Осуществления свертывания крови. Свертывание и свертываемость крови: понятие, показатели, анализы и нормы. Что способствует свертыванию крови

25.06.2020

Одним из важнейших процессов, протекающих в нашем организме, является свертывание крови. Схема его будет описана ниже (также для наглядности предоставлены и изображения). И поскольку это сложный процесс, стоит рассмотреть его в подробностях.

Как всё происходит?

Итак, обозначенный процесс отвечает за остановку кровотечения, произошедшего из-за повреждения той или иной составляющей сосудистой системы организма.

Если говорить простым языком, то можно выделить три фазы. Первая - активация. После повреждения сосуда начинают происходить последовательные реакции, которые в итоге приводят к образованию так называемой протромбиназы. Это - сложный комплекс, состоящий из V и X Он образуется на фосфолипидной поверхности мембран тромбоцитов.

Вторая фаза - коагуляция. На этом этапе из фибриногена образуется фибрин - высокомолекулярный белок, который является основой тромбов, возникновение которых и подразумевает свертывание крови. Схема, предоставленная ниже, данную фазу наглядно демонстрирует.

И, наконец, третий этап. Он подразумевает образование фибринового сгустка, отличающегося плотной структурой. К слову, именно путём его промывания и высушивания удаётся получить «материал», который потом используется для приготовления стерильных плёнок и губок для остановки кровотечения, вызванного разрывом мелких сосудов при хирургических операциях.

О реакциях

Выше было кратко описано Схема, кстати, была разработана в далёком 1905 году учёным-коагулологом по имени Пауль Оскар Моравиц. И она не теряет своей актуальности до сих пор.

Но с 1905 года в области понимания свёртывания крови как сложного процесса изменилось многое. Благодаря прогрессу, конечно же. Учёные смогли открыть десятки новых реакций и белков, которые участвуют в данном процессе. И теперь более распространена каскадная схема свертывания крови. Благодаря ей восприятие и понимание такого сложного процесса становится немного более понятным.

Как можно видеть на предоставленном ниже изображении, происходящее буквально «разобрано на кирпичики». Принимается во внимание внутренняя и внешняя система - кровяная и тканевая. Для каждой характерна определённая деформация, наступающая вследствие повреждения. В кровяной системе вред наносится сосудистым стенкам, коллагену, протеазам (расщепляющие ферменты) и катехоламинам (молекулы-медиаторы). В тканевой же наблюдается повреждение клеток, вследствие которого из них выходит тромбопластин. Который является важнейшим стимулятором процесса свёртывания (иначе называемом коагуляцией). Он выходит непосредственно в кровь. Таков его «путь», но имеет он защитный характер. Ведь именно тромбопластин запускает процесс свёртывания. После его выхода в кровь начинается осуществление вышеперечисленных трёх фаз.

Время

Итак, что примерно представляет собой свертывание крови, схема понять помогла. Теперь хотелось бы немного поговорить о времени.

Весь процесс занимает как максимум 7 минут. Первая фаза длится от пяти до семи. В течение этого времени образуется протромбин. Данное вещество является сложной разновидностью белковой структуры, отвечающей за протекание процесса свёртывания и способность крови к сгущению. Которая используется нашим организмом в целях образования тромба. Он закупоривает повреждённое место, благодаря чему кровотечение останавливается. Всё это занимает 5-7 минут. Вторая и третья стадии происходят намного быстрее. За 2-5 секунд. Потому что эти фазы свертывания крови (схема предоставлена выше) затрагивают процессы, которые происходят повсеместно. А значит и у места повреждения непосредственно.

Протромбин, в свою очередь, образуется в печени. И на его синтез необходимо время. Насколько быстро выработается достаточное количество протромбина, зависит от количества витамина К, содержащегося в организме. Если его не хватает, кровотечение будет остановить сложно. И это является серьёзной проблемой. Поскольку нехватка витамина К указывает на нарушение синтеза протромбина. А это - недуг, который необходимо лечить.

Стабилизация синтеза

Что ж, общая схема свертывания крови понятна - теперь следует уделить немного внимания теме, касающейся того, что необходимо делать для восстановления необходимого количества витамина К в организме.

Для начала - правильно питаться. Самое большое количество витамина К содержится в зелёном чае - 959 мкг в 100 г! В три раза больше, кстати, чем в чёрном. Потому стоит его активно пить. Не стоит пренебрегать и овощами - шпинатом, белокочанной капустой, томатами, зелёным горошком, репчатым луком.

В мясе витамин К тоже содержится, но не во всём - только в телятине, говяжьей печени, баранине. Но меньше всего его находится в составе чеснока, изюма, молока, яблок и винограда.

Впрочем, если ситуация серьёзная, то одним разнообразием меню помочь будет сложно. Обычно врачи настоятельно рекомендуют комбинировать свой рацион с препаратами, ими прописанными. С лечением не стоит затягивать. Необходимо как можно скорее к нему приступить, чтобы нормализовать механизм свертывания крови. Схема лечения прописывается непосредственно врачом, и он также обязан предупредить, что может случиться, если рекомендациями пренебречь. А последствиями может стать дисфункция печени, тромбогеморрагический синдром, опухолевые заболевания и поражение стволовых клеток костного мозга.

Схема Шмидта

В конец XIX века жил известный физиолог и доктор медицинских наук. Звали его Александр Александрович Шмидт. Он прожил 63 года, и бóльшую часть времени посвятил исследованию проблем гематологии. Но особенно тщательно он изучал тему свёртывания крови. У него удалось установить ферментативный характер данного процесса, вследствие чего учёный предложил теоретическое ему объяснение. Которое наглядно изображает предоставленная ниже схема свертывания крови.

В первую очередь происходит сокращение повреждённого сосуда. Затем на месте дефекта образуется рыхлая, первичная тромбоцитарная пробка. Затем она укрепляется. Вследствие чего образуется красный тромб (иначе именуемый кровяным сгустком). После чего он частично или полностью растворяется.

В ходе данного процесса проявляются определённые факторы свертывания крови. Схема, в своём развёрнутом варианте, также их отображает. Обозначаются они арабскими цифрами. И всего их насчитывается 13. И о каждом необходимо рассказать.

Факторы

Полноценная схема свертывания крови невозможна без их перечисления. Что ж, начать стоит с первого.

Фактор I - это бесцветный белок фибриноген. Синтезируемый в печени, растворённый в плазе. Фактор II - протромбин, о котором уже говорилось выше. Его уникальная способность заключается в связывании ионов кальция. И именно впоследствии расщепления этого вещества формируется фермент свёртывания.

Фактор III - это липопротеин, тканевый тромбопластин. Его принято называть транспортом фосфолипидов, холестерина, а ещё триацилглицеридов.

Следующим фактором, IV, являются ионы Са2+. Те самые, которые связываются под воздействием бесцветного белка. Они задействованы во многих сложных процессах, помимо свёртывания, в секреции нейромедиаторов, например.

Фактор V - это глобулин. Который тоже образуется в печени. Он необходим для связывания кортикостероидов (гормональных веществ) и их транспортировки. Фактор VI определённое время существовал, но потом его было решено изъять из классификации. Поскольку учёные выяснили - его включает в себя фактор V.

Но классификацию менять не стали. Потому следом за V идёт фактор VII. Включающий в себя проконвертин, с участием которого образуется тканевая протромбиназа (первая фаза).

Фактор VIII - это белок, выраженной в одной цепочке. Известен, как антигемофильный глобулин А. Именно из-за его нехватки развивается такое редкое наследственное заболевание, как гемофилия. Фактор IX является «родственным» ранее упомянутому. Так как это антигемофильный глобулин В. Фактор X - непосредственно глобулин, синтезируемый в печени.

И, наконец, последние три пункта. Это фактор Розенталя, Хагемана и стабилизация фибрина. Они, в совокупности, влияют на образование межмолекулярных связей и нормальное функционирование такого процесса, как свертывание крови.

Схема Шмидта включает все эти факторы. И достаточно бегло с ними ознакомиться, чтобы понять, насколько описываемый процесс сложен и многозначен.

Противосвёртывающая система

Данное понятие также необходимо отметить внимание. Выше была описана система свертывания крови - схема также наглядно демонстрирует протекание этого процесса. Но так называемое «противосвёртывание» тоже имеет место быть.

Для начала хотелось бы отметить, что в ходе эволюции ученые решали две совершенно противоположные задачи. Они пытались выяснить - как организму удаётся предотвратить вытекание крови из повреждённых сосудов, и при этом сохранить её в жидком состоянии в целых? Что ж, решением второй задачи стало обнаружение противосвертывающей системы.

Она представляет собой определённый набор плазменных белков, которые способны снижать скорость химических реакций. То есть ингибировать.

И в данном процессе участвует антитромбин III. Его главная функция заключается в контролировании работы некоторых факторов, которые включает схема процесса свертывания крови. Важно уточнить: он не регулирует образование тромба, а устраняет ненужные ферменты, попавшие в кровоток из места, где тот формируется. Для чего это необходимо? Для предотвращения распространения свёртывания на участки кровеносного русла, которые оказались повреждёнными.

Препятствующий элемент

Рассказывая о том, что представляет собой система свертывания крови (схема которой представлена выше), нельзя не отметить вниманием такое вещество, как гепарин. Он представляет собой серосодержащий кислый гликозаминогликан (один из видов полисахаридов).

Это - прямой антикоагулянт. Вещество, способствующее угнетению активности свёртывающей системы. Именно гепарин препятствует процессу образования тромбов. Как это происходит? Гепарин просто снижает активность тромбина в крови. Однако это - естественное вещество. И оно несёт пользу. Если ввести данный антикоагулянт в организм, то можно поспособствовать активированию антитромбина III и липопротеинлипазы (ферменты, расщепляющие триглицериды - главные источники энергии для клеток).

Так вот, гепарин часто используется ля лечения тромботических состояний. Лишь одна его молекула может активировать большое количество антитромбина III. Соответственно, гепарин можно считать катализатором - поскольку действие в данном случае действительно схоже с эффектом, вызываемом ими.

Есть и другие вещества с таким же действием, содержащиеся в Взять, к примеру, α2- макроглобулин. Он способствует расщеплению тромба, оказывает влияние на процесс фибринолиза, выполняет функцию транспорта для 2-валентных ионов и некоторых белков. А ещё ингибирует вещества, участвующие в процессе свёртывания.

Наблюдаемые изменения

Есть ещё один нюанс, который не демонстрирует традиционная схема свертывания крови. Физиология нашего организма такова, что многие процессы подразумевают не только химические изменения. Но ещё и физические. Если бы мы могли наблюдать за свёртыванием невооруженным взглядом, то увидели бы, что форма тромбоцитов в его процессе меняется. Они превращаются в округлые клетки с характерными шиповидными отростками, которые необходимы для интенсивного осуществления агрегации - объединения элементов в единое целое.

Но это ещё не всё. Из тромбоцитов в процессе свёртывания выделяются различные вещества - катехоламины, серотонин и т.д. По причине этого просвет сосудов, которые оказались повреждёнными, сужается. За счёт чего происходит функциональная ишемия. Кровоснабжение в повреждённом месте снижается. И, соответственно, излияние постепенно тоже сводится к минимуму. Это даёт тромбоцитам возможность перекрыть повреждённые места. Они, за счёт своих шиповидных отростков, будто бы «крепятся» к краям коллагеновых волокон, которые находятся у краёв раны. На этом заканчивается первая, самая долгая фаза активации. Завершается она образованием тромбина. После чего следует ещё несколько секунд фазы коагуляции и ретракции. А последний этап - восстановление нормального кровообращения. И оно имеет большое значение. Поскольку полноценное заживление раны невозможно без хорошего кровоснабжения.

Полезно знать

Что ж, примерно так на словах и выглядит упрощенная схема свертывания крови. Впрочем, есть ещё несколько нюансов, которые хотелось бы отметить вниманием.

Гемофилия. О ней уже упоминалось выше. Это очень опасное заболевание. Любое кровоизлияние человеком, им страдающим, переживается тяжело. Заболевание наследственное, развивается из-за дефектов белков, принимающих участие в процессе свёртывание. Обнаружить его можно достаточно просто - при малейшем порезе человек потеряет много крови. И потратит немало времени на её остановку. А при особо тяжелых формах кровоизлияние может начаться без причин. Люди, страдающие гемофилией, могут рано подвергнуться инвалидизации. Поскольку частые кровоизлияния в мышечные ткани (обычные гематомы) и в суставы - это не редкость. Лечится ли это? С трудом. Человек должен в прямом смысле слова относиться к своему телу, как к хрупкому сосуду, и всегда быть аккуратным. Если случается кровотечение - нужно срочно ввести донорскую свежую кровь, в которой содержится фактор XVIII.

Обычно данным заболеванием страдают мужчины. А женщины выступают в роли носительниц гена гемофилии. Интересно, что британская королева Виктория была таковой. Одному из её сыновей заболевание передалось. Насчёт остальных двух неизвестно. С тех пор гемофилию, кстати, нередко называют королевской болезнью.

Но бывают и обратные случаи. Имеется в виду Если она наблюдается, то человеку тоже нужно быть не менее аккуратным. Повышенная свертываемость говорит о высоком риске образования внутрисосудистых тромбов. Которые закупоривают целые сосуды. Нередко последствием может стать тромбофлебит, сопровождающийся воспалением венозных стенок. Но этот дефект лечится проще. Часто, кстати, он является приобретённым.

Удивительно, сколько всего происходит в организме человека, когда тот элементарно порезался листком бумаги. Можно ещё долго рассказывать об особенностях крови, её свёртывании и процессах, которые его сопровождают. Но вся наиболее интересная информация, как и наглядно демонстрирующие её схемы, предоставлена выше. С остальным, при желании, можно ознакомиться в индивидуальном порядке.

Пока кровь течет по неповрежденным кровеносным сосудам, она остается жидкой. Но стоит поранить сосуд, как довольно быстро образуется сгусток. Кровяной сгусток (тромб), словно пробка, закупоривает ранку, кровотечение останавливается, и ранка постепенно заживает. Если бы кровь не свертывалась, то человек мог бы погибнуть от самой маленькой царапины.

Кровь человека, выпущенная из кровеносного сосуда, свертывается в течение 3-4 мин.

Свертывание крови является важной защитной реакцией организма, препятствующей кровопотере и, таким образом, сохраняющей постоянство объема циркулирующей крови.

В основе свертывания крови лежит изменение физико-химического состояния растворенного в плазме крови белка фибриногена . Фибриноген в процессе свертывания крови превращается в нерастворимый фибрин . Фибрин выпадает в виде тонких нитей. Нити фибрина образуют густую мелкоячеистую сеть, в которой задерживаются форменные элементы. Образуется сгусток, или тромб. Постепенно происходит уплотнение кровяного сгустка. Уплотняясь, он стягивает края раны и этим способствует ее заживлению. При уплотнении сгустка из него выдавливается прозрачная желтоватая жидкость - сыворотка . Сыворотка - это плазма крови, из которой удален белок фибриноген. В уплотнении сгустка важная роль принадлежит тромбоцитам, в которых содержится вещество, способствующее сжатию сгустка.

Свертывание крови - сложный процесс. В нем принимают участие соли кальция, находящиеся в плазме крови. Обязательным условием свертывания крови является разрушение кровяных пластинок (тромбоцитов).

Согласно современным представлениям превращение растворенного в плазме крови белка фибриногена в нерастворимый белок фибрин совершается под влиянием фермента тромбина . В крови имеется неактивная форма тромбина - протромбин , который образуется в печени. Протромбин превращается в активный тромбин под влиянием тромбопластина в присутствии солей кальция. Соли кальция есть в плазме крови, а тромбопластина в циркулирующей крови нет. Он образуется при разрушении тромбоцитов или при повреждении других клеток тела. Образование тромбопластина также сложный процесс. Кроме тромбоцитов, в образовании тромбопластина принимают участие еще некоторые белки плазмы крови. Отсутствие в крови некоторых белков резко сказывается на процессе свертывания крови. Если в плазме крови отсутствует один из глобулинов (крупномолекулярных белков), то наступает заболевание гемофилия, или кровоточивость. У людей, страдающих гемофилией, резко понижена свертываемость крови. Даже небольшое ранение может вызвать у них опасное кровотечение.

Чаще гемофилией болеют мужчины. Это заболевание передается по наследству.

Процесс свертывания крови регулируется нервной системой и гормонами желез внутренней секреции. Он может ускоряться и замедляться.

Если при кровотечениях важно, чтобы кровь свертывалась, то не менее важно, чтобы она, циркулируя в кровеносной системе, оставалась жидкой, не свертывалась.

В организме образуются вещества, препятствующие свертыванию крови. Такими свойствами обладает гепарин , находящийся в клетках легких и печени. В сыворотке крови обнаружен белок фибринолизин - фермент, растворяющий образовавшийся фибрин. В крови, таким образом, одновременно имеются две системы: свертывающая и противосвертывающая. При определенном равновесии этих систем кровь внутри сосудов не свертывается. При ранениях и некоторых заболеваниях равновесие нарушается, что приводит к свертыванию крови. Тормозят свертывание крови соли лимонной и щавелевой кислот, осаждая необходимые для свертывания соли кальция. В шейных железах медицинских пиявок образуется гирудин , обладающий мощным противосвертывающим действием. Противосвертывающие вещества широко применяют в медицине.

Конспект из книги «Основы клинической гирудотерапии» Н.И. Сулим

Под термином «гемостаз» понимают комплекс реакций, направленный на остановку кровотечения при травме сосудов. В действительности, значение систем гемостаза намного сложнее и далеко выходит за рамки борьбы с кровотечениями. Основными задачами системы гемостаза являются сохранение жидкого состояния циркулирующей и депонированной крови, регуляция транскапиллярного обмена, резистентности сосудистой стенки, влияние на интенсивность репаративных процессов.

Принято различать: сосудисто-тромбоцитарный гемостаз и процесс свертывания крови. В первом случае речь идет об остановке кровотечения из мелких кровеносных сосудов с низким кровяным давлением, диаметр которых не превышает 100 мкм, во втором - о борьбе с кровопотерей при повреждении артерий и вен. Такое деление носит условный характер, ибо как при повреждении мелких, так и крупных кровеносных сосудов всегда наряду с образованием тромбоцитарной пробки осуществляется свертывание крови.

Вместе с тем, подобное разделение чрезвычайно удобно для клиницистов, ибо при нарушениях сосудисто-тромбоцитарного гемостаза прокол кожи пальца или мочки уха сопровождается длительным кровотечением, тогда как время свертывания крови остается в норме. При патологии свертывающей системы крови время кровотечения значительно не изменяется, хотя образование фибринового сгустка может не наступать часами, что, в частности, наблюдается при гемофилиях А и В.

Сосудисто-тромбоцитарный гемостаз

Сосудисто-тромбоцитарный гемостаз сводится к образованию тромбоцитарной пробки, или тромбоцитарного тромба.

Три стадии сосудисто-тромбоцитарного гемостаза

  1. временный (первичный и вторичный) спазм сосудов;
  2. образование тромбоцитарной пробки за счет адгезии (прикрепления к поврежденной поверхности) и агрегации (склеивания между собой) кровяных пластинок;
  3. ретракция (сокращение и уплотнение) тромбоцитарной пробки.

Временный спазм сосудов

Буквально через доли секунды после травмы наблюдается первичный спазм к ровеносных сосудов, благодаря чему кровотечение в первый момент может не возникнуть или носит ограниченный характер. Первичный спазм сосудов обусловлен выбросом в кровь в ответ на болевое раздражение адреналина и норадреналина и длится не более 10-15 сек. В дальнейшем наступает вторичный спазм, обусловленный активацией тромбоцитов и отдачей в кровь сосудосуживающих агентов - серотонина, ТхА 2 , адреналина и др.

Первичная (обратимая) агрегация тромбоцитов

Повреждение сосудов сопровождается немедленной активацией тромбоцитов, что связано с появлением высоких концентраций АДФ (из разрушающихся эритроцитов и травмированных сосудов), а также обнажением субэндотелия, коллагеновых и фибриллярных структур. Начинается адгезия тромбоцитов к коллагену и другим адгезивным белкам субэндотелия.

При повреждении крупных артерий и вен, тромбоциты адгезируют непосредственно к обнаженным волокнам коллагена через коллагеновые рецепторы - GP-Ib-IIa.

При травме мелких артерий и артериол, прилипание тромбоцитов обусловлено наличием в плазме и кровяных пластинках, а также высвобождением из эндотелия особого белка - фактора фон Виллебранда (vWF), имеющего 3 активных центра, два из которых связываются с рецепторами тромбоцитов (GPIb), а один - с субэндотелием или коллагеновыми волокнами. Таким образом, тромбоцит с помощью vWF оказывается «подвешенным» к травмированной поверхности сосуда.

Из адгезирующих тромбоцитов, как и из поврежденного эндотелия, высвобождается АДФ, являющаяся важнейшим индуктором агрегации. Под влиянием АДФ тромбоциты прилипают к присоединившимся к эндотелию кровяным пластинкам, а также склеиваются между собой, образуя агрегаты, являющиеся основой тромбоцитарной пробки. Усилению агрегации способствуют фактор активации тромбоцитов (PAF), а также тромбин, всегда появляющийся в результате свертывания крови в зоне травмы.

Под воздействием слабых агонистов (АДФ, PAF, адреналин, серотонин, витронектин, фибронектин и др.) на мембране тромбоцитов начинается экспрессия рецепторов к фибриногену (GPIIb-IIIa). Благодаря им в присутствии ионов Са 2+ фибриноген связывает между собой 2 близлежащие кровяные пластинки.

На этом этапе агрегация носит обратимый характер, ибо вслед за агрегацией может наступить частичный или полный распад агрегатов - дезагрегация. Более того, так как связь между тромбоцитами непрочна, то часть агрегатов может отрываться и уноситься током крови. Такая агрегация носит наименование первичной, или обратимой. Разумеется, первичная агрегация не способна остановить кровотечение даже из очень мелких кровеносных сосудов (капилляров, венул, артериол).

Ретракция сгустка

Более сложен механизм вторичной агрегации, сопровождающийся тромбоцитарной секрецией. Для завершения гемостаза требуется присоединение ряда дополнительных механизмов активации с включением обратных связей (обратной афферентации в пределах тромбоцита). Слабые агонисты приводят к поступлению сигнала внутрь кровяных пластинок, в результате чего в них увеличивается содержание цитоплазматического Са 2+ и наступает активация фосфолипазы А2. Последняя приводит к освобождению из мембраны тромбоцита арахидоновой кислоты, которая в результате цикла последовательных реакций превращается в чрезвычайно активные соединения PgG 2 , PgH 2 и тромбоксан А 2 (ТхА 2), являющиеся одновременно сильным агонистом агрегации и вазоконстриктором.

Выделяясь из тромбоцитов, PgG 2 , PgH 2 и особенно ТхА 2 осуществляют так называемую первую положительную связь, заключающуюся в усилении экспрессии фибриногеновых рецепторов, а также усиливают сигнал, передаваемый внутрь тромбоцита. При этом ТхА 2 , вызывает выделение ионов Са 2+ из плотной тубулярной системы в цитоплазму, что способствует развитию финальных ферментных реакций систем гемостаза в самом тромбоците. К таким реакциям, прежде всего, относится активация актомиозиновой системы, а также фосфорилирование белков. Этот путь, начавшийся с активизации фосфолипазы С, завершается активацией протеинкиназы С с образованием инозилтрифосфата, способного, как и ТхА 2 , повышать уровень Са 2+ .

Комплекс перечисленных реакций ведет, в конечном счете, к сокращению актомиозина (тромбостенина) тромбоцитов, что сопровождается повышением внутриклеточного давления, приводящего к секреторным реакциям (реакция высвобождения) и сокращению тромбоцитарной пробки. При этом кровяные пластинки подтягиваются друг к другу, тромбоцитарная пробка не только сокращается, но и уплотняется, т.е. наступает ее ретракция.

Из тромбоцитов, подвергшихся адгезии и агрегации, усиленно секретируются гранулы и содержащиеся в них биологически активные продукты - АДФ, PAF, адреналин, норадреналин, фактор Р4, ТхА 2 , фибриноген, vWF, тромбоспондин, фибронектин, витронектин и многие другие. Все это значительно укрепляет тромбоцитарный тромб (рис. 1).

Рис. 1. Состав гранул тромбоцитов и их высвобождение под влиянием стимуляторов агрегации.

Следует обратить внимание на то, что из кровяных пластинок в процессе реакции высвобождения выделяется фактор роста, или иначе митогенный фактор, играющий важную роль в процессе репарации поврежденных стенок сосудов, а в условиях патологии способствующий развитию атеросклероза. Реканализации (восстановлению проходимости) сосуда способствуют лизосомальные энзимы, выделяемые из g-rpaнул (лизосом) (рис. 2).

Рис. 2. Продукты тромбоцитарной секреции в физиологических и патологических реакциях организма (по А.С. Шитиковой)

Одновременно с высвобождением тромбоцитарных факторов происходит образование тромбина, резко усиливающего агрегацию и приводящего к появлению сети фибрина в которой застревают отдельные эритроциты и лейкоциты.

Важно!!! В условиях нормы остановка кровотечения из мелких сосудов занимает от 2-х до 4-х минут.

Общая схема сосудисто-тромбоцитарного гемостаза

Рис. 3. Схема сосудисто-тромбоцитарного гемостаза. Условные обозначения: АДФ - аденозиндифосфат, ГП - гликопротеины, КА - катехоламины vWF - фактор Виллибранда

Роль простагландинов в сосудисто-тромбоцитарном гемостазе

Чрезвычайно важную роль в регуляции сосудисто-тромбоцитарного гемостаза играют производные арахидоновой кислоты - простагландин I 2 (PgI 2), или простациклин и ТхА 2 .

PgI 2 образуется эндотелиальными клетками под влиянием фермента простациклинсинтетазы. В физиологических условиях действие PgI 2 преобладает над ТхА 2 - мощным агрегирующим агентом тромбоцитов. Вот почему в циркуляции у здорового человека агрегация тромбоцитов носит ограниченный характер.

При повреждении эндотелия в месте травмы образование PgI 2 нарушается, в результате чего начинает преобладать действие ТхА 2 и создаются благоприятные условия для агрегации тромбоцитов.

Аналогичная картина наблюдается при заболеваниях, сопровождающихся повреждением сосудистой стенки (эндотелиозы). В этих случаях в местах повреждения сосудов образуются так называемые белые тромбы, состоящие преимущественно из тромбоцитов. Наличие локальных повреждений коронарных сосудов является одной из ведущих причин возникновения стенокардии, инфаркта миокарда в результате обратимой (стенокардия) и необратимой (инфаркт) агрегации тромбоцитов с последующим цементированием тромбоцитарной пробки нитями фибрина.

Рис. 4. Схема, отражающая участие простагландинов в регуляции функции тромбоцитов

Процесс свертывания крови

При повреждении крупных кровеносных сосудов (артерий, вен) также происходит образование тромбоцитарной пробки, но она не способна остановить кровотечение, ибо легко вымывается током крови. Основное значение в этом процессе принадлежит свертыванию крови, сопровождающемуся в конечном итоге образованием плотного фибринового сгустка.

В настоящее время установлено, что свертывание крови является ферментативным процессом. Следует, однако, заметить, что основоположником ферментативной теории свертывания крови является отечественный ученый, профессор Дерптского университета А. А. Шмидт, опубликовавший с 1861 по 1895 год ряд работ, посвященных механизмам формирования фибринового сгустка. Эта теория лишь в начале XX века была поддержана немецким ученым Р. Моравитцем и получила общее признание.

В свертывании крови принимает участие комплекс белков, находящихся в плазме (плазменные факторы гемокоагуляции), большинство из которых являются проферментами. В отличие от тромбоцитарных факторов, они обозначаются римскими цифрами (фактор I, II и т.д.).

Активация плазменных факторов происходит главным образом за счет протеолиза и сопровождается отщеплением пептидных ингибиторов. Для обозначения этого процесса к номеру фактора присоединяется буква «а» (фактор IIа, Va, VIIa и т.д.).

Плазменные факторы разделяются на две группы: витамин-К-зависимые, которые образуются преимущественно в печени при участии витамина К, и витамин-К-независимые, для синтеза которых витамин К не требуется. Такое разделение чрезвычайно удобно для клиники, ибо при угрозах внутрисосудистого тромбообразования врач может с помощью лекарственных препаратов нарушить синтез витамин-К-зависимых факторов и значительно снизить риск тромбоза (табл. 1).

Таблица 1. Плазменные факторы свертывания крови

Фактор

Название фактора

Свойства и функции

I Фибриноген Белок-гликопротеин. Образуется в печени. Под влиянием тромбина переходит в фибрин. Принимает участие в агрегации тромбоцитов. Необходим для репарации тканей.
II Протромбин Белок-гликопротеин. Неактивная форма фермента тромбина. Под влиянием протромбиназы переходит в тромбин (фактор IIa). Синтезируется в печени при участии витамина К.
III Тромбопластин Состоит из белка апопротеина III и комплекса фосфолипидов. Входит в состав мембран многих тканей. Является матрицей для развертывания реакций, направленных на образование протромбиназы по внешнему механизму.
IV Кальций Участвует в образовании комплексов, входящих в состав теназы и протромбиназы. Необходим для агрегации тромбоцитов, реакции высвобождения, ретракции.
V Проакцелерин,
Ас-глобулин
Образуется в печени. Витамин-К-независим. Активируется тромбином. Входит в состав протромбиназного комплекса.
VI Акцелерин Потенцирует превращение протромбина в тромбин.
VII Проконвертин Синтезируется в печени при участии витамина К. Принимает участие в формировании протромбиназы по внешнему механизму. Активируется при взаимодействии с тромбопластином и факторами XIIa, Xa, IXa, IIa.
VIIIC Антигемофильный глобулин А (АГГ) Сложный гликопротеид. Место синтеза точно не установлено. В плазме образует комплекс с vWF и специфическим антигеном. Активируется тромбином. Входит в состав геназного комплекса. При его отсутствии или резком снижении возникает заболевание гемофилия А.
IX Антигемофильный глобулин В,
фактор Кристмаса
Бета-глобулин, образуется в печени при участии витамина К. Активируется тромбином и фактором VIIa. Переводит фактор X в Xa. При его отсутствии или резком снижении возникает заболевание гемофилия В.
X Тромботропин,
фактор Стюарта-Прауэра
Гликопротеид, вырабатывается в печени при участии витамина К. Фактор Xa является основной частью протромбиназного комплекса. Активируется факторами VIIа и IXа. Переводит фактор II в IIa.
XI Предшественник плазменного тромбопластина,
фактор Розенталя
Гликопротеид. Активируется фактором XIIa, калликреином совместно с высокомоллекулярным кининогеном (ВМК).
XII Фактор контактной активации,
фактор Хагемана
Белок. Активируется отрицательно заряженными поверхностями, адреналином, калликреином. Запускает внешний и внутренний механизм образования протромбиназы и фибринолиза, активирует фактор XI и прекалликреин.
XIII Фибринстабилизирующий фактор (ФСФ),
фибриназа
Глобулин. Синтезируется фибробластами и мегакариоцитами. Стабилизирует фибрин. Необходим для нормального течения репаративных процессов.
Фактор Флетчер,
плазменный прекалликреин
Белок. Активирует факторы XII, плазминоген и ВМК.
Фактор Фитцжеральда,
высокомолекулярный кининоген (ВМК)
Активируется калликреином, принимает участие в активации фактора XII, XI и фибринолизе.
Фактор Виллебранда Компонент фактора VIII, вырабатывается в эндотелии, в кровотоке, соединяясь с коагуляционной частью, образует полиоценный фактор VIII (антигемофильный глобулин А).

Эритроцитарные факторы свертывания крови

В эритроцитах обнаружен ряд соединений, аналогичных тромбоцитарным факторам. Наиважнейшим из них является частичный тромбопластин, или фосфолипидный фактор (напоминает фактор Р 3), который входит в состав мембраны. Кроме того, эритроциты содержат антигепариновый фактор, большое количество АДФ, фибриназу и другие соединения, имеющие отношение к гемостазу. При травме сосуда около 1% наименее стойких эритроцитов вытекающей крови разрушается, что способствует образованию тромбоцитарной пробки и фибринового сгустка.

Особенно велика роль эритроцитов в свертывании крови при их массовом разрушении, что наблюдается при переливании несовместимой крови, резус-конфликте матери и плода и гемолитических анемиях.

Лейкоцитарные факторы свертывания крови

Лейкоциты содержат факторы свертывания, получившие наименование лейкоцитарных. В частности, моноциты и макрофаги при стимуляции Аг синтезируют белковую часть тромбопластина - апопротеин III (тканевой фактор), что значительно ускоряет свертывание крови. Эти же клетки являются продуцентами витамин-К-зависимых факторов свертывания - IX, VII и X. Приведенные факты являются одной из основных причин возникновения диссеминированного (распространенного) внутрисосудистого свертывания крови (или ДВС-синдрома) при многих воспалительных и инфекционных заболеваниях, что значительно отягощает течение патологического процесса, а иногда служит причиной смерти больных.

Тканевые факторы свертывания крови

Важная роль в процессе свертывания крови отводится тканевым факторам, к которым в первую очередь относится тромбопластин (фактор III, тканевой фактор - TF). TF состоит из белковой части - апопротеина III и комплекса фосфолипидов - и нередко представляет собой отломок клеточных мембран. Большая часть TF экспонирована наружу и включает 2 структурных домена. При разрушении тканей или стимуляции эндотелия эндотоксином и провоспалительными цитокинами TF способен поступать в кровоток и вызывать развитие ДВС-синдрома.

Механизм свертывания крови

Процесс свертывания крови представляет собой ферментный каскад, в котором проферменты, переходя в активное состояние (сериновые протеиназы), способны активировать другие факторы свертывания крови. Подобная активация может носить последовательный и ретроградный характер. При этом активация факторов свертывания осуществляется за счет протеолиза, приводящего к перестройке молекул и отщеплению пептидов, обладающих слабым антикоагулянтным действием.

Процесс свертывания крови может быть разделен на 3 фазы

  1. комплекс последовательных реакций, приводящих к образованию протромбиназы;
  2. переход протромбина в тромбин (фактора II в фактор IIа);
  3. из фибриногена образуется фибриновый сгусток.

Образование протромбиназы

Образование протромбиназы может осуществляться по внешнему и внутреннему механизму. Внешний механизм предполагает обязательное присутствие тромбопластина (TF, или F-III), внутренний же связан с участием тромбоцитов (парциальный тромбопластин, или фактор Р 3). Вместе с тем, внутренний и внешний пути образования протромбиназы имеют много общего, ибо активируются одними и теми же факторами (фактор ХIIа, калликреин, ВМК и др.), а также приводят в конечном итоге к появлению одного и того же активного фермента - фактора Ха, выполняющего в комплексе с фактором Va функции протромбиназы. При этом как полный, так и парциальный тромбопластин служат матрицами, на которых развертывается цикл ферментативных реакций.

Важная роль в процессе свертывания крови отводится глицерофосфолипидам и, в частности, фосфатидилсерину и фосфатидилэтаноламину в бислое мембраны. Одной из особенностей бислоя является его асимметрия. В наружном листке бислойной мембра­ны, контрактирующей с кровью, преобладают в ос­новном фосфатидилхолин и сфингомиелин. Как изве­стно, эти фосфолипиды содержат фосфохолин, обес­печивающий атромбогенность мембран. Молекула этих фосфолипидов электронейтральна - в ней нет преоб­ладания одного из зарядов.

Фосфатидилсерин и фосфатидилэтаноламин распо­ложены преимущественно во внутреннем слое мемб­раны. Головка указанных фосфолипидов несет два отрицательных заряда и один положительный, т.е. на ней преобладает отрицательный заряд. Инициация свертывания крови может наступить лишь тогда, когда эти фосфолипиды появятся на наружной поверхности мембраны.

Из сказанного вытекает, что для инициа­ции свертывания крови необходимо нарушить исход­ную асимметрию фосфолипидов мембраны, что может произойти только за счет обмена фосфолипидов меж­ду слоями, или, иначе, флип-флопа. Как это происходит при повреждении кровеносного сосуда?

Мы уже отмечали, что по обе стороны мембраны существует ионная асимметрия. Для процесса свер­тывания крови очень важна асимметрия в содержа­нии ионов Са 2+ , концентрация которого в плазме и интерстициальной жидкости в десять тысяч раз больше, чем в цитоплазме клетки и тромбоците. Как только травмируется стенка сосуда, в цитоплазму из внеклеточной жидкости или из внутриклеточного депо переходит значительное количество ионов Са 2+ . Поступление Са 2+ в тромбоцит или клетки (травмированный эндотелий и т.п.) разрыхляет мембрану и включает механизмы поддержания асимметрии фосфолипидного бислоя. При этом молекулы фосфатидилсерина и фосфатидилэтаноламина, несущие суммарные отрицательные заряды, переходят на поверхность мембраны.

Почему же нарушается асимметрия в содержании отдельных фосфолипидов в наружном и внутреннем слоях мембраны? Недавно появился ряд сообщений о том, что зависимый от энергии процесс концентрации аминофосфолипидов преимущественно во внутреннем листке мембраны связан с функционированием специфичных синергично действующих трансмембранных белков-переносчиков — транслоказ.

Аминофосфолипидные транслоказы осуществляют однонаправленное передвижение фосфатидилсерина и фосфатиднлэтаноламина во внутренний листок мембраны. При активации клеток, в том числе кровяных пластинок, при повышении уровня цитоплазматического Са 2+ , при уменьшении концентрации АТФ и при ряде других сдвигов происходит ингибиция транслоказ. При этом наступает двунаправленное трансмембранное перемещение всех мембранных фосфолипидов, приводящее к значительному выравниванию их концентрации в обоих листках мембраны.

Но как только на поверхности клеточной мембраны увеличивается концентрация отрицательно заряженных фосфолипидов и они входят в соприкосновение с кровью, содержащей громадную концентрацию ионов Са 2 , то образуются кластеры — активные зоны, к которым прикрепляются факторы свертывания. При этом ионы Са 2+ выполняют следующие функции:

1. Они необходимы для конформации факторов свертывания, после чего последние способны принимать участие в ферментативных реакциях гемостаза.

2. Они являются связующими мостиками между белковыми компонентами и клеточными мембранами. Эти реакции осуществляются следующим образом: ионы Са 2+ , с одной стороны, присоединяются к головкам фосфатидилсерина, а с другой — соединяются с остатками g-карбоксиглутаминовой кислоты, которая входит в состав ряда факторов свертывания крови (V, VIII, IX и др.). За счет таких кальциевых мостиков происходит первоначальное ориентирование на фосфолипидной поверхности факторов свертывания крови, и в результате конформации белковых молекул открываются активные центры.

Без ионов Са 2+ не может происходить образование кластеров и не осуществляется взаимодействие друг с другом ферментов, участвующих в свертывании крови.

Формирование протромбиназы по внешнему пути начинается с активации фактора VII при его взаимодействия с тромбопластином‚ а также с факторами XIIа, IXа, Ха и калликреином. В свою очередь, фактор VIIa активирует не только фактор Х, но и IX. B процессе образования протромбиназы по внешнему механизму могут также принимать участие факторы IХа и VIIIa, образующие активный комплекс на фосфолипидной матрице. Однако эта реакция протекает относительно медленно.

Формирование протромбиназы по внешнему пути происходит чрезвычайно быстро (занимает секунды) и ведет к появлению фактора Ха и небольших порций тромбина (IIa), который способствует необратимой агрегации тромбоцитов, активации факторов VIII и V и значительно о ускоряет образование протромбиназы по внутреннему и внешнему механизмам.

Инициатором внутреннего пути образования протромбиназы является фактор XII, который активируется травмированной поверхностью, кожей, коллагеном, адреналином, после чего переводит фактор XI в XIа.

В этой реакции принимает участие калликреин (активируется фактором ХIIа) и ВМК (активируется калликреином).

Фактор ХIа оказывает непосредственное влияние на фактор IX, переводя его в фактор IXa. Специфическая деятельность последнего направлена на протеолиз фактора X (перевод его в фактор Ха) и протекает на поверхности фосфолипидов тромбоцита при обязательном участии фактора VIII (или VIIIa). Комплекс факторов IXa, VIIIa на фосфолипидной поверхности тромбоцитов получил наименование теназы, или теназного комплекса.

Как уже отмечалось, в процессе свертывания крови принимают участие прекалликреин и ВМК, благодаря которым (как и фактору XII) происходит объединение внешнего и внутреннего путей свертывания крови. В настоящее время установлено, что при травме сосуда всегда происходит освобождение металлопротеидов, переводящих прекалликреин в калликреин. Под воздействием калликреина ВМК переходит в ВМКа. Кроме того, калликреин способствует активации факторов VII и XII, что также сопровождается запуском каскадного механизма свертывания крови.

Переход протромбина в тромбин

Вторая фаза процесса свертывания крови (переход фактора II в фактор IIа) осуществляется под влиянием протромбиназы (комплекса Xa+Va+Са 2+) и сводится к протеолитическому расщеплению протромбина, благодаря чему появляется фермент тромбин, обладающий свертывающей активностью.

Переход фибриногена в фибрин

Третья стадия процесса свертывания крови - переход фибриногена в фибрин - включает 3 этапа. На первом из них под влиянием фактора IIа от фибриногена отщепляются 2 фибринпептида А и 2 фибринпептида В, в результате чего образуются фибрин-мономеры. На втором этапе, благодаря процессу полимеризации, формируются вначале димеры и олигомеры фибрина, трансформирующиеся в дальнейшем в волокна фибрина - протофибриллы легкорастворимого фибрина, или фибрина s (soluble), быстро лизирующегося под влиянием протеаз (плазмина, трипсина). В процесс образования фибрина вмешивается фактор XIII (фибриназа, фибринстабилизирующий фактор), который после активации тромбином в присутствии Са 2+ прошивает фибринполимеры дополнительными перекрестными связями, благодаря чему появляется труднорастворимый фибрин, или фибрин i (insoluble). В результате этой реакции сгусток становится резистентным к мочевине и фибринолитическим (протеолитическим) агентам и плохо поддается разрушению.

Рис. 5. Схема свертывания крови. Условные обозначения: тонкие стрелки — активация, толстые стрелки — переход фактора в активное состояние, ВМК — высокомолекулярный кининоген, I — фибриноген, Im — фибринмономер, Is — легкорастворимый фибрин, Ii — труднорастворимый фибрин.

Образовавшийся фибриновый сгусток, благодаря тромбоцитам, входящим в его структуру, сокращается и уплотняется (наступает ретракция) и прочно закупоривает поврежденный сосуд.

Естественные антикоагулянты

Несмотря на то что в циркуляции имеются все факторы, необходимые для образования тромба, в естественных условиях при наличии целых сосудов кровь остается жидкой. Это обусловлено наличием в кровотоке противосвертывающих веществ, получивших название естественные антикоагулянты, и фибринолитического звена системы гемостаза.

Естественные антикоагулянты делятся на первичные и вторичные. Первичные антикоагулянты всегда присутствуют в циркуляции, вторичные - образуются в результате протеолитического расщепления факторов свертывания крови в процессе формирования и растворения фибринового сгустка.

Первичные антикоагулянты можно разделить на 3 основные группы: 1) обладающие антитромбопластическим и антипротромбиназным действием (антитромбопластины); 2) связывающие тромбин (антитромбины); 3) предупреждающие переход фибриногена в фибрин (ингибиторы самосборки фибрина).

К антитромбопластинам, в первую очередь, относится ингибитор внешнего пути свертывания (TFPI). Установлено, что он способен блокировать комплекс факторов III+VII+Ха, благодаря чему предотвращается образование протромбиназы по внешнему манизму. Недавно обнаружен еще один ингибятФ внешнего пути образования протромбиназы, получивший наименование TFPI-2 (анексин V), однако он обладает меньшей активностью, чем TFPI.
К ингибиторам, блокирующим образование протромбиназы, относятся витамин-К-зависимые протеины С, S (РrС, PrS) и особый белок, синтезируемый эндотелием, - тромбомодулин. Под воздействием тромбомодулина и связанного с ним тромбина РrС переходит в активное состояние (Рrа), чему способствует кофактор PrS, РrСа разрезает пополам факторы V и VIII и тем самым препятствует образованию протромбиназы внутреннему пути и переходу протромбина в тромбин.

Недавно появились сообщения, что PrS способен связывать фактор Ха. Эта реакция не зависит от фосфолипидной поверхности и усиливается в присутствии РrС.

Одним из ведущих антикоагулянтов является белок антитромбин III (A-III), имеющий молекулярную массу (ММ) 58 кД. Самостоятельно А-III обладает слабым антикоагулянтным действием. В то же время он способен образовывать комплекс с сульфатированным полисахаридом гликозамингликаном гепарином (Г) - А-III+Г. Этот комплекс связывает факторы IIа, IXa, Ха, ХIа, ХIIа, калликреин и плазмин. Существует высокомолекулярный гепарин (нефракдионированный) с ММ от 25 до 35 кД и низкомолекулярный гепарин с ММ менее 5 кД. Последний в меньшей степени нуждается во взаимодействии с А-III и нейтрализует преимущественно фактор Ха, ибо его цепочка мала и «не дотягивается» до тромбина. Низкомолекулярный Г в большей степени, чем высокомолекулярный, способствует высвобождению из эндотелия TFPI, благодаря чему его антикоагулянтная активность возрастает. Следует также заметить, что низкомолекулярные гепарины ингибируют прокоагулянтную активность поврежденного эндотелия и некоторых протеаз, выделяемых гранулоцитами и макрофагами (рис. 6).

За последнее время появились сообщения о наличии еще одного антикоагулянта - белка антитромбина II, однако его активность уступает А-III. Важным ингибитором свертывания является кофактор гепарина II, связывающего тромбин. Его действие усиливается во много раз при взаимодействии с гепарином.

Ингибитором тромбина, факторов IXa, XIa, ХIIа и плазмина является a1-антитрипсин. Слабым ингибитором тромбина, калликреина и плазмина служит а2-макроглобулин.

К первичным антикоагулянтам следует также отнести аутоантитела к активным факторам свертывания крови (IIа, Ха и др.), которые всегда присутствуют в кровотоке, а также покинувшие клетку рецепторы (так называемые «плавающие» рецепторы) к активированным факторам свертывания крови. Однако их роль в условиях нормы и патологии пока еще далека от окончательного выяснения.

Следует заметить, что при снижении концентрации первичных естественных антикоагулянтов создаются благоприятные условия для развития тромбофилий и диссеминированного внутрисосудистого свертывания крови - ДВС-синдрома.

Таблица 2. Основные естественные антикоагулянты (первичные)

Антитромбин III Альфа2-глобулин. Синтезируется в печени. Прогрессивно действующий ингибитор тромбина, факторов IXа, Xа, XIа, XIIа, калликреина и в меньшей степени — плазмина и трипсина. Плазменный кофактор гепарина.
Гепарин Сульфатированный полисахарид. Трансформирует антитромбин III из прогрессивного в антикоагулянт немедленного действия, значительно повышая его активность. Образует комплексы с тромбогенными белками и гормонами, обладающие антикоагулянтным и фибринолитическим действием.
Кофактор гепарина II Слабый антикоагулянт, действующий в присутствии гепарина.
Альфа2-антиплазмин Белок. Ингибирует действие плазмина, трипсина, хемотрипсина, калликреина, фактора Xа, урокиназы.
Альфа2-макроглобулин Слабый прогрессивный ингибитор тромбина, калликреина, плазмина и трипсина.
Альфа1-антитрипсин Ингибитор тромбина, факторов IXа, XIа, XIIа, трипсина и плазмина.
С1-эстеразный ингибитор, или ингибитор комплимента I Альфа1-нейроаминогликопротеид. Инактивирует калликреин, предотвращая его действие на кининоген, факторы XIIа, IXа, XIа и плазмин.
TFPI Ингибирует комплекс TF+VII+Xа.
TFPI-2 или анексин V Образуется в плаценте. Ингибирует комплекс TF+VII+Xа.
Протеин С Витамин-К-зависимый белок. Образуется в печени и эндотелии. Обладает свойствами сериновой протеазы. Инактивирует факторы Va и VIIIа и стимулирует фибринолиз.
Протеин S Витамин-К-зависимый белок. Образуется эндотелиальными клетками. Усиливает действие протеина С.
Тромбомодулин Гликопротеин, фиксированный на цитоплазматической мембране эндотелия. Кофактор протеина С, связывается с фактором IIa и инактивирует его.
Ингибитор самосборки фибрина Полипептид, образуется в различных тканях. Действует на фибрин мономер и полимер.
Плавающие рецепторы Гликопротеиды, связывающие факторы IIa и Ха, а возможно, и другие сериновые протеазы
Аутоантитела к активным факторам свертывания Находятся в плазме, ингибируют факторы и др.

К вторичным антикоагулянтам относятся «отработанные» факторы свертывания крови (принявшие участие в свертывании) и продукты деградации фибриногена и фибрина (ПДФ), обладающие антиагрегационным и противосвертывающим действием, а также стимулирующие фибринолиз. Роль вторичных антикоагулянтов сводится к ограничению внутрисосудистого свертывания крови и распространения тромба по сосудам.

Фибринолиз

Фибринолиз является неотъемлемой частью системы гемостаза, всегда сопровождает процесс свертывания крови и даже активируется теми же самыми факторами (ХIIа, калликреином, ВМК и др.). Являясь важной защитной реакцией, фибринолиз предотвращает закупорку кровеносных сосудов фибриновыми сгустками, а также приводит к реканализации сосудов после остановки кровотечения. Компоненты фибринолиза играют важную роль в удалении внеклеточного матрикса и, кроме того, регулируют рост и деление клеток, заживление ран, регенерацию мышц, рост и метастазирование опухолей и т.д.

Ферментом, разрушающим фибрин, является плазмин (иногда его называют фибринолизин), который в циркуляции находится в неактивном состоянии в виде профермента плазминогена. Под воздействием его активаторов происходит расщепление пептидной связи Arg561-Val562 плазминогена, в результате чего образуется плазмин. Активный центр плазмина находится в легкой цепи, представляющей малоспецифичную протеазу, способную расщеплять практически все белки плазмы.

В кровотоке плазминоген встречается в двух основных формах: в виде нативного профермента с NH2-терминальной глутаминовой кислотой - глу-плазминогена, и в виде частично подвергшегося протеолизу - лиз-плазминогена. Последний приблизительно в 20 раз быстрее трансформируется физиологическими активаторами в плазмин, а также имеет большее сродство к фибрину.

Фибринолиз, как и процесс свертывания крови, может протекать по внешнему и внутреннему путям.

Внешний путь активации плазминогена

Внешний путь активации плазминогена осуществляется при участии тканевых активаторов, которые синтезируются главным образом в эндотелии. К ним, в первую очередь, относится тканевой активатор плазминогена (TPА).

Кроме того, активатором плазминогена является урокиназа, образуемая в почках (в юкстагломерулярном аппарате), а также фибробластами, эпителиальными клетками, пневмоцитами, децедуальными клетками плаценты и эндотелиоцитами. Многие клетки содержат рецепторы к урокиназе, что послужило основанием считать ее основным активатором фибринолиза в межклеточном пространстве, обеспечивающем протеолиз в процессе клеточного роста, деления и миграции клеток.

По мнению З.С. Баркагана, во внешнем пути активации фибринолиза принимают также участие активаторы форменных элементов крови - лейкоцитов, тромбоцитов и эритроцитов.

Внутренний путь активации фибринолиза

Внутренний путь активации фибринолиза, осуществляемый плазменными активаторами, разделяется на Хагеманзависимый и Хагеманнезависимый.

Хагеманзависимый фибринолиз осуществляется наиболее быстро и носит срочный характер. Его основное назначение сводится к очищению сосудистого русла от фибриновых сгустков, образующихся в процессе внутрисосудистого свертывания крови. Хагеманзависимый фибринолиз протекает под влиянием факторов ХIIа, калликреина и ВМК, которые переводят плазминоген в плазмин.

Хагеманнезависимый фибринолиз может осуществляться под влиянием протеинов С и S (рис. 7).

Рис. 7. Схема фибринолиза.

Образовавшийся в результате активации плазмин вызывает расщепление фибрина. При этом появляются ранние (крупномолекулярные) и поздние (низкомолекулярные) продукты деградации фибрина, или ПДФ.

Ингибиторы фибринолиза

До 90% всей антифибринолитической активности сосредоточено в а-гранулах тромбоцитов, которые выбрасываются в кровоток при их активации. В плазме находятся и ингибиторы фибринолиза. В настоящее время выявлено 4 типа ингибитора активатора плазминогена и урокиназы.

Важнейшим из них является ингибитор первого типа (PAI-1), который нередко называют эндотелиальным. Вместе с тем, он синтезируется не только эндотелием, но и гепатоцитами, моноцитами, макрофагами, фибробластами и мышечными клетками. Скапливаясь в местах повреждения эндотелия, тромбоциты также высвобождают PAI-1. PAI-1 является ингибитором сериновых протеаз. Его особенность заключается в том, что переход из неактивной в активную форму осуществляется без частичного протеолиза (за счет кон-формации молекулы) и является обратимым процессом. Хотя концентрация PAI-1 примерно в 1000 раз ниже, чем других ингибиторов протеаз, ему принадлежит основная роль в регуляции начальных стадий фибринолиза.

Важнейшим ингибитором фибринолиза является а2-антиплазмин, связывающий не только плазмин, но и трипсин, калликреин, урокиназу, ТАР и, следовательно, вмешивающийся как на ранних, так и на поздних стадиях фибринолиза.

Сильным ингибитором плазмина служит a1-протеазный ингибитор (a1-антитрипсин).

Кроме того, фибринолиз тормозится а2-макроглобулином, C1-эстеразным ингибитором, а также целым рядом ингибиторов активатора плазминогена, синтезируемых эндотелием, макрофагами, моноцитами и фибробластами.

Фибринолитическая активность крови во многом определяется соотношением активаторов и ингибиторов фибринолиза.

При ускорении свертывания крови и одновременном торможении фибринолиза создаются благоприятные условия для развития тромбозов, эмболии и ДВС-синдрома.

Наряду с ферментативным фибринолизом, по мнению профессора Б.А. Кудряшова и его учеников, существует так называемый неферментативный фибринолиз, который обусловлен комплексными соединениями естественного антикоагулянта гепарина с ферментами и гормонами. Неферментативный фибринолиз приводит к расщеплению нестабилизированного фибрина, очищая сосудистое русло от фибринмономеров и фибрина s.

Четыре уровня регуляции сосудисто-тромбоцитарного гемостаза, свертывания крови и фибринолиза

Свертывание крови, контактирующей со стеклом, травмированной поверхностью или кожей, осуществляется за 5-10 минут. Основное время в этом процессе уходит на образование протромбиназы, тогда как переход протромбина в тромбин и фибриногена в фибрин осуществляется довольно быстро. В естественных условиях время свертывания крови может уменьшаться (развивается гиперкоагуляция) или удлиняться (возникает гипокоагуляция).

Между тем образование тромбоцитарной пробки и остановка кровотечения из мелких сосудов осуществляется в течение 2-4 минут.

Млекулярный уровень регуляции

Молекулярный - предполагает поддержание гомеостатического баланса отдельных факторов, влияющих на сосудисто-тромбоцитарный гемостаз, свертывание крови и фибринолиз. При этом избыток фактора, возникающий по той или иной причине в организме, должен быть в кратчайшие сроки ликвидирован. Такой баланс постоянно поддерживается между простациклином (Pgl2) и ТхА2, прокоагулянтами и антикоагулянтами, активаторами и ингибиторами плазминогена.

Наличие клеточных рецепторов ко многим факторам свертывания крови и фибринолиза лежит в основе гомеостатического баланса в системе гемостаза на молекулярном уровне. Отрывающиеся от клетки рецепторы к факторам свертывания и фибринолиза («плавающие» рецепторы) приобретают новые свойства, становясь естественными антикоагулянтами, ингибиторами плазмина и активатора плазминогена.

Молекулярный уровень регуляции может осуществлять иммунная система с помощью образования Ат к активированными факторам свертывания крови и фибринолиза - IIа, Ха, ТАП и другим.

Необходимо также помнить, что существует генетический контроль над продукцией факторов, обеспечивающих образование и растворение кровяного сгустка.

Клеточный уровень регуляции

В кровотоке происходит постоянное потребление факторов свертывания и фибринолиза, что неминуемо должно приводить к восстановлению их концентрации. Этот процесс должен быть обусловлен или активированными факторами, или (что более вероятно) продуктами их распада. Если это так, то клетки, продуцирующие факторы свертывания и фибринолиза, должны нести на себе рецепторы к указанным соединениям или их депозитам. Такие рецепторы обнаружены на многих клетках к тромбину, калликреину, активатору плазминогена, плазмину, стрептокиназе, ПДФ и многим другим. Клеточная регуляция должна осуществляться по механизму обратной связи (обратной афферентации). Клеточный уровень регуляции систем гемостаза частично обеспечивается за счет «пристеночного» фибринолиза, возникающего при отложении фибрина на эндотелии сосудистой стенки.

Органный уровень регуляции

Органный уровень регуляции - обеспечивает оптимальные условия функционирования системы гемостаза в различных участках сосудистого русла. Благодаря этому уровню проявляется мозаичность сосудисто-тромбоцитарного гемостаза, свертывания крови и фибринолиза.

Нервно-гуморальная регуляция

Нервно-гуморальная регуляция контролирует состояние системы гемостаза от молекулярного до органного уровня, обеспечивая целостность реакции на уровне организма, главным образом, через симпатический и парасимпатический отделы вегетативной нервной системы, а также гормоны и различные биологически активные соединения.

Установлено, что при острой кровопотере, гипоксии, интенсивной мышечной работе, болевом раздражении, стрессе свертывание крови значительно ускоряется, что может привести к появлению фибрин-мономеров и даже фибрина s в сосудистом русле. Однако, благодаря одновременной активации фибринолиза, носящего защитный характер, появляющиеся сгустки фибрина быстро растворяются и не наносят вреда здоровому организму.

Ускорение свертывания крови и усиление фибринолиза при всех перечисленных состояниях связано с повышением тонуса симпатического отдела вегетативной нервной системы и поступлением в кровоток адреналина и норадреналина. При этом активируется фактор Хагемана, что приводит к запуску внешнего и внутреннего механизма образования протромбиназы, а также стимуляции Хагеман-зависимого фибринолиза. Кроме того, под влиянием адреналина усиливается образование апопротеина III - составной части тромбопластина - и наблюдается отрыв от эндотелия клеточных мембран, обладающих свойствами тромбопластина, что способствует резкому ускорению свертывания крови. Из эндотелия также выделяются ТАР и урокиназа, приводящие к стимуляции фибринолиза.

При повышении тонуса парасимпатического отдела вегетативной нервной систем (раздражение блуждающего нерва, введение ацетилхолина, пилокарпина) также наблюдается ускорение свертывания крови и стимуляция фибринолиза. Как это ни покажется на первый взгляд странным, но и в этих условиях происходит выброс тромбопластина и активаторов плазминогена из эндотелия сердца и сосудов.

Оказалось, что как сосудосуживающие, так и сосудорасширяющие воздействия вызывают со стороны свертывания крови и фибринолиза однотипный эффект - освобождение тканевого фактора и ТАР. Следовательно, основным эфферентным регулятором свертывания крови и фибринолиза является сосудистая стенка. Напомним также, что в эндотелии сосудов синтезируется Pgl2, препятствующий в кровотоке адгезии и агрегации тромбоцитов.

Вместе с тем, развивающаяся гиперкоагуляция может смениться гипокоагуляцией, которая носит в естественных условиях вторичный характер и обусловлена расходом (потреблением) тромбоцитов и плазменных факторов свертывания крови, образованием вторичных антикоагулянтов, а также рефлекторным выбросом в сосудистое русло гепарина и А-III в ответ на появление тромбина.

Важно!!! Следует отметить, что существует корковая регуляция системы гемостаза, что было блестяще доказано школами профессора Е.С. Иваницкого-Василенко и академика А.А. Маркосяна. В этих лабораториях были выработаны условные рефлексы как на ускорение, так и на замедление свертывания крови.

Сущность и значение свертывания крови .

Если выпущенную из кровеносного сосуда кровь оставить на некоторое время, то из жидкости она вначале превращается в желе, а затем в крови организуется более или менее плотный сгусток, который, сокращаясь, выжимает из себя жидкость, называемую кровяной сывороткой. Это - плазма, лишенная фибрина. Описанный процесс называется свертыванием крови (гемокоагуляцией ). Его сущность заключается в том, что растворенный в плазме белок фибриноген в определенных условиях переходит в нерастворимое состояние и выпадает в осадок в виде длинных нитей фибрина. В ячейках этих нитей, как в сетке, застревают клетки и коллоидное состояние крови в целом меняется. Значение этого процесса заключается в том, что свернувшаяся кровь не вытекает из раненного сосуда, предотвращая смерть организма от кровопотери.

Свертывающая система крови . Ферментативная теория свертывания .

Первая теория, объясняющая процесс свертывания крови работой специальных ферментов, была разработана в 1902 г. русским ученым Шмидтом. Он считал, что свертывание протекает в две фазы. В первую один из белков плазмы протромбин под влиянием освобождающихся из разрушенных при травме клеток крови, особенно тромбоцитов, ферментов (тромбокиназы ) и ионов Са переходит в фермент тромбин . На второй стадии под влиянием фермента тромбина растворенный в крови фибриноген превращается в нерастворимый фибрин , который и заставляет кровь свертываться. В последние годы жизни Шмидт стал выделять в процессе гемокоагуляции уже 3 фазы: 1- образование тромбокиназы, 2- образование тромбина. 3- образование фибрина.

Дальнейшее изучение механизмов свертывания показало, что это представление весьма схематично и не полностью отражает весь процесс. Основное заключается в том, что в организме отсутствует активная тромбокиназа, т.е. фермент, способный превратить протромбин в тромбин (по новой номенклатуре ферментов этот следует называть протромбиназой ). Оказалось, что процесс образования протромбиназы очень сложен, в нем участвует целый ряд т.н. тромбогенных белков-ферментов, или тромбогенных факторов, которые, взаимодействуя в каскадном процессе, все необходимы для того, чтобы свертывание крови осуществилось нормально. Кроме того, было обнаружено, что процесс свертывания не кончается образованием фибрина, ибо одновременно начинается его разрушение. Таким образом, современная схема свертывания крови значительно сложнее Шмидтовой.

Современная схема свертывания крови включает в себя 5 фаз, последовательно сменяющих друг друга. Фазы эти следующие:

1. Образование протромбиназы.

2. Образование тромбина.

3. Образование фибрина.

4. Полимеризация фибрина и организация сгустка.

5. Фибринолиз.

За последние 50 лет было открыто множество веществ, принимающих участие в свертывании крови, белков, отсутствие которых в организме приводит к гемофилии (не свертываемости крови). Рассмотрев все эти вещества, международная конференция гемокоагулологов постановила обозначить все плазменные факторы свертывания римскими цифрами, клеточные - арабскими. Это было сделано для того, чтобы исключить путаницу в названиях. И теперь в любой стране после общепринятого в ней названия фактора (они могут быть разными) обязательно указывается номер этого фактора по международной номенклатуре. Для того, чтобы мы могли дальше рассматривать схему свертывания, давайте сначала дадим краткую характеристику этих факторов.

А. Плазменные факторы свертывания .

I. Фибрин и фибриноген . Фибрин - конечный продукт реакции свертывания крови. Свертывание фибриногена, являющееся его биологической особенностью, происходит не только под влиянием специфического фермента - тромбина, но может быть вызвано ядами некоторых змей, папаином и другими химическими веществами. В плазме содержится 2-4 г/л. Место образования - ретикулоэндотелиальная система, печень, костный мозг.

I I. Тромбин и протромбин . В циркулирующей крови в норме обнаруживаются лишь следы тромбина. Молекулярный вес его составляет половину молекулярного веса протромбина и равен 30 тыс. Неактивный предшественник тромбина - протромбин - всегда присутствует в циркулирующей крови. Это гликопротеид, в составе которого насчитывают 18 аминокислот. Некоторые исследователи полагают, что протромбин - это комплексное соединение тромбина и гепарина. В цельной крови содержится 15-20 мг% протромбина. Этого содержания в избытке хватает для того, чтобы перевести весь фибриноген крови в фибрин.

Уровень протромбина в крови представляет собой относительно постоянную величину. Из моментов, вызывающих колебания этого уровня, следует указать на менструации (повышают), ацидоз (снижает). Прием 40% алкоголя увеличивает содержание протромбина на 65-175% cпустя 0,5-1 час, что объясняет наклонность к тромбозам у лиц, систематически употребляющих алкоголь.

В организме протромбин постоянно используется и одновременно синтезируется. Важную роль в его образовании в печени играет антигеморрагический витамин К. Он стимулирует деятельность печеночных клеток, синтезирующих протромбин.

III. Тромбопластин . В крови этого фактора в активном виде нет. Он образуется при повреждении клеток крови и тканей и может быть соответственно кровяной, тканевой, эритроцитарный, тромбоцитарный. По своей структуре это фосфолипид, аналогичный фосфолипидам клеточных мембран. По тромбопластической активности ткани различных органов по убывающей располагаются в таком порядке: легкие, мышцы, сердце, почки, селезенка, мозг, печень. Источниками тромбопластина являются также женское молоко и околоплодная жидкость. Тромбопластин участвует как обязательный компонент в первой фазе свертывания крови.

IV. Кальций ионизированный, Са++. Роль кальция в процессе свертывания крови была известна еще Шмидту. Именно тогда в качестве консерванта крови им был предложен цитрат натрия - раствор, который связывал ионы Са++ в крови и предотвращал ее свертывание. Кальций необходим не только для превращения протромбина в тромбин, но для других промежуточных этапов гемостаза, во всех фазах свертывания. Содержание ионов кальция в крови 9-12 мг%.

V и VI. Проакцелерин и акцелерин (АС-глобулин ). Образуется в печени. Участвует в первой и второй фазах свертывания, при этом количество проакцелерина падает, а акцелерина - увеличивается. По существу V является предшественником VI фактора. Активизируется тромбином и Са++. Является ускорителем (акцелератором) многих ферментативных реакций свертывания.

VII. Проконвертин и конвертин . Этот фактор является белком, входящим в бета глобулиновую фракцию нормальной плазмы или сыворотки. Активирует тканевую протромбиназу. Для синтеза проконвертина в печени необходим витамин К. Сам фермент становится активным при контакте в поврежденными тканями.

VIII. Антигемофилический глобулин А (АГГ-А ). Участвует в образовании кровяной протромбиназы. Способен обеспечивать свертывание крови, не имевшей контакта с тканями. Отсутствие этого белка в крови является причиной развития генетически обусловленной гемофилии. Получен сейчас в сухом виде и применяется в клинике для ее лечения.

IX. Антигемофилический глобулин В (АГГ-В, Кристмас-фактор , плазменный компонент тромбопластина). Участвует в процессе свертывания как катализатор, а также входит в состав тромбопластического комплекса крови. Способствует активации Х фактора.

X. Фактор Коллера, Стьюард-Прауэр-фактор . Биологическая роль сводится к участию в процессах образования протромбиназы, так как он является ее основным компонентом. При свертывании утилизируется. Назван (как и все другие факторы) по именам больных, у которых была впервые обнаружена форма гемофилии, связанная с отсутствием указанного фактора в их крови.

XI. Фактор Розенталя, плазменный предшественник тромбопластина (ППТ ). Участвует в качестве ускорителя в процессе образования активной протромбиназы. Относится к бета глобулинам крови. Вступает в реакцию на первых этапах 1 фазы. Образуется в печени с участием витамина К.

XII. Фактор контакта, Хагеман-фактор . Играет роль пускового механизма в свертывании крови. Контакт этого глобулина с чужеродной поверхностью (шероховатость стенки сосуда, поврежденные клетки т.п.) приводит к активации фактора и инициирует всю цепь процессов свертывания. Сам фактор адсорбируется на поврежденной поверхности и в кровоток не поступает, тем самым предупреждается генерализация процесса свертывания. Под влиянием адреналина (при стрессе) частично способен активизироваться прямо в кровотоке.

XIII. Фибринстабилизатор Лаки-Лоранда . Необходим для образования окончательно нерастворимого фибрина. Это - транспептидаза, которая сшивает отдельные нити фибрина пептидными связями, способствуя его полимеризации. Активируется тромбином и Са++. Кроме плазмы есть в форменных элементах и тканях.

Описанные 13 факторов являются общепризнанными основными компонентами, необходимыми для нормального процесса свертывания крови. Вызываемые их отсутствием различные формы кровоточивости относятся к разным видам гемофилий.

В. Клеточные факторы свертывания .

Наряду с плазменными факторами первостепенную роль в свертывании крови играют и клеточные, выделяющиеся из клеток крови. Больше всего их содержится в тромбоцитах, но есть они и в других клетках. Просто при гемокоагуляции тромбоциты разрушаются в большем количестве, чем, скажем, эритроциты или лейкоциты, поэтому наибольшее значение в свертывании имеют именно тромбоцитарные факторы. К ним относятся:

1ф. АС-глобулин тромбоцитов . Подобен V-VI факторам крови, выполняет те же функции, ускоряя образование протромбиназы.

2ф. Тромбин-акцелератор . Ускоряет действие тромбина.

3ф. Тромбопластический или фосполипидный фактор . Находится в гранулах в неактивном состоянии, и может использоваться только после разрушения тромбоцитов. Активируется при контакте с кровью, необходим для образования протромбиназы.

4ф.Антигепариновый фактор . Связывает гепарин и задерживает его антикоагулирующий эффект.

5ф. Тромбоцитарный фибриноген . Необходим для агрегации кровяных пластинок, вязкого их метаморфоза и консолидации тромбоцитарной пробки. Находится и внутри и снаружи тромбоцита. способствует их склеиванию.

6ф. Ретрактозим . Обеспечивает уплотнение тромба. В его составе определяют несколько субстанций, например тромбостенин +АТФ +глюкоза.

7ф. Антифибинозилин . Тормозит фибринолиз.

8ф. Серотонин . Вазоконстриктор. Экзогенный фактор, 90% синтезируется в слизистой ЖКТ, остальные 10% - в тромбоцитах и ЦНС. Выделяется из клеток при их разрушении, способствует спазму мелких сосудов, те самым способствуя предотвращению кровотечения.

Всего в тромбоцитах находят до 14 факторов, таких еще, как антитромбопластин, фибриназа, активатор плазминогена, стабилизатор АС-глобулина, фактор агрегации тромбоцитов и др.

В других клетках крови в основном находятся эти же факторы, но заметной роли в гемокоагуляции в норме они не играют.

С. Тканевые факторы свертывания

Участвуют во всех фазах. Сюда относятся активные тромбопластические факторы, подобные III, VII,IX,XII,XIII факторам плазмы. В тканях есть активаторы V и VI факторов. Много гепарина, особенно в легких, предстательной железе, почках. Есть и антигепариновые вещества. При воспалительных и раковых заболеваниях активность их повышается. В тканях много активаторов (кинины) и ингибиторов фибринолиза. Особенно важны вещества, содержащиеся в сосудистой стенке. Все эти соединения постоянно поступают из стенок сосудов в кровь и осуществляют регуляцию свертывания. Ткани обеспечивают также и выведение продуктов свертывания из сосудов.

Современная схема гемостаза .

Попытаемся теперь объединить в одну общую систему все факторы свертывания и разберем современную схему гемостаза.

Цепная реакция свертывания крови начинается с момента соприкосновения крови с шероховатой поверхностью раненного сосуда или тканью. Это вызывает активацию тромбопластических факторов плазмы и затем происходит поэтапное образование двух отчетливо различающихся по своим свойствам протромбиназ - кровяной и тканевой..

Однако прежде, чем закончится цепная реакция образования протромбиназы, в месте повреждения сосуда происходят процессы, связанные с участием тромбоцитов (т.н. сосудисто-тромбоцитарный гемостаз ). Тромбоциты за счет своей способности к адгезии налипают на поврежденный участок сосуда, налипают друг на друга, склеиваясь тромбоцитарным фибриногеном. Все это приводит к образованию т.н. пластинчатого тромба ("тромбоцитарный гемостатический гвоздь Гайема"). Адгезия тромбоцитов происходит за счет АДФ, выделяющейся из эндотелия и эритроцитов. Этот процесс активируется коллагеном стенки, серотонином, XIII фактором и продуктами контактной активации. Сначала (в течение 1-2 минут) кровь еще проходит через эту рыхлую пробку, но затем происходит т.н. вискозное перерождение тромба, он уплотняется и кровотечение останавливается. Понятно что такой конец событий возможен только при ранении мелких сосудов, там, где артериальное давление не в состоянии выдавить этот "гвоздь".

1 фаза свертывания . В ходе первой фазы свертывания, фазе образования протромбиназы , различают два процесса, которые протекают с разной скоростью и имеют различное значение. Это - процесс образования кровяной протромбиназы, и процесс образования тканевой протромбиназы. Длительность 1 фазы составляет 3-4 минуты. однако, на образование тканевой протромбиназы тратится всего 3-6 секунд. Количество образующейся тканевой протромбиназы очень мало, ее недостаточно для перевода протромбина в тромбин, однако тканевая протромбиназа выполняет роль активатора целого ряда факторов, необходимых для быстрого образования кровяной протромбиназы. В частности, тканевая протромбиназа приводит к образованию малого количества тромбина, который переводит в активное состояние V и VIII факторы внутреннего звена коагуляции. Каскад реакций, заканчивающихся образованием тканевой протромбиназы (внешний механизм гемокоагуляции ), выглядит следующим образом:

1. Контакт разрушенных тканей с кровью и активация III фактора - тромбопластина.

2. III фактор переводит VII в VIIa (проконвертин в конвертин).

3.Образуется комплекс (Ca++ + III + VIIIa )

4. Этот комплекс активирует небольшое количество Х фактора - Х переходит в Ха .

5. (Хa + III + Va + Ca ) образуют комплекс, который и обладает всеми свойствами тканевой протромбиназы. Наличие Va (VI) связано с тем, что в крови всегда есть следы тромбина, который активирует V фактор .

6. Образовавшееся небольшое количество тканевой протромбиназы переводит небольшое количество протромбина в тромбин.

7. Тромбин активирует достаточное количество V и VIII факторов, необходимых для образования кровяной протромбиназы.

В случае выключения этого каскада (например, если со всею предосторожностью с использованием парафинированных игл, взять кровь из вены, предотвратив ее контакт с тканями и с шероховатой поверхностью, и поместить ее в парафинированную пробирку), кровь свертывается очень медленно, в течение 20-25 минут и дольше.

Ну, а в норме одновременно с уже описанным процессом запускается и другой каскад реакций, связанных с действием плазменных факторов, и заканчивающийся образованием кровяной протромбиназы в количестве, достаточном для перевода большого количества протромбина с тромбин. Реакции эти следующие ( внутренний механизм гемокоагуляции):

1. Контакт с шероховатой или чужеродной поверхностью приводит к активации XII фактора: XII -- XIIa. Одновременно начинает образовываться гемостатический гвоздь Гайема (сосудисто-тромбоцитарный гемостаз ).

2.Активный ХII фактор превращает XI в активное состояние и образуется новый комплекс XIIa + Ca ++ + XIa + III(ф3)

3. Под влиянием указанного комплекса IX фактор активизируется и образуется комплекс IXa + Va + Cа++ +III(ф3 ).

4. Под влиянием этого комплекса происходит активация значительного количества Х фактора, после чего в большом количестве образуется последний комплекс факторов: Xa + Va + Ca++ + III(ф3 ), который и носит название кровяная протромбиназа.

На весь этот процесс затрачивается в норме около 4-5 минут, после чего свертывание переходит в следующую фазу.

2 фаза свертывания - фаза образования тромбина заключается в том, что под влиянием фермента протромбиназы II фактор (протромбин) переходит в активное состояние (IIa). Это протеолитический процесс, молекула протромбина расщепляется на две половинки. Образовавшийся тромбин идет на реализацию следующей фазы, а также используется в крови для активации все большего количества акцелерина (V и VI факторов). Это пример системы с положительной обратной связью. Фаза образования тромбина продолжается несколько секунд.

3 фаза свертывания - фаза образования фибрина - тоже ферментативный процесс, в результате которого от фибриногена благодаря воздействию протеолитического фермента тромбина отщепляется кусок в несколько аминокислот, а остаток носит название фибрин-мономер, который по своим свойствам резко отличается от фибриногена. В частности, он способен к полимеризации. Это соединение обозначается как Im .

4 фаза свертывания - полимеризация фибрина и организация сгустка . Она тоже имеет несколько стадий. Вначале за несколько секунд под влиянием рН крови, температуры, ионного состава плазмы происходит образование длинных нитей фибрин-полимера Is который, однако, еще не очень стабилен, так как способен растворяться в растворах мочевины. Поэтому на следующей стадии под действием фибрин-стабилизатора Лаки-Лоранда (XIII фактора) происходит окончательная стабилизация фибрина и превращение его в фибрин Ij. Он выпадает из раствора в виде длинных нитей, которые образуют сетку в крови, в ячейках которой застревают клетки. Кровь из жидкого состояния переходит в желеобразное (свертывается). Следующей стадией этой фазы является длящаяся достаточно долго (несколько минут) ретракия (уплотнение) сгустка, которая происходит за счет сокращения нитей фибрина под действием ретрактозима (тромбостенина). В результате сгусток становится плотным, из него выжимается сыворотка, а сам сгусток превращается в плотную пробку, перекрывающую сосуд - тромб.

5 фаза свертывания - фибринолиз . Хотя она фактически не связана с образованием тромба, ее считают последней фазой гемокоагуляции, так как в ходе этой фазы происходит ограничение тромба только той зоной, где он действительно необходим. Если тромб полностью закрыл просвет сосуда, то в ходе этой фазы этот просвет восстанавливается (происходит реканализация тромба ). Практически фибринолиз всегда идет параллельно с образованием фибрина, предотвращая генерализацию свертывания и ограничивая процесс. Растворение фибрина обеспечивается протеолитическим ферментом плазмином (фибринолизином ) который содержится в плазме в неактивном состоянии в виде плазминогена (профибринолизина ). Переход плазминогена в активное состояние осуществляется специальным активатором , который в свою очередь образуется из неактивных предшественников (проактиваторов ), высвобождающихся из тканей, стенок сосудов, клеток крови, особенно тромбоцитов. В процессах перевода проактиваторов и активаторов плазминогена в активное состояние большую роль играют кислые и щелочные фосфатазы крови, трипсин клеток, тканевые лизокиназы, кинины, реакция среды, XII фактор. Плазмин расщепляет фибрин на отдельные полипептиды, которые затем утилизируются организмом.

В норме кровь человека начинает свертываться уже через 3-4 минуты после вытекания из организма. Через 5-6 минут она полностью превращается в желеобразный сгусток. Способы определения времени кровотечения, скорости свертывания крови и протромбинового времени вы узнаете на практических занятиях. Все они имеют важное клиническое значение.

Ингибиторы свертывания (антикоагулянты ). Постоянство крови как жидкой среды в физиологических условиях поддерживается совокупностью ингибиторов, или физиологических антикоагулянтов, блокирующих или нейтрализующих действие коагулянтов (факторов свертывания). Антикоагулянты являются нормальными компонентами системы функциональной системы гемокоагуляции.

В настоящее время доказано, что существует ряд ингибиторов по отношению к каждому фактору свертывания крови, и, однако, наиболее изученным и имеющим практическое значение является гепарин. Гепарин - это мощный тормоз превращения протромбина в тромбин. Кроме того, он влияет на образование тромбопластина и фибрина.

Гепарина много в печени, мышцах и легких, чем и объясняется не свертываемость крови в малом круге кровотечения и связанная с этим опасность легочных кровотечений. Кроме гепарина обнаружено еще несколько естественных антикоагулянтов с антитромбиновым действием, их принято обозначать порядковыми римскими цифрами:

I. Фибрин (поскольку он в процессе свертывания поглощает тромбин).

II. Гепарин.

III. Естественные антитромбины (фосфолипопротеиды).

IV. Антипротромбин (препятствующий превращению протромбина в тромбин).

V. Антитромбин крови больных ревматизмом.

VI. Антитромбин, возникающий при фибринолизе.

Кроме этих физиологических антикоагулянтов многие химические вещества различного происхождения обладают антикоагулянтной активностью - дикумарин, гирудин (из слюны пиявок) и др. Эти препараты применятся в клинике при лечении тромбозов.

Препятствует свертыванию крови и фибринолитическая система крови . По современным представлениям она состоит из профибринолизина (плазминогена ), проактиватора и системы плазменных и тканевых активаторов плазминогена . Под влиянием активаторов плазминоген переходит в плазмин, который растворяет сгусток фибрина.

В естественных условиях фибринолитическая активность крови находится в зависимости от депо плазминогена, плазменного активатора, от условий, обеспечивающих процессы активации, и от поступления этих веществ в кровь. Спонтанная активность плазминогена в здоровом организме наблюдается при состоянии возбуждения, после инъекции адреналина, при физических напряжениях и при состояниях, связанных с шоком. Среди искусственных блокаторов фибринолитической активности крови особое место занимает гамма аминокапроновая кислота (ГАМК). В норме в плазме содержится количество ингибиторов плазмина, превышающее в 10 раз уровень запасов плазминогена в крови.

Состояние процессов гемокоагуляции и относительное постоянство или динамическое равновесие факторов свертывания и антисвертывания связано с функциональным состоянием органов системы гемокоагуляции (костного мозга, печени, селезенки, легких, сосудистой стенки). Деятельность последних, а следовательно, и состояние процесса гемокоагуляции, регулируется нервно-гуморальными механизмами. В кровеносных сосудах имеются специальные рецепторы, воспринимающих концентрацию тромбина и плазмина. Эти два вещества и программируют деятельность указанных систем.

Регуляция процессов гемокоагуляции и антигоагуляции .

Рефлекторные влияния . Важное место среди многих раздражителей, падающих на организм, занимает болевое раздражение. Боль приводит к изменению деятельности почти всех органов и систем, в том числе и системы свертывания. Кратковременное или длительное болевое раздражение ведет к ускорению свертывания крови, сопровождаемое тромбоцитозом. Присоединение к боли чувства страха приводит к еще более резкому ускорению свертывания. Болевое раздражение, нанесенное анестезированному участку кожи, не вызывает ускорения свертывания. Такой эффект наблюдается с первого дня рождения.

Большое значение имеет продолжительность болевого раздражения. При кратковременной боли сдвиги менее выражены и возврат к норме совершается в 2-3 раза быстрей, чем при длительном раздражении. Это дает основание полагать, что в первом случае принимает участие лишь рефлекторный механизм, а при длительном болевом раздражении включается и гуморальное звено, обусловливая продолжительность наступающих изменений. Большинство ученых полагает, что таким гуморальным звеном при болевом раздражении является адреналин.

Значительное ускорение свертывания крови происходит рефлекторно также при действии на организм тепла и холода. После прекращения теплового раздражения период восстановления до исходного уровня в 6-8 раз короче, чем после холодового.

Свертывание крови является компонентом ориентировочной реакции. Изменение внешней среды, неожиданное появление нового раздражителя вызывают ориентировочную реакцию и одновременно ускорение свертывания крови, что является биологически целесообразной защитной реакцией.

Влияние вегетативной нервной системы . При раздражении симпатических нервов или после инъекции адреналина свертывание ускоряется. Раздражение парасимпатического отдела НС приводит к замедлению свертывания. Показано, что вегетативная нервная система оказывает влияние на биосинтез прокоагулянтов и антикоагулянтов в печени. Имеются все основания полагать, что влияние симпатико-адреналовой системы распространяется преимущественно на факторы свертывания крови, а парасимпатической - преимущественно на факторы, препятствующие свертыванию крови. В период остановки кровотечения оба отдела ВНС выступают синергично. Их взаимодействие в первую очередь направлено на остановку кровотечения, что жизненно важно. В дальнейшем, после надежной остановки кровотечения, усиливается тонус парасимпатической НС, что приводит к повышению антикоагулятной активности, столь важной для профилактики внутрисосудистых тромбозов.

Эндокринная система и свертывание . Эндокринные железы являются важным активным звеном механизма регуляции свертывания крови. Под влиянием гормонов процессы свертывания крови претерпевают ряд изменений, а гемокоагуляция либо ускоряется, либо замедляется. Если сгруппировать гормоны по их действию на свертывание крови, то к ускоряющим свертывание будут относиться АКТГ, СТГ, адреналин, кортизон, тестостерон, прогестерон, экстракты задней доли гипофиза, эпифиза и зобной железы; замедляют свертывание тиреотропный гормон, тироксин и эстрогены.

Во всех приспособительных реакциях, в особенности протекающих с мобилизацией защитных сил организма, в поддержании относительного постоянства внутренней среды вообще и системы свертывания крови, в частности, гипофизарно-анреналовая система является важнейшим звеном нейрогуморального механизма регуляции.

Имеется значительное количество данных, свидетельствующих о наличии влияния коры головного мозга на свертывание крови. Так, свертывание крови изменяется при повреждении полушарий головного мозга, при шоке, наркозе, эпилептическом припадке. Особый интерес представляют изменения скорости свертывания крови в гипнозе, когда человеку внушают, что он ранен, и в это время свертываемость возрастает так: как будто это происходит в действительности.

Противосвертывающая система крови .

Еще в 1904 году известный немецкий ученый - коагулолог Моравиц впервые высказал предположение о наличие в организме противосвертывающей системы, которая сохраняет кровь в жидком состоянии, а также о том что свертывающая и антисвертывающая системы, находятся в состоянии динамического равновесия.

Позже эти предположения подтвердились в лаборатории, возглавляемой профессором Кудряшовым. В 30-е годы был получен тромбин, который вводился крысам с целью вызвать свертывание крови в сосудах. Оказалось, что кровь в этом случае вообще перестала свертываться. Значит, тромбин активизировал какую-то систему, которая препятствует свертыванию крови в сосудах. На основании этого наблюдения, Кудряшов пришел также к выводу о наличии противосвертывающей системы.

Под противосвертывающей системой следует понимать совокупность органов и тканей, которые синтезируют и утилизируют группу факторов, обеспечивающих жидкое состояние крови, то есть препятствующих свертыванию крови в сосудах. К таким органам и тканям относятся сосудистая система, печень, некоторые клетки крови и др. Эти органы и ткани вырабатывают вещества, которые получили на звание ингибиторов свертывания крови или естественных антикоагулянтов. Они вырабатываются в организме постоянно, в отличие от искусственных, которые вводятся при лечении претромбических состояний.

Ингибиторы свертывания крови действуют по фазам. Предполагается, что механизм их действия заключается либо в разрушении, либо в связывании факторов свертывания крови.

В 1 фазе в качестве антикоагулянтов срабатывают: гепарин (универсальный ингибитор) и антипротромбиназы.

Во 2 фазе срабатывают ингибиторы тромбина: фибриноген, фибрин с продуктами своего распада - полипептиды, продукты гидролиза тромбина, претромбин 1 и II, гепарин и естественный антитромбин 3, который относится к группе глюкозоаминогликанов.

При некоторых патологических состояниях, например, заболевания сердечно - сосудистой системы, в организме появляются дополнительные ингибиторы.

Наконец, имеет место ферментативный фибринолиз, (фибринолитическая система) протекающий в 3 фазы. Так, если в организме много образуется фибрина или тромбина, то моментально включается фибринолитическая система и происходит гидролиз фибрина. Большое значение в сохранении жидкого состояния крови имеет неферментативный фибринолиз, о котором говорилось раньше.

По Кудряшову различают две противосвертывающие системы:

I-ая имеет гуморальную природу. Она срабатывает постоянно, осуществляя выброс всех уже перечисленных антикоагулянтов, исключая гепарин. II-ая - аварийная противосвертывающая система, которая обусловлена нервными механизмами, связанными с функциями определенных нервных центров. Когда в крови накапливается угрожающее количество фибрина или тромбина, происходит раздражение соответствующих рецепторов, что через нервные центры активизирует противосвертывающую систему.

Как свертывающая, так и противосвертывающая система регулируются. Давно было замечено, что под влиянием нервной системы, а также некоторых веществ, происходит либо гипер-, либо гипокоагуляция. Например, при сильном болевом синдроме, имеющем место при родах, может развиваться тромбоз в сосудах. Под влиянием стрессовых напряжений также могут образовываться в сосудах тромбы.

Свертывающая и антисвертывающая системы взаимосвязаны, находятся под контролем как нервных, так и гуморальных механизмов.

Можно предположить, что существует функциональная система, обеспечивающая свертывание крови, которая состоит из воспринимающего звена, представленного специальными хеморецепторами, заложенными в сосудистых рефлексогенных зонах (дуга аорты и синокаротидная зона), которые улавливают факторы, обеспечивающие свертывание крови. Второе звено функциональной системы - это механизмы регуляции. К ним относятся нервный центр, получающий информацию с рефлексогенных зон. Большинство ученых предполагает, что этот нервный центр, обеспечивающий регуляцию свертывающей системы, находится в области гипоталамуса. Эксперименты над животными показывают, что при раздражении задней части гипоталамуса имеет место чаще гиперкоагуляция, а при раздражении передней части - гипокоагуляция. Эти наблюдения доказывают влияние гипоталамуса на процесс свертывания крови, и наличие в нем соответствующих центров. Через этот нервный центр осуществляется контроль за синтезом факторов, обеспечивающих свертывание крови.

К гуморальным механизмам относятся вещества, меняющие скорость свертывания крови. Это прежде всего гормоны: АКТГ, СТГ, глюкокортикоиды, ускоряющие свертывание крови; инсулин действует двуфазно - в течение первых 30 минут ускоряет свертывание крови, а затем в течение нескольких часов - замедляет.

Минералокортикоиды (альдостерон) снижают скорость свертывания крови. Половые гормоны действуют по-разному: мужские ускоряют свертывание крови, женские действуют двояко: одни из них увеличивают скорость свертывание крови - гормоны желтого тела. другие же, замедляют (эстрогены)

Третье звено - органы - исполнители, к которым, прежде всего, относится печень, вырабатывающая факторы свертывания, а также клетки ретикулярной системы.

Как работает функциональная система? Если концентрация каких - либо факторов обеспечивающих процесс свертывания крови, возрастает или падает, то это воспринимается хеморецепторами. Информация от них идет в центр регуляции свертывания крови, а затем на органы - исполнители, и по принципу обратной связи их выработка или тормозится или увеличивается.

Регулируется также и антисвертывающая система, обеспечивающая крови жидкое состояние. Воспринимающее звено этой функциональной системы находится в сосудистых рефлексогенных зонах и представлено специфическими хеморецепторами, улавливающими концентрацию антикоагулянтов. Второе звено представлено нервным центром противосвертывающей системы. По данным Кудряшова, он находится в продолговатом мозге, что доказывается рядом экспериментов. Если, например, выключить его такими вещества ми, как аминозин, метилтиурацил и другими, то кровь начинает свертываться в сосудах. К исполнительным звеньям относятся органы, синтезирующие антикоагулянты. Это сосудистая стенка, печень, клетки крови. Срабатывает функциональная система, препятствующая свертыванию крови следующим образом: много антикоагулянтов - их синтез тормозится, мало - возрастает (принцип обратной связи).

В дальнейшем под влиянием тромбоцитарных факторов наступает сокращение нитей фибрина (ретракция), в результате чего происходит уплотнение сгустка и выделение сыворотки.

Следовательно, сыворотка крови отличается по своему составу от плазмы отсутствием в ней фибриногена и некоторых других веществ, участвующих в процессе свертывания крови.

Кровь, из которой удален фибрин, называют дефибринированной. Она состоит из форменных элементов и сыворотки.

Ингибиторы гемокоагуляции препятствуют внутрисосудистому свертыванию крови или замедляют этот процесс. Наиболее мощным ингибитором свертывания крови является гепарин.

Гепарин - естественный антикоагулянт широкого спектра действия, образуется в лаброцитах (тучных клетках) и базофильных лейкоцитах. Гепарин тормозит все фазы процесса свертывания крови.

Кровь, покидая сосудистое русло, свертывается и тем самым ограничивает кровопотерю. В сосудистом же русле кровь жидкая, поэтому она и выполняет все свои функции. Это объясняется тремя основными причинами:

· факторы системы свертывания крови в сосудистом русле находятся в неактивном состоянии;

· наличие в крови, форменных элементах и тканях антикоагулянтов (ингибиторов), препятствующих образованию тромбина;

· наличие интактного (неповрежденного) эндотелия сосудов.

Антиподом системы гемокоагуляции является фибринолитическая система, основной функцией которой расщепление нитей фибрина на растворимые компоненты. В ее состав входят фермент плазмин (фибринолизин), находящийся в крови в неактивном состоянии, в виде плазминогена (профибринолизина), активаторы и ингибиторы фибринолиза. Активаторы стимулируют превращение плазминогена в плазмин, ингибиторы тормозят этот процесс.

Процесс фибринолиза необходимо рассматривать в совокупности с процессом свертывания крови. Изменение функционального состояния одной из них сопровождается компенсаторными сдвигами в деятельности другой. Нарушение функциональных взаимосвязей между системами гемокоагуляции и фибринолиза может привести к тяжелым патологическим состояниям организма, либо к повышенной кровоточивости, либо к внутрисосудистому тромбообразованию.

К факторам, ускоряющим процесс свертывания крови, относятся: 1) тепло, так как свертывание крови является ферментативным процессом; 2) ионы кальция, так как они участвуют во всех фазах гемокоагуляции; 3) соприкосновение крови с шероховатой поверхностью (поражение сосудов атеросклерозом, сосудистые швы в хирургии); 4) механические воздействия (давление, раздробление тканей, встряхивание емкостей с кровью, так как это приводит к разрушению форменных элементов крови и выходу факторов, участвующих в свертывании крови).

К факторам, замедляющим и предотвращающим гемокоагуляцию, относятся: 1) понижение температуры; 2) цитрат и оксалат натрия (связывают ионы кальция); 3) гепарин (подавляет все фазы гемокоагуляции); 4) гладкая поверхность (гладкие швы при сшивании сосудов в хирургии, покрытие силиконом или парафинирование канюль и емкостей для донорской крови).



© dagexpo.ru, 2024
Стоматологический сайт