять невозможно, а теории то нет. Без этого все прочие рассуждения лишены научного основания. Студентам об этой проблеме, как нерешенной, профессора не рассказывают, а учебники врут по разному. Речь идёт в первую очередь о равновесном градиенте температуры ]

      Синодический период и вращение вокруг оси планет земной группы. Земля и Венера повёрнуты одной стороной к друг другу во время нахождения на одной оси с солнцем. Так же как и Земля с Меркурием. Т.е. период вращения Меркурия синхронизирован с Землёй, а не Солнцем (хотя очень долго считалось что он будет синхронизирован с солнцем как Земля синхронизировалась с Луной). speakus (обс.) 18:11, 9 марта 2019 (UTC)

      • Если найдете источник, в котором об этом говориться как о нерешённой проблеме, то это можете это добавить. - Алексей Копылов 21:00, 15 марта 2019 (UTC)


© dagexpo.ru, 2024
Стоматологический сайт