Отличительными свойствами сапонинов от гликозидов являются. Тритерпеновые сапонины. Распространенность и функции гликозидов

17.07.2019

Сапонины - что это такое?.. Данный вопрос и многие вытекающие из него «загадки» мы постараемся рассмотреть здесь. Данная статья позволит определить их классификацию, существующие виды, значение термина, качественные параметры физической и химической природы и т. д.

Введение

В соответствие со структурой агликона стероидные алкалоиды делятся на спиросолановые и соланидановые алкалоиды. Атом азота в таких веществах выступает в роли вторичного или третичного фрагмента цепи. Спиросолан - это аналог спиростана, содеражащий в себе азот. Соланидады располагают азотом лишь в индолизирующем фрагменте структуры. Существует углеводный компонент некоторого ряда гликоалкалоидов, который обладает собственным тривиальным наименованием.

Еще один гликозид соланидина - это хаконин. Его гликозидный фрагмент (β-хакотриоза) образуется из двух молекул рамнозы и одного моносахарида - глюкозы.

Процесс биосинтеза

Чтобы ответить на вопрос о том, что это такое - сапонины, необходимо ознакомиться с процессом их образования.

Биосинтез сапонина протекает в соответствии с указаниями изопреноидного пути, в ходе которого образуются тритерпены и стероиды. Происходит соединение трех единиц изопрена и пяти углеродных атомов, которые соединяются в «голову-хвост», которую называют 15-углеродным фарнезилдисосфатом. Две молекулы этого вещества подвергаются объединению и образуют 30-углеродный сквален. Полученное вещество (сквален) начинается окисляться до оксидоксвалена, который служит общей точкой исхода большинства реакций по циклизации процессов биосинтеза тритерпеноидов. Полученный оксидосквален начинает циклироваться, но лишь после подвергания раскрытию эпоксидного колечка и протонирования. В конечном итоге образуются карбокатионы.

Процесс нейтрализации протекает с удалением протона, в ходе чего образуется двойная форма связи или кольцо циклопропанов. При реагировании с H 2 O создает гидроксильную группу. Конкретизация стереохимии и форма скелета определяется благодаря набору участвующих в реакции циклаз.

Физиологическое воздействие

Сапонины влияют на организмы самым разнообразным образом. Если рассматривать на уровне гемолитической активности, то стоит отметить их способность создавать комплексное образование с молекулами холестерина. В ходе этого процесса создаются поры, расположенные в полости двойного слоя клеточной мембраны, например внутри эритроцитов. Подобная структура приводит к явлению гемолиза, который происходит при инъекции внутрь вен. Она дает возможность гемоглобину свободно проникать в плазму крови. Важно знать, что лишь глигокизы обладают гемолитической активностью, однако для организма человека или животных они токсичны, если вводить их напрямую в кровь. Пероральный прием снижает вред от сапонинов.

Рассматриваемые вещества обладают высокой токсичностью для животных, обладающих жабрами. Сапонины нарушают функциональные способности жабр, которые, помимо осуществления функции дыхания, участвуют в регуляции процессов солевого обмена и контролируют в организме показатели осмотического давления. Сапонины вызывают паралич и гибель холоднокровных обитателей водоемов. Агликоны не являются токсичным для таких животных.

Сапонины оказывают влияние на показатели проницаемости клеток растений. Некоторая их концентрация может ускорить семенное прорастание, а также взращивание и развитие растения. Использование больших концентраций может приводить к обратному эффекту в отношении упомянутых процессов. А также эти вещества обладают раздражающим воздействием на человеческие глаза, нос и полость рта. В зависимости от их концентрации, они могут вызывать усиление работы каждой железы в организме либо приводить к отравлению, диарее, рвоте и тошноте.

Существуют вещества сапонины, обладающие кардиотоническими и нейротрофными свойствами, среди которых можно отметить: аралозидные, календулозидные, патризидные и клематозидные соединения. Растительные сапонины могут оказывать лекарственное действие.

Способы эксплуатации

Способность к образованию пены позволяет сапонинам находить свое применение в качестве детергентов для огнетушителей. Эмульзирующие особенности дают им возможность использоваться при стабилизации дисперсной системы эмульсии или суспензии. Всегда используются они при изготовлении различных изделий кондитерской промышленности, а также с их помощью варят пиво. Фармакологическое действие сапонинов дает им возможность эксплуатироваться в качестве средств для: отхаркивания, выведения урины, поддержании тонуса организма, в качестве седативного средства или как вакцина.

Подытожим, можно сказать, что сапонины - это такие вещества, основное содержание которых сосредоточено в растительных организмах. Они могут оказывать как благотворное, так и негативное воздействие на организм. Могут быть токсичными и приводить к гибели множества живых существ. Широко применяются в медицине и детально исследуются биохимической отраслью наук.

Сапонинами называют группу природных соединений растительного или животного происхождения, обладающих поверхностной активностью и способных вызывать гемолиз эритроцитов. Молекулы сапонинов, как и других гликозидов, состоят из агликона, который носит название “сапогенин”, и углеводной части.

Впервые эта группа веществ была выделена в 1811 г. Шнайдером из мыльнянки, а термин “сапонины” ввел в 1819 г Мэлон на основании того, что растворы этих веществ при встряхивании способны образовывать обильную пену (“Sapo” в переводе с латинского означает мыло).

Установить полную структуру сапонинов долгое время не удавалось и с момента открытия сапонинов и до 60-х годов XX века, т.е. почти за 150 лет удалось изучить химическую структуру только четырех гликозидов сапонинового ряда. В 60 -х годах под руководством акад. Кочеткова были разработаны аналитические и препаративные условия исследования сапонинов, что позволило российским ученым занять лидирующее положение в области химии этой группы природных соединений. Так, в настоящее время известно более 200 тритерпеновых сапонинов с установленной структурой и более 150 из них изучены отечественными учеными.

Роль сапонинов в растениях. Сапонины находятся в клетках растений в растворенном виде. Эти соединения в больших количествах обнаруживаются в тех органах и тканях, которые интенсивно функционируют или содержат большое количество активно делящихся клеток: хлоропласты, меристематические участки, семена растений и т.д. В зависимости от состояния растительного организма содержание и скорость биосинтеза сапонинов изменяются в достаточно больших пределах, что указывает на значительную роль этих соединений в обмене веществ. Предполагается, что сапонины включаются в основной метаболизм в период роста растений, выполняя еще не изученные до настоящего времени регуляторные функции. Доказано, что сапонины используются растительными организмами для борьбы за существование и поддержания равновесия при антагонистических взаимоотношениях биологических систем, в частности, служат факторами невосприимчивости растений к грибковым заболеваниям.

Классификация сапонинов. Сапонины классифицируют в зависимости от химического строения агликона (сапогенина). По этому признаку все сапонины подразделяются на следующие группы:

1. Стероидные - при гидролизе распадаются на моносахариды и агликоны, содержащие 27 углеродных атомов в молекуле и имеющие в основе структуру циклопентанпергидрофенантрена.

В свою очередь стероидные сапонины подразделяются на гликозиды спиростенолового ряда с 6 циклами в стероидной части молекулы (I) и гликозиды фуростенолового ряда, у которых одно их колец раскрыто и боковая цепь в них содержит глюкозу (II):


2. Тритерпеновые - в основе лежит шестикратно повторяющаяся молекула изопрена, образуя соединение с суммарной формулой С 30 Н 48 .

Тритерпеновые сапонины по характеру агликона могут относиться к a- или b-амиринового ряду, лупановому или фриделиновому ряду:

3. Близкие к тритерпеновым сапонинам сапонины с агликоном тетрациклической стероидной структуры (в изучаемых нами растениях представлены производными дамарана - панаксатриолом панаксадиолом):

Распространение в растительном мире. Cапонины достаточно широко распространены в растениях: их присутствие достоверно установлено в 40 семействах.

Стероидные сапонины содержатся в растениях разных семейств, но преимущественно в семействах Liliaceae, Dioscoreaceae, Fabaceae, Ranunculaceae и Scrophulariaceae. Всего до настоящего времени известно около 150 стероидных гликозидов, из них более 100 спиростеноловых и около 40 - фуростеноловых. Сахарные компоненты стероидных сапониновых гликозидов по сравнению с другими гликозидами имеют более сложное строение. Они могут содержать от 1 до 9 моносахаров, соединенных между собой как линейно, так и с разветвлением цепи.

Тритерпеновыми сапонинами наиболее богаты семейства Caryophyllaceae, Ranunculaceae, Fabaceae и Asteraceae. В сахарных компонентах тритерпеновых сапонинов может находиться от 1 до 10 различных моносахаров и их присоединение может быть в одном или нескольких местах. Помимо этого сахарные компоненты могут иметь раздвоение цепей. В состав углеводного компонента тритерпеновых сапонинов кроме обычных моносахаров могут входить глюкуроновые или галактуроновые кислоты, а также остатки органических кислот - коричной, уксусной и др., что придает молекуле кислый характер,

Сапониновые гликозиды с агликоном тетрациклической стероидной структуры широко распространены в семействе Araliaceae. Яркими представителями являются сапонины жень-шеня, представленые так называемыми панаксозидами - производными панаксодиола и панаксотриола. В сахарных компонентах панаксозидов содержатся от 3 до 6 моносахаридных остатков в 2-х углеводных цепях, связанных О-гликозидными связями.

Биогенез сапонинов в растениях. Тритерпеновые и стероидные сапонины синтезируются в растениях по изопреноидному пути. Их биогенетическим предшественником является сквален, который образуется путем соединения «хвост к хвосту» двух молекул фарнезилпирофосфата (см. «Биосинтез терпеноидов», «Биосинтез сердечных гликозидов»).

Физико-химические свойства сапонинов . Свойства сапонинов зависят как от структуры сапогенина, так и от строения углеводного компонента. Гликозиды сапонинов, как правило, аморфные вещества. Их кристаллизуемость зависит от длины углеводного компонента: имеющие в своем составе до 4-х монозидов могут быть получены в кристаллическом виде. Сапогенины же, как правило, являются кристаллическими соединениями с четко выраженной температурой плавления. Сапонины являются поверхностно активными веществами и обладают оптической активностью.

Сапонины не растворимы в хлороформе, ацетоне, петролейном эфире, но растворимы в низших спиртах. Растворимость сапонинов в воде определяется длиной углеводного компонента: гликозиды, имеющие менее 5-ти углеводных остатков плохо растворимы в воде.

Из водных или водно-спиртовых растворов сапонины можно осадить добавлением водоотнимающих агентов (эфира, ацетона) или добавлением солей тяжелых металлов.

Тритерпеновые сапонины и, в меньшей степени, стероидные, способны образовывать комплексы с фенолами, высшими спиртами и стеринами. На этом основана гемолитическая активность сапонинов. Механизм гемолиза эритроцитов заключается в следующем. Вначале образуется прочный комплекс сапониновых гликозидов с компонентами эритроцитарных мембран, содержащих остатки жирных кислот. Под действием ферментов происходит гидролиз гликозидов до свободных сапогенинов. В свою очередь, образовавшиеся сапогенины становятся способными к конкуренции со структурными белками мембраны за липопротеины. В итоге происходит ее разрушение и происходит выход гемоглобина и другого содержимого из эритроцитарных клеток.

Тритерпеновые сапонины могут быть нейтральными или кислыми, что обусловлено наличием в агликоне карбоксильной группы или присутствием уроновых и органических кислот в углеводном компоненте.

Кислые сапонины образуют растворимые соли с одновалентными металлами и нерастворимые - с двухвалентными.

Многие сапонины способны образовывать молекулярные комплексы с белками, липидами и дубильными веществами.

Все сапонины неустойчивы в кислой среде, поскольку в этих условиях происходит расщепление гликозидных связей.

Выделение сапонинов из растительного сырья . Выделение сапониновых гликозидов включает в себя получение из растительного материала суммарного экстракта, его очистку от балластных веществ и последующее разделение смеси на индивидуальные компоненты.

Наиболее распространенным методом выделения сапониновых гликозидов является экстракция водным метиловым, этиловым или изопропиловым спиртами с предварительным обезжириванием сырья петролейным, диэтиловым эфирами или другими гидрофобными растворителями. Необходимость этой операции связана с присутствием в растениях жироподобных веществ, прежде всего стеринов, с которыми большинство сапонинов способны образовывать нерастворимые в водных спиртах комплексные соединения.

При экстракции сапонинов водными спиртами необходимо соблюдать ряд предосторожностей. Так, например, наличие в растениях органических кислот может привести к их деструкции (кислотному гидролизу) сапоновых гликозидов. Для устранения этого нежелательного эффекта в экстрагент добавляют небольшое количество пиридина, связывающего органические кислоты.

Подбор растворителя для экстракции зависит от строения извлекаемых веществ. Высокополярные гликозиды обычно экстрагируют водным бутиловым спиртом.

Для извлечения тритерпеновых сапонинов кислого характера используют разбавленный водный аммиак или водный раствор соды, так как эти соединения, содержащие небольшую углеводную составляющую, хорошо растворимы в щелочах и выпадают в осадок при подкислении.

Гликозиды, содержащие небольшое количество моносахаридных остатков, могут быть очищены переосаждением из спиртовых растворов водой.

Полярные сапонины, плохо растворимые в метаноле или этаноле, выпадают в осадок при охлаждении или длительном стоянии концентрированных спиртовых экстрактов.

Некоторые гликозиды, содержащие глюкуроновую кислоту, могут осаждаться гидроокисью бария или свинца, ацетатом свинца, а осадки затем разлагают серной кислотой, углекислотой или сероводородом.

Разделение и очистку сапонинов осуществляют самыми различными приемами (осаждением ацетоном или другими водоотнимающими агентами, гель-фильтрацией, хроматографией на колонках с оксидом алюминия или силикагелем, ионообменной хроматографией и др.), что зависит от химического строения сапонинового гликозида.

Качественный анализ сапонинов . Обычно для качественных реакций готовят водный настой 1:10, нагревая измельченное растительное сырье на водяной бане в течение 10 мин.

Для обнаружения сапонинов в растительном сырье пользуются реакциями, основанными на физико-химических, химических и биологических свойствах этих веществ.

К первой группе относится реакция пенообразования. Это не только чувствительная, но и довольно характерная проба, так как других веществ, обладающих способностью к пенообразованию, в растениях не встречается.

Реакцией пенообразования можно дифференцировать присутствие в сырье либо стероидных, либо тритерпеновых сапонинов. Для этого в две пробирки помещают 0,1 Н хлороводородную кислоту или 0,1 Н раствор натрия гидроксида. При наличии в сырье тритерпеновых сапонинов в обеих пробирках образуется пена, равная по объему и устойчивости. Если сырье содержит сапонины стероидной группы, то в среде щелочи образуется пена, в несколько раз больше по объему и устойчивости.

Ко второй группе относятся реакции осаждения и цветные реакции.

1. Из водных растворов сапонины осаждаются гидрооксидом бария или магния, солями меди, ацетатом свинца. При этом тритерпеновые сапонины осаждаются средним ацетатом свинца, а стероидные - основным.

2. Из спиртовых извлечений стероидные и тритерпеновые сапонины выпадают в осадок в виде холестероидов при добавлении спиртового раствора холестерина.

3. Стероидные сапонины дают реакцию Либермана-Бурхарда: растворенные в ледяной уксусной кислоте, при добавлении смеси уксусного ангидрида и концентрированной серной кислоты, образуют окраску от розовой до зеленой и синей.

4. Тритерпеновые сапонины обнаруживаются реакцией с уксусным ангидридом и концентрированной серной кислотой в хлороформной среде - развивается оранжевое окрашивание.

К биологическим методам обнаружения сапонинов относится реакция гемолиза эритроцитов . К настою, приготовленному на изотоническом растворе, прибавляют 2% взвесь эритроцитов - образуется “лаковая” кровь.

Следует иметь в виду, что существуют сапонины, практически не проявляющие гемолитических свойств. Поэтому для определения неизвестных веществ всегда дополнительно пользуются реакциями, основанными на химических свойствах.

Количественное определение сапонинов . Для количественного определения сапонинов в растительном сырье используются биологические и физико-химические методы.

К биологическим методам относится определение гемолитического индекса. Гемолитический индекс - это минимальная концентрация сапонина, выражаемая в микрограммах на литр, которая вызывает полный гемолиз 2% суспензии дефибринированной плазмы крови. Следует иметь в виду, что различные сапонины при одинаковой концентрации имеют разный гемолитический индекс. Поэтому каждое сырье должно иметь свой стандарт - раствор соответствующего чистого сапонина.

Общих физико-химических методов определения сапонинов в сырье не существует. В некоторых случаях может быть применен гравиметрический способ, основанный на весовом определении сапогенина после кислотного гидролиза суммы сапониновых гликозидов. Широко применяются фотоэлектроколориметрические методы после проведения химической реакции, в результате которой образуются устойчивые окрашенные продукты.

Поскольку сапонины поглощают свет в области 260-280 нм, к ним применимы прямые спектрофотометрические методы количественного анализа.

Сапонины, являющиеся производными спиростана, флуоресцируют в УФ свете. Их можно определять флуориметрическими методами.

Некоторые сапонины, имеющие кислый характер, определяют титриметрическим способом. Наибольшее распространение получил метод нейтрализации в неводной среде.

Сапонины - это сложные органические соединения из гликозидов растительного происхождения. Элементы обладают сложной структурой и воздействуют на человеческий организм в широком спектре в зависимости от составляющих соединений.

Физические и химические свойства

Молекулярная формула такого соединения очень сложна и может распадаться на большое количество отдельных элементов. Сапонины можно условно разделить на два основные группы:

    Стероидные сапонины. Данный элемент относится к группе гликозидов и обладает сложной структурой, которая состоит моносахаридов;

    Тритерпеновые сапонины. В этом варианте цепь состоит из углеводных цепочек.

При растворении в воде элемент дает густую пену, поэтому часто входит в состав моющих средств и в пищевых продуктах. Однако применение внутрь обладает еще более широким эффектом, а извлекают из разнообразных растений.

Применение и особенности

Сапонины используют для лечения различных заболеваний. Вещество обладает широким спектром воздействия и может повлиять на организм следующим образом:

Отхаркивающее средство. Действует возбуждающе на дыхательную систему и усиливает выработку слизи, поэтому поможет быстрее прочистить бронхи и избавиться от очага инфекции.

    Мочегонное и слабительное средство. Элемент способен распадаться на отдельные соединения и стимулирует выработку ферментов.

    Гормональное воздействие. Стероидные сапонины активируют синтез кортикостериодов и стимулируют выработку гормонов, обладая эмульгирующим эффектом.

    Лечение атеросклероза. Сложные соединения распадаются на отдельные элементы и могут очищать кровь от жировых веществ, которые образуют артериальные бляшки.

По вкусовым ощущениям вещество обладает неприятным вкусом и может вызывать чихание. Прием внутрь возможен и в профилактических целях, а попадание в организм не несет прямой угрозы для человека. Однако передозировка препарата вызывает раздражение желудочно-кишечного тракта.

Разные типы могут иметь различный эффект на организм человека. К примеру, стероидная группа используется при гипертонии и лечит атеросклероз. Тритерпеноидные сапиноны воздействуют на выработку гормонов и активизируют работу секреций желез.

Стоит отметить и то, что эти растительные элементы можно получить из разных растений, и в зависимости от этого может поменяться и причина приема препарата. Если экстракт солодки с сапонинами лечит почечную недостаточность, то препарата на основе синюхи лазурной чаще используется в качестве отхаркивающего средства. В женьшене также содержится определенное количество этого полезного вещества.

Сапонины оказывают благоприятное воздействие на уровень холестерина, стимулируют иммунную систему, оказывают антиоксидантное действие и даже могут поддерживать прочность костей

Сапонины – это встречающиеся в природе растительные гликозиды. Сапонины обладают мылоподобными качествами и при смешивании с водой производят мыльную пену. Более ста семейств растений содержат сапонины. Выделяют более 11 классов сапонинов: даммараны, тирукалланы, люпаны, гопаны, олеананы, тараксастераны, урсаны, циклоартраны, ланостаны, кукурбитаны и стероиды. Считается, что много других разновидностей сапонинов остаются нераскрытыми.

Слово сапонин происходит от латинского слова sapo – «мыло». Верный своему имени, корень растения сапонария традиционно используется в качестве мыла.

Сапонины очень полезны для здоровья человека. Исследования показали, что эти вещества укрепляют иммунную систему, нормализуют уровень холестерина в крови, а также улучшают общее самочувствие человека.

Почему сапонины полезны?

Сапонины имеют уникальную химическую структуру, которая производит пену при смешивании с водой (так же, как моющее средство). Сапонины могут связываться с водой, а также с жирами и маслами. Это означает, что в желудочно-кишечном тракте сапонины производят эмульгирование жирорастворимых молекул. В частности, сапонины связываются с желчными кислотами и помогают выводить их из организма, предотвращая реабсорбцию холестерина. Можно даже сказать, что сапонины «смывают» различные токсины.

Уникальная химическая структура сапонинов обусловливает их потенциальную пользу для здоровья. Сапонины оказывают благоприятное воздействие на уровень холестерина, стимулируют иммунную систему, оказывают антиоксидантное действие и даже могут поддерживать прочность костей.

Сапонины полезны для снижения уровня холестерина

Сапонины снижают уровень холестерина в крови. Организм использует холестерин для получения желчи, необходимой для пищеварения. Сапонины связываются с желчью и предотвращают реабсорбцию холестерина обратно в кровь. Многие лекарственные препараты для снижения уровня холестерина работают таким же образом.

То, что сапонины могут снижать уровень холестерина, было известно на протяжении многих десятилетий. Исследование 1977 животных показало, что эти вещества снижают поглощение холестерина. Отдельное исследование показало, что когда крысам давали экстракт сапонинов, то у них снижался уровень «плохого» холестерина, не влияя на уровень «хорошего» холестерина.

Сапонины полезны для укрепления иммунной системы

Важные для профилактики рака вещества

Сапонины эффективно подавляют рост раковых клеток. В частности, некоторые сапонины оказывают антиоксидантное действие и могут быть токсичными по отношению к раковым клеткам.

Мембрана раковых клеток содержит вещества по типу холестерина. Сапонины способны связываться с этими соединениями и нарушают пролиферацию раковых клеток. Согласно статье, опубликованной в журнале «Питание», сапонины из соевых бобов могут замедлить рост раковых клеток. Другие исследования также показали, что сапонины вызывают гибель раковых клеток и замедляют рост опухоли.

Другие полезные свойства сапонинов

Исследования открыли много полезных свойств сапонинов. В частности, было показано, сапонины из кукубхи (Арджун дерева) могут быть полезны при заболеваниях почек или мочевых камней. В другом исследовании было показано, что сапонины могут быть полезны для лечения депрессии.

Другие положительные качества сапонинов включают поддержку клеток Купфера в печени и поощрение нормальной детоксикации. Сапонины, которые были обнаружены в овсе и шпинате, улучшают пищеварение, ускоряют способность организма усваивать кальций и кремний. В исследованиях на животных было показано, что сапонины нормализуют уровень сахара в крови и поддерживают нормальную плотность костной ткани.

Где содержатся сапонины?

Сапонины широко распространены в пищевых продуктах, часто добавляемых в качестве эмульгатора. Некоторые газированные напитки содержат сапонины, извлекаемых из юкки и квиллайи. Эти вещества применяют для образования пены в напитках.

Оболочку ягод растения сапиндус можно применять в качестве естественного моющего средства для стирки. Это растение также называют мыльным деревом. Твердая оболочку, которая напоминает орех (мыльный орех), высвобождает сапонины, которые при контакте с водой действуют в качестве моющего средства. Это прекрасное средство для стирки! Вы когда-либо применяли сапонины? Оставьте свой комментарий ниже и поделитесь с нами своей информацией.

Тема лекции

Лекция №3

1. Понятие о сапонинах.

2. Строение сапонинов, их классификация.

3. Биосинтез сапонинов.

4. Распространение сапонинов в растительном мире, локализация в растениях. Влияние условий обитания и онтогенеза на накопление сапонинов.

5. Сырьевая база растений, содержащих сапонины.

6. Физические, химические и биологические свойства сапонинов.

7. Оценка качества сырья, содержащего сапонины. Методы анализа.

8. Особенности сбора, сушки и хранения сырья, содержащего сапонины.

9. Пути использования сырья, содержащего сапонины.

10. Медицинское применение сырья и препаратов, содержащих сапонины.

Понятие о сапонинах

Сапонины - гетерозиды растительного происхождения, производные стероидов и тритерпеноидов, обладающие гемолитической и поверхностной активностью, а таю/се токсичностью к холоднокровным животным.

Название происходит от латинского слова sapo - мыло, т.к. водные извлечения этих соединений обладают способностью пениться, т.е. понижать поверхностное натяжение жидкостей.

Впервые сапонины были выделены в чистом виде из растений рода Saponaria sp. (мыльнянка).

Как и другие гетерозиды, сапонины способны подвергаться ферментативному гидролизу с образованием углеводной части и агликона. Агликоны сапонинов получили название «сапогенины».

Строение сапонинов, их классификация

В основе классификации сапонинов лежит структура агликона. В зависимости от строения сапогенина все сапонины делят на группы:

1. Стероидные сапонины - производные циклопентанпергидрофенан-трена. По своему строению близки к сердечным гликозидам и часто их сопровождают в растениях (Digitalis sp., Convallaria majalis, Adonis vernalis).

Все стероидные сапогенины в своей структуре имеют:

В 3 положении - гидроксильную (-ОН) группу;

В 10 и 13 положениях - метальные (-СН3) группы;

В положении 5-6 - двойную (-СН=СН-) связь;

В положении 16-17 - спирокетальную группировку.

В зависимости от ориентации спирокетального кольца стероидные сапонины делят на соединения «нормального» ряда и «изо»-ряда.

Углеводная часть молекулы стероидных сапонинов присоединяется в положении 3 агликона и может содержать 1-9 моносахаридов (глюкоза, галактоза, рамноза, галактуроновая кислота и др.). Моносахариды могут образовывать как линейные, так и разветвленные цепи. Например, стероидный сапонин диосцин (Dioscorea nipponica - диоскорея ниппонская, Tribulus terrestris - якорцы стелющиеся) состоит из агликона диосгенина, к которому присоединяется разветвленная триоза:

2. Тритерпеновые сапонины - имеют общую формулу (C5H8)6 и, в зависимости от количества колец в структуре агликона, делятся на 2 группы:



а) тетрациклические - содержат в структуре агликона 4 кольца. В основе этой группы лежит даммаран. Производные даммарана легко окисляются с образованием гетероциклов (панаксдиол и панакстриол). Соединения подобного строения обнаружены в женьшене (Panax ginseng), заманихе высокой (Echynopanax elatum), березе (Betula sp).

б) пентациклические - содержат в структуре агликона 5 колец. Среди этой группы выделяют несколько подгрупп. С медицинской точки зрения, наиболее важными являются производные α-амирина и β-амирина, которые отличаются друг от друга расположением заместителей - метальных (-СНз) фупп в положениях 19 и 20 кольца Б.

α-амирин лежит в основе различных соединений, которые найдены в ортосифоне тычиночном или почечном чае (Ortosyphon stamineus), лапчатке прямостоячей (Potentilla erecta) и других. Наиболее важным представителем является урсоловая кислота (28-карбокси-α-амирин). Урсоловая кислота обнаружена во многих растениях (бруснике обыкновенной - Vaccinium vitis-idaea, клюкве четырехлепестной - Qxycoccus quadripetalus и др.), причем встречается в виде как гликозидов, так и свободного агликона.

β-амирин лежит в основе следующих веществ:

- олеаноловая кислота (28-карбокси-β-амирин). Олеаноловая кислота является агликоном сапонинов (аралозидов) аралии манчжурской (Araliamandshurica), синюхи голубой (Polemonium caeruleum), каштана конского(Aesculus hyppocastanum), первоцвета весеннего (Primula veris), календулы лекарственной (Calendula officinalis), патринии средней (Patrinia intermedia) и др.

- глицирретиновая кислота (11-оксо-29-карбокси-β-амирин). Глицирретиновая кислота является агликоном глицирризиновой кислоты (в 3 положенииприсоединяется углеводная цепь из двух молекул глюкуроновой кислоты). Глицирризиновая кислота содержится в солодке голой (Glycyrrhiza glabra) и солодке уральской (G.uralensis).

Углеводная часть тритерпеновых сапонинов может присоединяться к агликону в различных положениях:

В 3 положении за счет гидроксильной (-ОН) группы;

В 28 положении за счет карбоксильной (-СООН) группы (при этом связь агликона с сахаром называется ацилгликозидной);

С сапогенином могут быть связаны две углеводные цепи (за счет гидроксильной группы в 3 положении и карбоксильной группы в 28 положении). В этом случае сапонины относятся к дигликозидам.

Углеводная часть тритерпеновых гликозидов может содержать 1-11 моносахаридов (глюкоза, галактоза, рамноза, арабиноза, фруктоза, глюкуроновая и галактуроновая кислоты). Она может быть линейной и разветвленной (например, у аралозидов - сапонинов аралии манчжурской). Разветвление углеводной цепи происходит от первого сахарного остатка, связанного с агликоном.

Биосинтез сапонинов

Биогенетическим предшественником агликонов как стероидных, так и тритепеновых сапонинов в растениях является сквален.

Под воздействием ферментов сквален подвергается стереоспецифической циклизации. Бели циклизация сопровождается потерей атомов углерода, образуется холестерол, содержащий 27 атомов углерода. При окислении и циклизации боковой углеродной цепи холестерола (из 8 атомов) образуется диосгенин.

Образование тетрациклических тритерпеновых сапогенинов идет, вероятно, через стадии биосинтеза стероидных соединений. Данный вопрос пока еще до конца не изучен и является научной гипотезой.

Распространение сапонинов в растительном мире,

локализация ерастениях. Влияние условий обитания

и онтогенеза на накопление сапонинов

В растительном мире более широко распространены тритерпеновые сапонины. Они обнаружены в растениях почти 70 семейств. Наиболее богаты тритерпеновыми сапонинами представители семейств аралиевые (Araliaceae), синюховые (Polemoniaceae), бобовые (Fabaceae), астровые (Asteraceae), яснотковые (Lamiaceae) и др.

Стероидные сапонины встречаются значительно реже и обнаружены, главным образом, в растениях семейств диоскорейные (Dioscoreaceae), лилейные (Liliaceae), норичниковые (Scrophulariaceae), парнолистниковые (Zygophyllaceae), лютиковые (Ranunculaceae), амарилиссовые (Amarillidaceae). Стероидные сапонины часто сопровождают в растениях сердечные гликозиды (Digitalis sp., Convallariamajalis, Adonis vernalis).

Растения, вырабатывающие тритерпеновые сапонины, не содержат стероидные, и наоборот.

В растениях сапонины обычно находятся в клеточном соке почти всех органов в растворенном виде.

Сапонины найдены во всех органах растений:

В траве (астрагал шерстистоцветковый - Astragalus dasyantus, хвощ полевой - Equisetum arvense, якорцы стелющиеся - Tribulus terrestris);

В листьях (почечный чай - Ortosyphon stamineus);

В семенах (кашатан конский - Aesculus hyppocastanum);

В подземных органах (диоскорея ниппонская - Dioscorea nipponica, синюха голубая - Polemonium caeruleum, заманиха высокая - Echynopanax elatum, солодка голая - Glycyrrhiza glabra и с.уральская G.uralensis, женьшень - Рапах ginseng, аралия манчжурская - Aralia mandshurica).

В подземных органах накапливается наибольшее количество сапонинов.

Предположительно, сапонины принимают участие в биохимических процессах в растениях:

В малых концентрациях они ускоряют прорастание семян, рост и развитие растений, а в больших, наоборот, тормозят. Таким образом, сапонины играют роль гормонов роста растений;

Сапонины оказывают влияние на проницаемость растительных клеток, что связано с их поверхностной активностью.

На накопление сапонинов влияют стадии онтогенеза (т.е. развития) растений. Максимальное количество сапонинов в сырье содержится в фазы:

Бутонизации и начала цветения (ортосифон тычиночный и астрагал шерстистоцветковый);

В конце вегетации, когда биомасса лекарственного растительного сырья максимальна (солодки, синюха, заманиха, аралия, женьшень, диоскорея);

В период плодоношения (каштан конский).

Дикорастущая синюха голубая достигает максимальной продуктивности к 5-6 году жизни, а в культуре - к 2-3 году. При этом содержание сапонинов в подземных органах находится на одном уровне;

Влияние факторов внешней среды на накопление сапонинов строго специфично. Среди них трудно выявить общие закономерности для всех растений. Отметим лишь отдельные моменты:

Растения семейства аралиевых являются эндемиками Дальнего Востока, где сложился собственный климатический и почвенный режим;

Зависимость накопления глицирризиновой кислоты от типа почв и ее засоленности характерна для солодки. Чем больше засоленность, тем меньше глицирризиновой кислоты содержат корни солодки. Повышение влажности почвы способствует накоплению глицирризиновой кислоты.

Сырьевая база растений, содержащих сапонины

Синюха голубая растет по опушкам и вдоль лесных дорог в лесной и лесостепной зонах европейской части России и Сибири,

Женьшень, заманиха, аралия, диоскорея ниппонская встречаются в лесах Дальнего Востока (Приморский, Хабаровский края).

Солодки голая и уральская часто образуют сплошные заросли в поймах и долинах рек в степных и пустынных районах европейской части России и Сибири.

В этих же регионах, как сорняк, встречаются якорцы стелющиеся.

Синюха голубая не образует крупных зарослей, пригодных для промышленных заготовок, в связи с чем, ее культивируют.

Женьшень культивируют на Дальнем Востоке.

Ортосифон тычиночный импортируют из стран тропической Азии.

В последние годы перспективным является метод культуры тканей. Он заключается в выращивании на определенных питательных средах биомассы сырьевой части лекарственных растений. Полученная таким образом биомасса используется в дальнейшем для получения лекарственных препаратов.

В России метод культуры тканей был разработан и освоен на примере женьшеня. Культура тканей женьшеня под названием «Биоженьшень» используется для получения настойки.

Физические, химические и биологические свойства

сапонинов

Физические свойства. Сапонины - бесцветные или желтоватые аморфные вещества. В кристаллическом состоянии выделены гликозиды, имеющие в углеводной цепи до 4 моносахаридов. Оптически активны.

Гликозиды растворимы в воде. Растворимость увеличивается с возрастанием углеводной цепи. В разведенных (60-70%) спиртах растворяются на холоду; в более крепких (80-90%) спиртах - только при нагревании, а при охлаждении выпадают в осадок. Нерастворимы в органических растворителях (ацетон, хлороформ, бензол).

Свободные сапогенины не растворяются в воде и хорошо растворимы в органических растворителях.

В зависимости от рН водных растворов сапонины делят на:

- нейтральные - стероидные и тетрациклические тритерпеновые сапонины;

- кислые - пентациклические тритерпеновые сапонины. Их кислотность обусловлена наличием карбоксильных (-СООН) групп в структуре агликона или присутствием уроновых кислот в углеводной цепи.

Специфическим свойством сапонинов является их способность снижать поверхностное натяжение жидкостей (воды) и давать при встряхивании стойкую обильную пену. Такая поверхностная активность связана с наличием в молекулах сапонинов одновременно как гидрофильного, так и липофильного остатков.

Химические свойства обусловлены структурой агликона, наличием отдельных функциональных групп, а также присутствием гликозидной связи.

Сапонины гидролизуются под влиянием ферментов и кислот. Производные олеаноловой и глицирритиновой кислот гидролизуются под воздействием щелочей.

При взаимодействии с кислотными реагентами (SbCl3, SbCl5, FeCl3, конц. H 2 SO 4) образуют окрашенные продукты.

Кислые сапонины образуют нерастворимые комплексы с солями тяжелых металлов (Ва, РЬ).

Сапонины способны образовывать комплексы с белками, стеринами, липидами, фенольными соединениями. В составе комплексов сапонины не обладают гемолитической и поверхностной активностью.

Сапонины, имеющие в своей основе стероидное ядро, вступают в специфическую реакцию Либермана-Бурхарда.

Биологические свойства. Сапонины обладают гемолитической активностью. Они способны растворять липидную часть оболочки эритроцитов. В результате этого оболочка из полупроницаемой становится проницаемой. Гемоглобин свободно поступает в плазму крови и растворяется в ней. Образуется красный прозрачный раствор - «лаковая кровь».

Гемолитической активностью обладают только гликозиды. В связи с этим сапонины не применяются для внутривенного введения, т.к. вызывают анемию. При приеме внутрь, после гидролиза в желудочно-кишечном тракте до агликонов, сапонины теряют гемолитическую активность.

Гемолиз эритроцитов вызывают не все сапонины. Этим свойством не обладают сапонины солодки. -

Сапонины токсичны для холоднокровных животных (рыбы, лягушки, круглые черви). Они нарушают функцию жабер, которые являются не только органом дыхания, но и регулятором солевого осмотического давления в организме. Сапонины парализуют или вызывают гибель холоднокровных животных даже в больших разведениях (1:1 000 000).

Агликоны сапонинов для холоднокровных животных не токсичны.

Оценка качества сырья, содержащего сапонины.

Методы анализа

Наличие сапонинов в лекарственном растительном сырье можно установить при помощи качественных реакций, которые проводят непосредственно с сырьем или с извлечением из него.

Качественные реакции на сапонины основаны на их физических, химических и биологических свойствах.

Государственная фармакопея XI издания (вьш.2) рекомендует использовать качественные реакции для подтверждения подлинности для трех видов сырья.

1. Корневища с корнями синюхи голубой . С водным извлечением проводят реакцию пенообразования, основанную на способности сапонинов снижать поверхностное натяжение жидкости (воды) и давать в отваре стойкую обильную пену после встряхивания»

2. Корни аралии манчжурской . Метанольное извлечение хроматографируют в тонком закрепленном слое селикагеля (на пластинках «Силуфол») в системе растворителей хлороформ-метанол-вода (61:32:7). В качестве свидетеля используют раствор «Сапарала». Хроматограмму проявляют 20% H 2 SO 4 и нагревают в сушильном шкафу (t=lO5°C) в течение 10 мин. Появляются пятна вишневого цвета.



© dagexpo.ru, 2024
Стоматологический сайт