Основная теорема метода сеток. Смотреть страницы где упоминается термин погрешности аппроксимации

21.09.2019

Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Где y x - расчетное значение по уравнению.

Значение средней ошибки аппроксимации до 15% свидетельствует о хорошо подобранной модели уравнения.

По семи территориям Уральского района за 199Х г. известны значения двух признаков.

Требуется:
1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной;
в) показательной;
г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
2. Оценить каждую модель через среднюю ошибку аппроксимации А ср и F-критерий Фишера.

Решение проводим при помощь онлайн калькулятора Линейное уравнение регрессии .
а) линейное уравнение регрессии;
Использование графического метода .
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции .


На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения ε i для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям x i и y i можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где e i – наблюдаемые значения (оценки) ошибок ε i , а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β - используют МНК (метод наименьших квадратов).




Получаем b = -0.35, a = 76.88
Уравнение регрессии:
y = -0.35 x + 76.88

x y x 2 y 2 x y y(x) (y i -y cp) 2 (y-y(x)) 2 |y - y x |:y
45,1 68,8 2034,01 4733,44 3102,88 61,28 119,12 56,61 0,1094
59 61,2 3481 3745,44 3610,8 56,47 10,98 22,4 0,0773
57,2 59,9 3271,84 3588,01 3426,28 57,09 4,06 7,9 0,0469
61,8 56,7 3819,24 3214,89 3504,06 55,5 1,41 1,44 0,0212
58,8 55 3457,44 3025 3234 56,54 8,33 2,36 0,0279
47,2 54,3 2227,84 2948,49 2562,96 60,55 12,86 39,05 0,1151
55,2 49,3 3047,04 2430,49 2721,36 57,78 73,71 71,94 0,172
384,3 405,2 21338,41 23685,76 22162,34 405,2 230,47 201,71 0,5699

Примечание: значения y(x) находятся из полученного уравнения регрессии:
y(45.1) = -0.35*45.1 + 76.88 = 61.28
y(59) = -0.35*59 + 76.88 = 56.47
... ... ...

Ошибка аппроксимации
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.

F-статистики. Критерий Фишера.










3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.

< Fkp, то коэффициент детерминации статистически не значим (Найденная оценка уравнения регрессии статистически не надежна).

б) степенная регрессия ;
Решение проводится с помощью сервиса Нелинейная регрессия . При выборе укажите Степенная y = ax b
в) показательная регрессия;
г) модель равносторонней гиперболы.
Система нормальных уравнений.

Для наших данных система уравнений имеет вид
7a + 0.1291b = 405.2
0.1291a + 0.0024b = 7.51
Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 1054.67, a = 38.44
Уравнение регрессии:
y = 1054.67 / x + 38.44
Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.

Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.

Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:

где m=1 для парной регрессии.
Табличное значение критерия со степенями свободы k1=1 и k2=5, Fkp = 6.61
Поскольку фактическое значение F < Fkp, то коэффициент детерминации статистически не значим (Найденная оценка уравнения регрессии статистически не надежна).

Погрешность аппроксимации

При построении разностной схемы важно знать, насколько хорошо она аппроксимирует исходную дифференциальную задачу.

При замене дифференциальной задачи разностной допускается ошибка -- погрешность аппроксимации. Она характеризуется величиной невязок/

При замене интеграла приближенной квадратурной формулой вносится погрешность аппроксимации дифференциального уравнения разностным. Она характеризуется величиной невязки, если в конечно-разностном уравнении (5) подставить вместо значение точного решения:

Воспользовавшись соотношением (4), получаем простое выражение для вычисления:

которая зависит от шага сетки.

Говорят, что разностная схема (5) аппроксимирует исходную дифференциальную задачу с порядком p, если при. Из (6) следует, что порядок аппроксимации на 1 меньше, чем порядок погрешности используемой квадратурной формулы на интервале .

Чем больший порядок аппроксимации p , тем выше точность решения:

Для обеспечения близости решений разностной и дифференциальной задач необходимо, чтобы при стремлении шагов сетки к нулю разностная задача в пределе совпадала с дифференциальной. Если это требование выполняется, то говорят, что разностная схема аппроксимирует дифференциальную задачу.

Устойчивость

Другой источник ошибок, вносимых в численное решение, связан с погрешностью округления, возникающей непосредственно при решении разностной задачи на ЭВМ. Ошибки округления неизбежны, так как любая вычислительная машина может оперировать лишь с конечным числом значащих цифр. Хотя в момент возникновения они невелики, однако при расчете больших рекуррентных формул, какими являются алгоритмы метода сеток, первоначальная величина этих ошибок может вырасти настолько, что полностью исказит смысл окончательного результата. Если это происходит, то говорят, что численный метод (алгоритм) неустойчив. При достаточно длительном счете неустойчивость метода приводит к авосту -- переполнению арифметического устройства машины. Если же в процессе счета ошибки округления затухают или хотя бы не возрастают, такой вычислительный алгоритм называют устойчивым. Для решения практических задач используются только устойчивые алгоритмы.

Более строго устойчивость трактуется как свойство непрерывной зависимости решения разностной задачи от входных данных, согласно которому всякое малое изменение входных данных (например, вследствие округления) приводит к малому изменению решения. Под входными данными обычно понимают правые части разностных уравнений, граничных и начальных условий.

Основная теорема метода сеток

Основная теорема теории метода сеток утверждает, что если схема устойчива, то при погрешность решения стремится к нулю с тем же порядком, что и погрешность аппроксимации:

где С0 - константа устойчивости.

Неустойчивость обычно проявляется в том, что с уменьшением h решение при возрастании k, что легко устанавливается экспериментально с помощью просчета на последовательности сеток с уменьшающимся шагом h, h/2, h/4… Если при этом, то метод неустойчив. Таким образом, если имеется аппроксимация и схема устойчива, то, выбрав достаточно малый шаг h, можно получить решение с заданной точностью. При этом затраты на вычисления резко уменьшаются с увеличением порядка аппроксимации p, т.е. при большем p можно достичь той же точности, используя более крупный шаг h.

Теоретические основы метода сеток. Построение конечно-разностной схемы. Погрешность аппроксимации, устойчивость. Основная теорема метода сеток

2.3 Погрешность аппроксимации

При построении разностной схемы важно знать, насколько хорошо она аппроксимирует исходную дифференциальную задачу.

При замене дифференциальной задачи разностной допускается ошибка -- погрешность аппроксимации. Она характеризуется величиной невязок/

При замене интеграла приближенной квадратурной формулой вносится погрешность аппроксимации дифференциального уравнения разностным. Она характеризуется величиной невязки, если в конечно-разностном уравнении (5) подставить вместо значение точного решения:

Воспользовавшись соотношением (4), получаем простое выражение для вычисления:

которая зависит от шага сетки.

Говорят, что разностная схема (5) аппроксимирует исходную дифференциальную задачу с порядком p, если при. Из (6) следует, что порядок аппроксимации на 1 меньше, чем порядок погрешности используемой квадратурной формулы на интервале .

Чем больший порядок аппроксимации p , тем выше точность решения:

Для обеспечения близости решений разностной и дифференциальной задач необходимо, чтобы при стремлении шагов сетки к нулю разностная задача в пределе совпадала с дифференциальной. Если это требование выполняется, то говорят, что разностная схема аппроксимирует дифференциальную задачу.

Аппроксимация функции методом наименьших квадратов

Вычислительная математика

Существуют четыре источника погрешностей, возникающих в результате численного решения задачи. 1. Математическая модель. Погрешность математической модели связана с ее приближенным описанием реального объекта. Например...

Клеточные пространства

Теорема. Всякое непрерывное отображение одного клеточного пространства в другое гомотопно клеточному отображению. Мы будем доказывать следующее, более сильное утверждение ("относительный вариант" нашей теоремы). Теорема...

Клеточные пространства

Теорема. Если X - клеточное пространство с единственной вершиной (= нульмерной клеткой), не имеющее других клеток размерности

Линейное и нелинейное программирование

Методы аппроксимации функций

Методы аппроксимации функций

Ошибка приближения функции f(x) интерполяционным полиномом n-й степени Ln(x) в точке x определяется разностью. Можно показать, что погрешность Rn(x) определяется следующим выражением. Здесь - производная (n+1) порядка функции f(x) в некоторой точке...

Построение математической модели, описывающей процесс решения дифференциального уравнения

0 1 2,282894 1,282894 1,645818 0,1 1,470387 1,206049 -0,264338 0,069874 0,2 2,173681 1,146702 -1,026979 1,054685 0,3 3,205241 2,104853 -1,100388 1,210853 0,4 4,709109 4,080502 -0,628607 0,395146 0,5 6,894874 7,073649 0,178775 0,031961 0,6 10,066320 11,084294 1,017974 1,036271 0,7 14,663307 16,112437 1,449130 2,099978 0,8 21...

Практическое применение интерполирования гладких функций

По строению (). Но, в общем, это не так и (,), так как интерполирование предполагает приближенное нахождение: () И в связи с этим необходимо говорить о погрешности интерполирования. Заранее сказав, разность этого выражения нужно найти...

Приближенное решение алгебраических и трансцендентных уравнений. Метод Ньютона

Информация о предыдущих приближениях корня используется для нахождения последующих приближений не только в методе касательных. В качестве примера другого такого метода мы приведём метод...

Численные методы анализа

Погрешность вычисляется по формуле где h -- шаг сетки, а точка о расположена где-то между i-тым и (i + n)-тым узлами. Примером может служить известная формула (n = 2) . При n = 1 формула может быть получена и из определения производной...

Численные методы анализа

Окончательный результат многократного измерения содержит в себе как случайную, так и приборную погрешности. Случайная погрешность уменьшается с увеличением количества отдельных измерений, а приборная погрешность не меняется...

В любую аналитическую формулу входят постоянные коэффициенты, величина которых существенно влияет на вид функции и на её значение. Следовательно, в нашем случае коэффициенты, будут переменными параметрами, и функция запишется в общем виде:

где - подбираемые коэффициенты, M i - i-ые значения расхода воздуха, n - число оборотов вала.

Согласно методу наименьших квадратов, наилучшими коэффициентами считаются те, для которых сумма квадратов отклонений найденной теоретической функции от заданных эмпирических значений будет минимальной. Следовательно, задача состоит в определении коэффициентов таким образом (т.е. в выборе одной кривой из множества), чтобы сумма квадратов отклонений была наименьшей.

где - коэффициенты аппроксимации,

Для того чтобы найти набор коэффициентов, при которых достигается минимум функции S, определяемой формулой (1.1), используем необходимое условие экстремума функции нескольких переменных равенство нулю частных производных.

Таким образом, нахождение коэффициентов, сводится к решению системы:

Если коэффициенты входят линейно, то система дифференциальных уравнений в частных производных преобразуется в систему линейных алгебраических уравнений. Эта система может быть решена любым методом: методом Гаусса, матричным методом, по формулам Крамера и т.д.

Конкретный вид системы (1.3) зависит от того, из какого класса эмпирических формул мы ищем зависимость (1.1).

В случае линейной аппроксимации формула (1.2) примет вид:

Возьмем две частные производные первого порядка и приравняем их к нулю. Система уравнений (1.3) примет вид:

Разделим уравнения на 2 и раскроем скобки:

Вынесем неизвестные и за знак суммы, так как они не зависят от индекса «i», и перенесем слагаемые, не содержащие неизвестных, в правую часть. Окончательно получим систему линейных алгебраических уравнений с двумя неизвестными и:

В случае квадратичной аппроксимирующей зависимости, вида (1.1.1), выполнив аналогичные преобразования, получим следующую систему линейных алгебраических уравнений с тремя неизвестными и:

Оценка статистических параметров системы

Напомним некоторые статистические оценки. Наблюдаемые значения величин n i , M i можно рассматривать как выборочные значения двух случайных величин n и M. По выборочным данным можно найти выборочные средние и выборочные квадратичные отклонения n и M, а также выборочный коэффициент корреляции, а именно:

Для вычисления можно применить и более простые формулы, которые выводятся в курсе теории вероятностей с помощью простых алгебраических преобразований:

Здесь - выборочные средние величин n, M; - выборочные квадратичные отклонения величин n, M; r - выборочный коэффициент корреляции.

Известно, что линейное уравнение (1.5), называемое в статистике уравнением линейной регрессии, проходит через точку, а коэффициент a 2 , называемый в статистике коэффициентом регрессии, связан с коэффициентом корреляции r. Имеют место следующие соотношения:

Коэффициент корреляции характеризует меру линейной связи между величинами n, M и может принимать значения в пределах от -1 до 1. Чем ближе к единице | r |, тем теснее линейная связь между n, M. Если | r | = 1, то M линейно зависит от n, т.е. выполнено соотношение:

поэтому ошибка представления эмпирических данных равна 0.

Оценка точности аппроксимации

аппроксимация excel точность формула

Мера ошибки при аппроксимации функции в соответствии с данным выше определением равна:

С целью оценки относительной погрешности при аппроксимации функции рассматривают величину суммарной погрешности по отношению к общему разбросу данных. Общий разброс данных складывается из отклонений теоретических значений от среднего и эмпирических значений от теоретических. Вводятся обозначения:

В случае линейной функции получим:

В случае квадратичной функции:

По аналогии легко написать формулу для вычисления ошибки аппроксимации функцией любого вида.

Отметим, что для аппроксимирующей функции, линейной относительно параметров, верно:

Относительная ошибка аппроксимации есть отношение

Величина

называется коэффициентом детерминированности и характеризует меру точности аппроксимации табличных данных. Если 2 = 1, то ошибка аппроксимации равна 0 и теоретические значения совпадают с эмпирическими.



© dagexpo.ru, 2024
Стоматологический сайт