Основные положения теории химического строения органических соединений А. Теория строения А.М. Бутлерова

16.10.2019

Александр Михайлович Бутлеров родился 3 (15) сентября 1828 года в городе Чистополь Казанской губернии в семье помещика, офицера в отставке. Первое образование получил в частном пансионе, затем учился в гимназии и Казанском императорском университете. С 1849-го преподавал, в 1857-м стал ординарным профессором химии в том же университете. Дважды был его ректором. В 1851-м защитил магистерскую диссертацию «Об окислении органических соединений», а в 1854-м в Московском университете - докторскую диссертацию «Об эфирных маслах». С 1868 года был ординарным профессором химии Петербургского университета, с 1874-го - ординарным академиком Петербургской академии наук. Кроме химии Бутлеров уделял внимание практическим вопросам сельского хозяйства, садоводству, пчеловодству, под его руководством началось разведение чая на Кавказе. Умер в деревне Бутлеровка Казанской губернии 5 (17) августа 1886 года.

До Бутлерова предпринималось немалое количество попыток создать учение о химическом строении органических соединений. К этому вопросу не раз обращались самые именитые химики того времени, работы которых частично были использованы русским ученым для своей теории строения. Например, немецкий химик Август Кекуле пришел к выводу, что углерод может образовывать четыре связи с другими атомами. Более того, он считал, что для одного и того же соединения может существовать несколько формул, однако при этом всегда добавлял, что в зависимости от химического превращения эта формула может быть разной. Кекуле полагал, что формулы не отражают того, в какой последовательности соединены атомы в молекуле. Другой видный немецкий ученый, Адольф Кольбе, вообще считал принципиально невозможным выяснение химического строения молекул.

Свои основные идеи о строении органических соединений Бутлеров впервые высказал в 1861 году в докладе «О химическом строении вещества», который представил на суд участников Съезда немецких естествоиспытателей и врачей в Шпейере. В свою теорию он включил идеи Кекуле о валентности (количестве связей для конкретного атома) и шотландского химика Арчибальда Купера о том, что атомы углерода могут образовывать цепочки. Принципиальным отличием теории Бутлерова от других было положение о химическом (а не механическом) строении молекул - способе, с помощью которого атомы связывались друг с другом, образовывая молекулу. При этом каждый атом устанавливал связь в соответствии с принадлежащей конкретно ему «химической силой». В своей теории ученый проводил четкое различие между свободным атомом и атомом, вступившим в соединение с другим (он переходит в новую форму, а в результате взаимного влияния соединенные атомы, в зависимости от структурного окружения, имеют различные химические функции). Русский химик был убежден, что формулы не просто схематично изображают молекулы, но и отражают их реальное строение. Более того, каждая молекула имеет определенную структуру, которая меняется только в ходе химических превращений. Из положений теории следовало (впоследствии было подтверждено экспериментально), что химические свойства органического соединения определяются его строением. Это утверждение особенно важно, так как позволило объяснять и предсказывать химические превращения веществ. Существует и обратная зависимость: по структурной формуле можно судить о химических и физических свойствах вещества. Кроме этого, ученый обратил внимание на то, что реакционная способность соединений объясняется энергией, с которой связываются атомы.

С помощью созданной теории Бутлеров смог объяснить изомерию. Изомерами называют соединения, количество и «качество» атомов в которых одинаково, но при этом они имеют различные химические свойства, а значит, и разное строение. Теория позволила доступно объяснить известные случаи изомерии. Бутлеров верил, что можно определить и пространственное расположение атомов в молекуле. Его предсказания были позже подтверждены, что дало толчок развитию нового раздела органической химии - стереохимии. Следует отметить, что ученый первым открыл и объяснил явление динамической изомерии. Ее смысл заключается в том, что два или несколько изомеров в определенных условиях могут легко переходить друг в друга. Если говорить в общем, то именно изомерия стала серьезным испытанием для теории химического строения и была ею блестяще объяснена.

Сформулированные Бутлеровым неопровержимые положения очень скоро принесли теории всеобщее признание. Верность выдвинутых идей была подтверждена экспериментами ученого и его последователей. В их процессе доказали гипотезу об изомерии: Бутлеров синтезировал один из четырех предсказанных теорией бутиловых спиртов, расшифровал его строение. В соответствии с правилами изомерии, которые напрямую вытекали из теории, также была высказана возможность существования четырех валериановых кислот. Позже они были получены.

Это лишь единичные факты в цепочке открытий: химическая теория строения органических соединений обладала потрясающей предсказательной способностью.

За относительно короткий период было открыто, синтезировано и изучено большое количество новых органических веществ и их изомеров. В итоге теория Бутлерова дала толчок бурному развитию химической науки, в том числе синтетической органической химии. Так, многочисленные синтезы Бутлерова являются главными продуктами целых отраслей промышленности.

Теория химического строения продолжила развиваться, что принесло органической химии много революционных по тем временам идей. К примеру, Кекуле выдвинул предположение о циклическом строении бензола и перемещении его двойных связей в молекуле, об особых свойствах соединений с сопряженными связями и многом другом. Более того, упомянутая теория сделала органическую химию более наглядной - появилась возможность рисовать формулы молекул.

А это, в свою очередь, положило начало классификации органических соединений. Именно использование структурных формул помогало определить пути синтеза новых веществ, установить строение сложных соединений, то есть обусловило активное развитие химической науки и ее отраслей. Например, Бутлеров стал проводить серьезные исследования процесса полимеризации. В России это начинание было продолжено его учениками, что в итоге позволило открыть промышленный способ получения синтетического каучука.

Теория А.М. Бутлерова

1. Атомы в молекулах соединены между собой в определенной последовательности химическими связями в соответствии с их валентностью. Порядок связи атомов называется их химическим строением. Углерод во всех органических соединениях четырехвалентен.

2. Свойства веществ определяются не только качественным и количественным составом молекул, но и их строением.

3. Атомы или группы атомов взаимно влияют друг на друга, от чего зависит реакционная способность молекулы.

4. Строение молекул может быть установлено на основании изучения их химических свойств.

Органические соединения обладают рядом характерных особенностей, которые отличают их от неорганических. Почти все они (за редким исключением) горючи; большинство органических соединений не диссоциирует на ионы, что обусловлено природой ковалентной связи в органических веществах. Ионный тип связи реализуется только в солях органических кислот, например, CH3COONa.

Гомологический ряд – это бесконечный ряд органических соединений, имеющих сходное строение и, следовательно, сходные химические свойства и отличающихся друг от друга на любое число СН2– групп (гомологическая разность).

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление – изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов.

Изомерия – это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Различают 2 вида изомерии: структурную изомерию и пространственную изомерию.

Структурная изомерия

Структурные изомеры – соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Пространственная изомерия

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.
Пространственными изомерами являются оптические и цис-транс изомеры (геометрические).

Цис-транс-изомерия

заключается в возможности расположения заместителей по одну или по разные стороны плоскости двойной связи или неароматического цикла.В цис-изомерах заместители находятся по одну сторону от плоскости кольца или двойной связи, в транс-изомерах – по разные.

В молекуле бутена-2 СН3–СН=СН–СН3 группы СН3 могут находиться либо по одну сторону от двойной связи — в цис-изомере, либо по разные стороны — в транс-изомере.

Оптическая изомерия

Появляется тогда, когда углерод имеет четыре разных заместителя.
Если поменять местами любые два из них, получается другой пространственный изомер того же состава. Физико-химические свойства таких изомеров существенно различаются. Соединения такого типа отличаются способностью вращать плоскость пропускаемого через раствор таких соединений поляризованного света на определенную величину. При этом один изомер вращает плоскость поляризованного света в одном направлении, а его изомер – в противоположном. Вследствие таких оптических эффектов этот вид изомерии называют оптической изомерией.


Подобно тому как в неорганической химии основополагающей теоретической базой являются Периодический закон и Периодическая система химических элементов Д. И. Менделеева, так в органической химии ведущей научной основой служит теория строения органических соединений Бутлерова-Кекуле-Купера.

Как и любая другая научная теория, теория строения органических соединений явилась результатом обобщения богатейшего фактологического материала, который накопила органическая химия, оформившаяся как наука в начале XIX в. Открывались все новые и новые соединения углерода, количество которых лавинообразно возрастало (табл. 1).

Таблица 1
Число органических соединений, известных в разные годы

Объяснить это многообразие органических соединений ученые начала XIX в. не могли. Еще больше вопросов вызывало явление изомерии.

Например, этиловый спирт и диметиловый эфир - изомеры: эти вещества имеют одинаковый состав С 2 Н 6 О, но разное строение, т. е. различный порядок соединения атомов в молекулах, а потому и разные свойства.

Уже известный вам Ф. Вёлер в одном из писем к Й. Я. Берцелиусу так описывал органическую химию: «Органическая химия может сейчас кого угодно свести с ума. Она кажется мне дремучим лесом, полным удивительных вещей, безграничной чащей, из которой нельзя выбраться, куда не осмеливаешься проникнуть...»

Большое влияние на развитие химии оказали работы английского ученого Э. Франкланда, который, опираясь на идеи атомистики, ввел понятие валентность (1853).

В молекуле водорода Н 2 образуется одна ковалентная химическая связь Н-Н, т. е. водород одновалентен. Валентность химического элемента можно выразить числом атомов водорода, которые присоединяет к себе или замещает один атом химического элемента. Например, сера в сероводороде и кислород в воде двухвалентны: H 2 S, или Н-S-Н, Н 2 O, или Н-О-Н, а азот в аммиаке трехвалентен:

В органической химии понятие «валентность» является аналогом понятия «степень окисления», с которым вы привыкли работать в курсе неорганической химии в основной школе. Однако это не одно и то же. Например, в молекуле азота N 2 степень окисления азота равна нулю, а валентность - трем:

В пероксиде водорода Н 2 O 2 степень окисления кислорода равна -1, а валентность - двум:

В ионе аммония NH + 4 степень окисления азота равна -3, а валентность - четырем:

Обычно по отношению к ионным соединениям (хлорид натрия NaCl и многие другие неорганические вещества с ионной связью) не используют термин «валентность» атомов, а рассматривают их степень окисления. Поэтому в неорганической химии, где большинство веществ имеют немолекулярное строение, предпочтительнее применять понятие «степень окисления», а в органической химии, где большинство соединений имеют молекулярное строение, как правило, используют понятие «валентность».

Теория химического строения - результат обобщения идей выдающихся ученых-органиков из трех европейских стран: немца Ф. Кекуле, англичанина А. Купера и русского А. Бутлерова.

В 1857 г. Ф. Кекуле отнес углерод к четырехвалентным элементам, а в 1858 г. он одновременно с А. Купером отметил, что атомы углерода способны соединяться друг с другом в различные цепи: линейные, разветвленные и замкнутые (циклические).

Работы Ф. Кекуле и А. Купера послужили основой для разработки научной теории, объясняющей явление изомерии, взаимосвязь состава, строения и свойств молекул органических соединений. Такую теорию создал русский ученый А. М. Бутлеров. Именно его пытливый ум «осмелился проникнуть» в «дремучий лес» органической химии и начать преобразование этой «безграничной чащи» в залитый солнечным светом регулярный парк с системой дорожек и аллей. Основные идеи этой теории впервые были высказаны А. М. Бутлеровым в 1861 г. на съезде немецких естествоиспытателей и врачей в г. Шпейере.

Кратко сформулировать основные положения и следствия теории строения органических соединений Бутлерова-Кекуле-Купера можно следующим образом.

1. Атомы в молекулах веществ соединены в определенной последовательности согласно их валентности. Углерод в органических соединениях всегда четырехвалентен, а его атомы способны соединяться друг с другом, образуя различные цепи (линейные, разветвленные и циклические).

Органические соединения можно расположить в ряды сходных по составу, строению и свойствам веществ - гомологические ряды.

    Бутлеров Александр Михайлович (1828-1886) , Русский химик, профессор Казанского университета (1857-1868), с 1869 по 1885 г. - профессор Петербургского университета. Академик Петербургской академии наук (с 1874 г.). Создатель теории химического строения органических соединений (1861). Предсказал и изучил изомерию многих органических соединений. Синтезировал многие вещества.

Например, метан СН 4 - родоначальник гомологического ряда предельных углеводородов (алканов). Его ближайший гомолог - этан С 2 Н 6 , или СН 3 -СН 3 . Следующие два члена гомологического ряда метана - пропан С 3 Н 8 , или СН 3 -СН 2 -СН 3 , и бутан С 4 Н 10 , или СН 3 -СН 2 -СН 2 -СН 3 , и т. д.

Нетрудно заметить, что для гомологических рядов можно вывести общую формулу ряда. Так, для алканов эта общая формула С n Н 2n + 2 .

2. Свойства веществ зависят не только от их качественного и количественного состава, но и от строения их молекул.

Это положение теории строения органических соединений объясняет явление изомерии. Очевидно, что для бутана С 4 Н 10 , помимо молекулы линейного строения СН 3 -СН 2 -СН 2 -СН 3 , возможно также и разветвленное строение:

Это уже совершенно новое вещество со своими индивидуальными свойствами, отличными от свойств бутана линейного строения.

Бутан, в молекуле которого атомы расположены в виде линейной цепочки, называют нормальным бутаном (н-бутаном), а бутан, цепь атомов углерода которого разветвлена, называют изобутаном.

Существует два основных типа изомерии - структурная и пространственная.

В соответствии с принятой классификацией различают три вида структурной изомерии.

Изомерия углеродного скелета. Соединения отличаются порядком расположения углерод-углеродных связей, например рассмотренные н-бутан и изобутан. Именно этот вид изомерии характерен для алканов.

Изомерия положения кратной связи (С=С, С=С) или функциональной группы (т. е. группы атомов, определяющих принадлежность соединения к тому или иному классу органических соединений), например:

Межклассовая изомерия . Изомеры этого вида изомерии относятся к разным классам органических соединений, например рассмотренные выше этиловый спирт (класс предельных одноатомных спиртов) и диметиловый эфир (класс простых эфиров).

Различают два вида пространственной изомерии: геометрическую и оптическую.

Геометрическая изомерия характерна, прежде всего, для соединений с двойной углерод-углеродной связью, так как по месту такой связи молекула имеет плоскостное строение (рис. 6).

Рис. 6.
Модель молекулы этилена

Например, для бутена-2, если одинаковые группы атомов у атомов углерода при двойной связи находятся по одну сторону от плоскости С=С-связи, то молекула является цисизомером, если по разные стороны - трансизомером.

Оптической изомерией обладают, например, вещества, молекулы которых имеют асимметрический, или хиральный, атом углерода, связанный с четырьмя различными заместителями. Оптические изомеры являются зеркальным изображением друг друга, подобно двум ладоням, и не совместимы. (Теперь вам, очевидно, стало понятным второе название этого вида изомерии: греч. хирос - рука - образец несимметричной фигуры.) Например, в виде двух оптических изомеров существует 2-оксипропановая (молочная) кислота, содержащая один асимметрический атом углерода.

У хиральных молекул возникают изомерные пары, в которых молекулы изомеров относятся по своей пространственной организации одна к другой так же, как соотносятся между собой предмет и его зеркальное отображение. Пара таких изомеров всегда обладает одинаковыми химическими и физическими свойствами, за исключением оптической активности: если один изомер вращает плоскость поляризованного света по часовой стрелке, то другой - обязательно против. Первый изомер называют правовращающим, а второй - левовращающим.

Значение оптической изомерии в организации жизни на нашей планете очень велико, так как оптические изомеры могут существенно отличаться как по своей биологической активности, так и по совместимости с другими природными соединениями.

3. Атомы в молекулах веществ влияют друг на друга. Взаимное влияние атомов в молекулах органических соединений вы рассмотрите при дальнейшем изучении курса.

Современная теория строения органических соединений основывается не только на химическом, но и на электронном и на пространственном строении веществ, которое подробно рассматривается на профильном уровне изучения химии.

В органической химии широко используют несколько видов химических формул.

Молекулярная формула отражает качественный состав соединения, т. е. показывает число атомов каждого из химических элементов, образующих молекулу вещества. Например, молекулярная формула пропана: С 3 Н 8 .

Структурная формула отражает порядок соединения атомов в молекуле согласно валентности. Структурная формула пропана такова:

Часто нет необходимости детально изображать химические связи между атомами углерода и водорода, поэтому в большинстве случаев используют сокращенные структурные формулы. Для пропана такую формулу записывают так: СН 3 -СН 2 -СН 3 .

Строение молекул органических соединений отражают с помощью различных моделей. Наиболее известны объемные (масштабные) и шаростержневые модели (рис. 7).

Рис. 7.
Модели молекулы этана:
1 - шаростержневая; 2 - масштабная

Новые слова и понятия

  1. Изомерия, изомеры.
  2. Валентность.
  3. Химическое строение.
  4. Теория строения органических соединений.
  5. Гомологический ряд и гомологическая разность.
  6. Формулы молекулярные и структурные.
  7. Модели молекул: объемные (масштабные) и шаростержневые.

Вопросы и задания

  1. Что такое валентность? Чем она отличается от степени окисления? Приведите примеры веществ, в которых значения степени окисления и валентности атомов численно одинаковы и различны,
  2. Определите валентность и степень окисления атомов в веществах, формулы которых Сl 2 , СО 2 , С 2 Н 6 , С 2 Н 4 .
  3. Что такое изомерия; изомеры?
  4. Что такое гомология; гомологи?
  5. Как, используя знания об изомерии и гомологии, объяснить многообразие соединений углерода?
  6. Что понимают под химическим строением молекул органических соединений? Сформулируйте положение теории строения, которое объясняет различие в свойствах изомеров, Сформулируйте положения теории строения, которые объясняют многообразие органических соединений.
  7. Какой вклад внес каждый из ученых - основоположников теории химического строения - в эту теорию? Почему ведущую роль в становление этой теории сыграл вклад русского химика?
  8. Возможно существование трех изомеров состава С 5 Н 12 , Запишите их полные и сокращенные структурные формулы,
  9. По представленной в конце параграфа модели молекулы вещества (см, рис. 7) составьте его молекулярную и сокращенную структурную формулы.
  10. Рассчитайте массовую долю углерода в молекулах первых четырех членов гомологического ряда алканов.

Крупнейшим событием в развитии органической химии было создание в 1961 г. великим русским ученым А.М. Бутлеровым теории химического строения органических соединений.

До А.М. Бутлерова считалось невозможным познать строение молекулы, т. е. порядок химической связи между атомами. Многие ученые даже отрицали реальность атомов и молекул.

А.М. Бутлеров опроверг это мнение. Он исходил из правильных материалистических и философских представлений о реальности существования атомов и молекул, о возможности познания химической связи атомов в молекуле. Он показал, что строение молекулы можно установить опытным путем, изучая химические превращения вещества. И наоборот, зная строение молекулы, можно вывести химические свойства соединения.

Теория химического строения объясняет многообразие органических соединений. Оно обусловлено способностью четырехвалентного углерода образовывать углеродные цепи и кольца, соединяться с атомами других элементов и наличием изомерии химического строения органических соединений. Эта теория заложила научные основы органической химии и объяснила ее важнейшие закономерности. Основные принципы своей теории А.М. Бутлеров изложил в докладе «О теории химического строения».

Основные положения теории строения сводятся к следующему:

1) в молекулах атомы соединены друг с другом в определенной последовательности в соответствии с их валентностью. Порядок связи атомов называется химическим строением;

2) свойства вещества зависят не только от того, какие атомы и в каком количестве входят в состав его молекулы, но и от того, в каком порядке они соединены между собой, т. е. от химического строения молекулы;

3) атомы или группы атомов, образовавшие молекулу, взаимно влияют друг на друга.

В теории химического строения большое внимание уделяется взаимному влиянию атомов и групп атомов в молекуле.

Химические формулы, в которых изображен порядок соединения атомов в молекулах, называются структурными формулами или формулами строения.

Значение теории химического строения А.М. Бутлерова:

1) является важнейшей частью теоретического фундамента органической химии;

2) по значимости ее можно сопоставить с Периодической системой элементов Д.И. Менделеева;

3) она дала возможность систематизировать огромный практический материал;

4) дала возможность заранее предсказать существование новых веществ, а также указать пути их получения.

Теория химического строения служит руководящей основой во всех исследованиях по органической химии.

5. Изомерия. Электронное строение атомов элементов малых периодов.Химическая связь

Свойства органических веществ зависят не только от их состава, но и от порядка соединения атомов в молекуле.

Изомеры – это вещества, которые имеют одинаковый состав и одинаковую молярную массу, но различное строение молекул, а потому обладающие разными свойствами.

Научное значение теории химического строения:

1) углубляет представления о веществе;

2) указывает путь к познанию внутреннего строения молекул;

3) дает возможность понять накопленные в химии факты; предсказать существование новых веществ и найти пути их синтеза.

Всем этим теория в огромной степени способствовала дальнейшему развитию органической химии и химической промышленности.

Немецкий ученый А. Кекуле высказывал мысль о соединении атомов углерода друг с другом в цепи.

Учение об электронном строении атомов.

Особенности учения об электронном строении атомов: 1) позволило понять природу химической связи атомов; 2) выяснить сущность взаимного влияния атомов.

Состояние электронов в атомах и строение электронных оболочек.

Электронные облака – это области наибольшей вероятности пребывания электрона, которые различаются по своей форме, размерам, направленности в пространстве.

В атоме водорода единственный электрон при своем движении образует отрицательно заряженное облако сферической (шаровидной) формы.

S-электроны – это электроны, образующие сферическое облако.

В атоме водорода имеется один s-электрон.

В атоме гелия – два s-электрона.

Особенности атома гелия: 1) облака одинаковой сферической формы; 2) наибольшая плотность одинаково удалена от ядра; 3) электронные облака совмещаются; 4) образуют общее двухэлектронное облако.

Особенности атома лития: 1) имеет два электронных слоя; 2) имеет облако сферической формы, но по размерам значительно превосходит внутреннее двухэлектронное облако; 3) электрон второго слоя слабее притягивается к ядру, чем первые два; 4) легко захватывается другими атомами в окислительно-восстановительных реакциях; 5) имеет s-электрон.

Особенности атома бериллия: 1) четвертый электрон – s-электрон; 2) сферическое облако совмещается с облаком третьего электрона; 3) имеются два спаренных s-электрона во внутреннем слое и два спаренных s-электрона в наружном.

Чем больше перекрываются электронные облака при соединении атомов, тем больше выделяется энергии и тем прочнее химическая связь.

Химическая структура молекулы представляет собой наиболее характерную и уникальную ее сторону, поскольку она определяет ее общие свойства (механические, физические, химические и биохимические). Любое изменение в химической структуре молекулы влечет за собой изменение ее свойств. В случае незначительных структурных изменений, внесенных в одну молекулу, следуют небольшие изменения ее свойств (обычно затрагивает физические свойства), если же молекула испытала глубокие структурные изменения, то и ее свойства (особенно химические) будут глубоко изменены.

Например, Альфа-аминопропионовая кислота (Альфа-аланин) имеет следующую структуру:

Альфа-аланин

Что мы видим:

  1. Наличие определенных атомов (С, Н, О, N),
  2. определенное количество атомов, принадлежащих каждому классу, которые связаны в определенном порядке;

Все эти конструктивные особенности определяют целый ряд свойств Альфа-аланина, таких как: твердое агрегатное состояние, температура кипения 295° С, растворимость в воде, оптическая активность, химические свойства аминокислот и т. д.

При наличии связи аминогруппы с другим атомом углерода (т.е. произошло незначительное структурное изменение), что соответствует бета-аланину:

Бета-аланин

Общие химические свойства по-прежнему остаются характерными для аминокислот, но температура кипения составляет уже 200° C и отсутствует оптическая активность.

Если же, например, два атомы в этой молекуле соединены атомом N в следующем порядке (глубокое структурное изменение):

тогда образованное вещество — 1-нитропропан по своим физическим и химическим свойствам совершенно не похож на аминокислоты: 1-нитро-пропан — это желтая жидкость, с температурой кипения 131°С, нерастворим в воде.

Таким образом, взаимосвязь «структура-свойства» позволяет описывать общие свойства вещества с известной структурой и, наоборот, позволяет найти химическую структуру вещества, зная его общие свойства.

Общие принципы теории строения органических соединений

В сущности определения структуры органического соединения, лежат следующие принципы, которые вытекают из связи между их структурой и свойствами:

а) органические вещества, в аналитически чистом состоянии, имеют один и тот же состав, независимо от способа их получения;

б) органические вещества, в аналитически чистом состоянии, обладает постоянными физико-химическими свойствами;

в) органические вещества с постоянным составом и свойствами, имеет только одну уникальную структуру.

В 1861 г. великий русский ученый А. М. Бутлеров в своей статье «О химическом строении вещества» раскрыл основную идею теории химического строения, заключающуюся во влиянии способа связи атомов в органическом веществе на его свойства. Он обобщил все имеющиеся к тому времени знания и представления о строении химических соединений в теории строения органических соединений.

Основные положения теории А. М. Бутлерова

кратко могут быть изложены следующим образом:

  1. В молекуле органического соединения атомы связаны в определенной последовательности, что и определяет его строение.
  2. Атом углерода в составе органических соединений имеет валентность равную четырем.
  3. При одинаковом составе молекулы возможно несколько вариантов соединения атомов этой молекулы между собой. Такие соединения, имеющие один состав, но различное строение были названы изомерами, а подобное явление – изомерией.
  4. Зная строение органического соединения можно предсказать его свойства; зная свойства органического соединения можно предсказать его строение.
  5. Атомы, образующие молекулу подвержены взаимному влиянию, что определяет их реакционную способность. Непосредственно связанные атомы оказывают большее влияние друг на друга, влияние не связанных непосредственно атомов значительно слабее.

Ученик А.М. Бутлерова — В. В. Марковников продолжил изучение вопроса взаимного влияния атомов, что нашло свое отражение в 1869 году в его диссертационной работе «Материалы по вопросу о взаимном влиянии атомов в химических соединениях».

Заслуга А.М. Бутлерова и значение теории химического строения исключительно велико ля химического синтеза. Открылась возможность предсказать основные свойства органических соединений, предвидеть пути их синтеза. Благодаря теории химического строения химики впервые оценили молекулу как упорядоченную систему со строгим порядком связи между атомами. И в настоящее время основные положения теории Бутлерова, несмотря на изменения и уточнения, лежат в основе современных теоретических представлений органической химии.

Категории ,

© dagexpo.ru, 2024
Стоматологический сайт