Передача тепловой и электрической энергии. Экспериментальные морские ГЭС

21.09.2019

Электрическая энергия для нужд промышленных предприятий жилых районов вырабатывается на электрических станциях. На этих станциях происходит преобразование энергии воды, топлива, атомной энергии и т.д. в электрическую энергию. В этом процессе преобразования энергии можно выделить две основные ступени: сначала первичная энергия в различного рода двигателях преобразуется в механическую энергию, а затем механическая энергия в электромагнитных генераторах преобразуется в электрическую энергию.

В зависимости от вида преобразуемой природной энергии электрические станции разделяют на гидравлические, тепловые, атомные и т.д., а в зависимости от мощности (и назначения) они называются районными и местными. Местные электростанции в отличие от районных имеют ограниченный радиус действия и сравнительно малую мощность.

На районных электрических станциях устанавливают трехфазные электрические генераторы переменного тока. Станции же местного назначения могут иметь и генераторы постоянного тока.

Основным типом тепловых электрических станций являются паротурбинные электрические станции, которые сооружаются на местах нахождения топлива (угля, торфа, сланца, газа и др.), обычно на значительном расстоянии от потребителя.

Паротурбинные станции, которые вырабатывают только электрическую энергию, называются тепловыми электрическими станциями (ТЭС). На них пар, отработавший в турбинах, конденсируется в специальных устройствах и снова подается в котел. Поэтому такие станции часто называются конденсационными. Упрощенная схема конденсационной электрической станции показана на рисунке 8.1.1.

Пар из котла К под давлением 24 МПа и с температурой 838 °К по трубопроводу поступает в турбину Т, где значительная часть внутренней энергии пара превращается в механическую энергию ротора турбины. Из турбины пар поступает в теплообменный аппарат-конденсатор Кр, где за счет проточной воды охлаждается и конденсируется. Конденсат с помощью центробежного насоса Н снова поступает в котел.

Механическая энергия турбины в генераторе Г преобразуется в электрическую энергию, которая по высоковольтной линии и распределительным сетям поступает к потребителям. Схема потерь энергии в процессе ее преобразования, передачи и распределения, показана на рисунке 8.1.2.


За 100% принята энергия топлива, поступающего в котел. Потери энергии в современных паровых котлах составляют примерно 1,5%, в турбине - 55%, а в генераторе - 0,5%. Часть энергии генератора (3%) используется на собственные нужды станции для электропривода насосов, различных механизмов и освещения. Таким образом, КПД современной паротурбинной электростанции составляет 40%.

Существуют электрические тепловые станции, которые одновременно с электрической энергией снабжают потребителей паром и горячей водой. Это так называемые теплоэлектроцентрали (ТЭЦ). На них применяют специальные теплофикационные паровые турбины, которые позволяют производить предварительный отбор пара, еще не полностью отработанного, и использовать его для технологических нужд предприятий и бытовых нужд.

Благодаря тому что в ТЭЦ пар выходит из турбины под ббль- шим давлением (5...7 ат), чем на электростанциях конденсационного типа (0,05...0,06 ат), выработка электроэнергии на 1 кг пара в них меньше, чем на конденсационных электростанциях. Общее же полезное использование теплотворной способности топлива значительно больше и достигает 80%. Однако пар и горячая вода от ТЭЦ могут передаваться потребителям по трубам только в радиусе 12... 15 км, что существенно ограничивает их распространение.

Атомные электрические станции, по существу, являются также тепловыми станциями, но источником энергии в них служит ядер- ная энергия, которая выделяется при делении ядер атомов тяжелых элементов. Деление ядер происходит в специальном устройстве - реакторе, где выделяется большое количество тепла. Простейшая схема атомной электростанции приведена на рисунке 8.1.3.


Она состоит из реактора Р, парогенератора ПГ, турбины Т, электрического генератора Г, теплообменника-конденсатора Кр и центробежных насосов Я.

Ядерный реактор и парогенератор имеют биологическую защиту БЗ от излучения. Выделяющееся в реакторе тепло с помощью жидкого или газообразного теплоносителя поступает по трубам в парогенератор. В парогенераторе теплоноситель омывает трубы, в которые насосом Я закачивается конденсат из турбины, и конденсат снова превращается в пар, поступающий в турбину, а теплоноситель с помощью насосов возвращается в реактор. В отличие от обычной тепловой электростанции атомная электростанция имеет замкнутый контур радиоактивного теплоносителя. Турбины и прочее оборудование, составляющее второй контур, лишенный радиоактивности, связаны с первым лишь через теплообменник-парогенератор.

Атомные реакторы бывают разных типов. В качестве примера приведем некоторые данные реактора, установленного на Нововоронежской АЭС. Он представляет собой стальной цилиндр высотой более Ими диаметром 3,8 м. Толщина стенок корпуса, выполненного из высокопрочной стали, равна 12 см, а его масса 200 т. Теплоносителем служит дистиллированная вода, которая прокачивается через реактор под давлением 100 ат. Эта вода поступает в реактор при температуре 269 °С и покидает его при температуре 300 °С. Под действием теплоносителя в парогенераторе образуется пар давлением 47 ат, который и подается в паровые турбины.

Турбины и электрические генераторы атомной и обычной тепловой электростанций одинаковы.

Электрические генераторы, приводимые во вращение паровыми турбинами, называются турбогенераторами. Паровые турбины быстроходны: Их роторы развивают частоту п = 3000 мин" 1 и более. Поэтому ротор турбогенератора для создания частоты f = 50 Гц обычно имеет одну пару полюсовр :

Гидроэлектрические станции (ГЭС) обычно сооружают на реках (бывают станции, использующие морские приливы). Для их работы необходима разность уровней воды. Это достигается сооружением плотин. На реках с крутыми берегами строят высокие плотины (сотни метров), а на равнинных реках с отлогими берегами возводят относительно невысокие плотины (десятки метров). Преобразование энергии движущейся воды в механическую энергию происходит в гидравлических турбинах. Скорость вращения гидравлических турбин, а, следовательно, и скорость соединенных с ними электрических генераторов (гидрогенераторов) колеблются в пределах от 60 до 750 мин" 1 . Поэтому гидрогенераторы должны иметь несколько пар полюсов. Например, гидротурбина на Угличской ГЭС вращается со скоростью 62,5 мин 1 , ротор генератора для обеспечения частоты 50 Гц имеет 48 пар полюсов.

Стоимость сооружения гидроэлектрических станций значительно больше стоимости тепловых электростанций, но вырабатываемая на них электрическая энергия обходится намного дешевле, чем на тепловых станциях. Поэтому большие капиталовложения, идущие на сооружение гидроэлектростанций, вполне себя окупают.

Гидроэлектрические станции могут быть и местного значения, если они сооружаются на малых реках для небольших промышленных предприятий и населенных пунктов, не охваченных сетями районных станций. Их мощность обычно не превышает нескольких сотен или тысячи киловатт.

К местным станциям следует отнести ветровые, локомобильные и дизельные станции, построенные колхозами и совхозами для нужд сельского хозяйства.

В СНГ находятся крупнейшие в мире тепловые, гидравлические и атомные электростанции. Так, мощности тепловых и атомных электростанций достигают 4 млн. кВт, а мощность Красноярской ГЭС - 6,4 млн. кВт.

Ни для кого не секрет, что электричество в наш дом попадает от электростанций, являющихся основными источниками электроэнергии. Однако между нами (потребителями) и станцией может быть сотни километров и через все это дальнее расстояние ток должен каким-то образом передаваться с максимальным КПД. В этой статье мы, собственно, и рассмотрим, как передается электроэнергия на расстоянии к потребителям.

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д. Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт).

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Что еще важно знать?

Также хотелось пару слов сказать о моментах, которые пересекаются с этим вопросом. Во-первых, уже достаточно долго проводятся исследования на тему того, как осуществить передачу электроэнергии без проводов. Существует множество идей, но самым перспективным на сегодняшний день решением является использование беспроводной технологии WI-Fi. Учёные из Вашингтонского университета выяснили, что этот способ вполне реален и приступили к более подробному исследованию вопроса.

Во-вторых, на сегодняшний день по ЛЭП передается переменный ток, а не постоянный. Это связано с тем, что преобразовательные устройства, которые сначала выпрямляют ток на входе, а потом снова делают его переменным на выходе, имеют достаточно высокую стоимость, что экономически не целесообразно. Однако все же пропускная способность линий электропередач постоянного тока в 2 раза выше, что также заставляет думать над тем, как ее более выгодно осуществить.

Сложно переоценить значение электричества. Скорее, мы подсознательно недооцениваем его. Ведь практически вся окружающая нас техника работает от электросети. Об элементарном освещении и говорить не приходится. А вот производство электроэнергии нас практически не интересует. Откуда берется и как сохраняется (и вообще, возможно ли сохранить) электричество? Сколько реально стоит выработка электроэнергии? И насколько это безопасно для экологии?

Экономическое значение

Со школьной скамьи нам известно, что электроэнерговооруженность – один из основных факторов получения высокой производительности труда. Электроэнергетика – стержень всей деятельности человека. Нет ни одной отрасли, которая бы обходилась без нее.

Развитость этой отрасли свидетельствует о высокой конкурентоспособности государства, характеризует темпы роста производства товаров и услуг и почти всегда оказывается проблемным сектором экономики. Затраты на производство электроэнергии зачастую складываются из значительных первоначальных инвестиций, которые будут окупаться долгие годы. Несмотря на все свои ресурсы, Россия не исключение. Ведь значительную долю экономики составляют именно энергоемкие отрасли.

Статистика говорит нам о том, что в 2014 году производство электроэнергии Россией еще не вышло на уровень советского 1990 года. По сравнению с Китаем и США РФ производит - соответственно - в 5 и в 4 раза меньше электричества. Почему так происходит? Специалисты утверждают, что это очевидно: высочайшие непроизводственные расходы.

Кто потребляет электричество

Конечно, ответ очевиден: каждый человек. Но ведь сейчас нас интересуют промышленные масштабы, а значит, те отрасли, которым в первую очередь необходима электроэнергия. Основная доля приходится на промышленность – около 36%; ТЭК (18%) и жилой сектор (чуть больше 15%). Оставшийся 31% выработанного электричества приходится на непроизводственные отрасли, железнодорожный транспорт и потери в сетях.

При этом стоит учитывать, что в зависимости от региона структура потребления существенно меняется. Так, в Сибири действительно более 60% электричества используется промышленностью и ТЭК. А вот в европейской части страны, где расположено большее количество населенных пунктов, самым мощным потребителем оказывается жилой сектор.

Электростанции – основа отрасли

Производство электроэнергии в России обеспечивается почти 600 электростанциями. Мощность каждой превышает 5 МВт. Общая мощность всех электростанций составляет 218 ГВт. Как же мы получаем электроэнергию? В России используются такие типы электростанций:

  • тепловые (их доля в общем объеме производства около 68,5%);
  • гидравлические (20,3%);
  • атомные (почти 11%);
  • альтернативные (0,2%).

Когда речь заходит об альтернативных источниках электроэнергии, на ум приходят романические картинки с ветряками и солнечными батареями. Тем не менее, в определенных условиях и местностях это наиболее выгодные виды производства электроэнергии.

Тепловые электростанции

Исторически сложилось так, что тепловые электростанции (ТЭС) занимают основное место в производственном процессе. На территории России обеспечивающие производство электроэнергии ТЭС классифицируются по таким признакам:

  • источник энергии – органическое топливо, геотермальная или солнечная энергия;
  • вид вырабатываемой энергии – теплофикационная, конденсационная.

Еще одним важнейшим показателем считается степень участия в покрытии графика электронагрузки. Здесь выделяются базовые ТЭС с минимальным временем использования в году 5000 час; полупиковые (их еще называют маневренные) – 3000-4000 час в году; пиковые (используются только в часы максимальной нагрузки) – 1500-2000 час в году.

Технология производства энергии из топлива

Конечно, в основном производство, передача и использование электроэнергии потребителями происходит за счет работающих на органическом топливе ТЭС. Их различают по технологии производства:

  • паротурбинные;
  • дизельные;
  • газотурбинные;
  • парогазовые.

Паротурбинные установки самые распространенные. Они работают на всех видах топлива, включая не только уголь и газ, но и мазут, торф, сланцы, дрова и древесные отходы, а также продукты переработки.

Органическое топливо

Самый большой объем производства электроэнергии приходится на Сургутскую ГРЭС-2, мощнейшую не только на территории РФ, но и на весь Евразийский континент. Работая на природном газе, она выдает до 5600 МВт электроэнергии. А из угольных наибольшей мощностью обладает Рефтинская ГРЭС – 3800 МВт. Более 3000 МВт могут давать еще Костромская и Сургутская ГРЭС-1. Следует отметить, что аббревиатура ГРЭС не изменилась со времен Советского Союза. Она расшифровывается, как государственная районная электростанция.

Во время реформы отрасли производство и распределение электроэнергии на ТЭС должно сопровождаться техническим перевооружением действующих станций, их реконструкцией. Также среди первоочередных задач стоит строительство новых генерирующих энергию мощностей.

Электричество из возобновляемых ресурсов

Электроэнергия, полученная с помощью ГЭС, является важнейшим элементом стабильности единой энергосистемы государства. Именно гидроэлектростанции могут за считаные часы увеличить объемы производства электроэнергии.

Большой потенциал российской гидроэнергетики заключается в том, что на территории страны расположено почти 9% мировых запасов воды. Это второе место в мире по наличию гидроресурсов. Такие страны, как Бразилия, Канада и США, остались позади. Производство электроэнергии в мире за счет ГЭС несколько осложняется тем, что наиболее благоприятные места для их строительства существенно удалены от населенных пунктов или промышленных предприятий.

Тем не менее, благодаря электроэнергии, произведенной на ГЭС, стране удается сэкономить около 50 млн тонн топлива. Если бы удалось освоить весь потенциал гидроэнергетики, Россия могла бы экономить до 250 млн тонн. А это уже серьезная инвестиция в экологию страны и гибкую мощность энергетической системы.

Гидростанции

Строительство ГЭС решает множество вопросов, не связанных с выработкой энергии. Это и создание систем водоснабжения и водоотведения целых регионов, и строительство ирригационных сетей, столь необходимых сельскому хозяйству, и контроль паводков и т. д. Последнее, кстати, имеет немаловажное значение для безопасности людей.

Производство, передача и распределение электроэнергии в настоящее время осуществляется 102 ГЭС, единичная мощность которых превышает 100 МВт. Общая же мощность гидроустановок России приближается к 46 ГВт.

Страны по производству электроэнергии регулярно составляют свои рейтинги. Так вот, Россия сейчас занимает 5-е место в мире по выработке электричества из возобновляемых ресурсов. Наиболее значимыми объектами следует считать Зейскую ГЭС (она не только первая из построенных на Дальнем Востоке, но еще и довольно мощная – 1330 МВт), каскад Волжско-Камских электростанций (общее производство и передача электроэнергии составляет более 10,5 ГВт), Бурейскую ГЭС (2010 МВт) и т. д. Отдельно хочется отметить и Кавказские ГЭС. Из нескольких десятков работающих в этом регионе наиболее выделяется новая (уже введенная в эксплуатацию) Кашхатау ГЭС мощностью более 65 МВт.

Особого внимания заслуживают и геотермальные ГЭС Камчатки. Это очень мощные и мобильные станции.

Самые мощные ГЭС

Как уже отмечалось, производство и использование электроэнергии затруднено удаленностью основных потребителей. Тем не менее, государство занято развитием этой отрасли. Не только реконструируются имеющиеся, но и строятся новые ГЭС. Они должны освоить горные реки Кавказа, многоводные уральские реки, а также ресурсы Кольского полуострова и Камчатки. Среди самых мощных отметим несколько ГЭС.

Саяно-Шушенская им. П. С. Непорожнего построена в 1985 году на реке Енисей. Ее нынешняя мощность пока не достигает расчетных 6000 МВт в связи с реконструкцией и ремонтом после аварии 2009 года.

Производство и потребление электроэнергии Красноярской ГЭС рассчитано на Красноярский алюминиевый завод. Это единственный «клиент» введенной в эксплуатацию в 1972 году ГЭС. Ее расчетная мощность - 6000 МВт. Красноярская ГЭС единственная, на которой установлен судоподъемник. Он обеспечивает регулярное судоходство по реке Енисей.

Братская ГЭС введена в эксплуатацию в далеком 1967 году. Ее плотина перекрывает реку Ангару недалеко от города Братска. Как и Красноярская ГЭС, Братская работает на нужды Братского алюминиевого завода. Ему уходят все 4500 МВт электроэнергии. А еще этой гидростанции поэт Евтушенко посвятил поэму.

На реке Ангаре расположилась еще одна ГЭС – Усть-Илимская (мощность чуть более 3800 МВт). Строительство ее началось в 1963 году, а закончилось в 1979-м. Тогда же и началось производство дешевой электроэнергии для основных потребителей: Иркутского и Братского алюминиевых заводов, Иркутского авиастроительного завода.

Волжская ГЭС расположена севернее Волгограда. Ее мощность почти 2600 МВт. Эта крупнейшая в Европе гидроэлектростанция работает с 1961 года. Неподалеку от Тольятти функционирует самая «старая» из крупных ГЭС – Жигулевская. Она введена в эксплуатацию еще в 1957 году. Мощность ГЭС в 2330 МВт покрывает потребности в электричестве Центральной части России, Урала и Средней Волги.

А вот необходимое для нужд Дальнего Востока производство электроэнергии обеспечивает Бурейская ГЭС. Можно сказать, что она совсем еще «юная» - ввод в эксплуатацию состоялся только в 2002 году. Установленная мощность этой ГЭС – 2010 МВт электроэнергии.

Экспериментальные морские ГЭС

Гидроэнергетическим потенциалом обладают и множественные океанические и морские заливы. Ведь перепад высот во время прилива в большинстве из них превышает 10 метров. А это значит, что можно вырабатывать огромное количество энергии. В 1968 году была открыта Кислогубская экспериментальная приливная станция. Ее мощность составляет 1,7 МВт.

Мирный атом

Российская атомная энергетика является технологией полного цикла: от добычи урановых руд до производства электроэнергии. Сегодня в стране работает 33 энергоблока на 10 АЭС. Общая установленная мощность составляет чуть больше 23 МВт.

Максимальное количество электроэнергии АЭС было выработано в 2011 году. Цифра составила 173 млрд кВт/ч. Производство электроэнергии на душу населения атомными станциями выросло на 1,5% по сравнению с предыдущим годом.

Конечно, приоритетным направлением развития атомной энергетики является безопасность эксплуатации. Но и в борьбе с глобальным потеплением АЭС играют значительную роль. Об этом постоянно говорят экологи, которые подчеркивают, что только в России удается сократить выброс углекислого газа в атмосферу на 210 млн тонн в год.

Атомная энергетика получила свое развитие в основном на Северо-Западе и в европейской части России. В 2012 году всеми АЭС было выработано около 17% всей произведенной электроэнергии.

Атомные электростанции России

Крупнейшая АЭС России расположена в Саратовской области. Ежегодная мощность Балаковской АЭС составляет 30 млрд кВт/ч электроэнергии. На Белоярской АЭС (Свердловская обл.) сейчас работает только 3-й блок. Но и это позволяет назвать ее одной из самых мощных. 600 МВт электроэнергии получают благодаря реактору на быстрых нейтронах. Стоит отметить, что это был первый в мире энергоблок с быстрыми нейтронами, установленный для получения электричества в промышленных масштабах.

На Чукотке установлена Билибинская АЭС, которая вырабатывает 12 МВт электроэнергии. А Калининскую АЭС можно считать недавно построенной. Ее первый блок был введен в эксплуатацию в 1984 году, а последний (четвертый) лишь в 2010-м. Суммарная мощность всех энергоблоков составляет 1000 МВт. В 2001 году была построена и введена в эксплуатацию Ростовская АЭС. С момента подключения второго энергоблока - в 2010 году - ее установленная мощность превысила 1000 МВт, а коэффициент использования мощности составил 92,4%.

Энергия ветров

Экономический потенциал ветровой энергетики России оценивается в 260 млрд кВт/ч в год. Это почти 30% всей производимой сегодня электроэнергии. Мощность всех работающих в стране ветроустановок составляет 16,5 МВт энергии.

Особенно благоприятны для развития этой отрасли такие регионы, как побережье океанов, предгорные и горные районы Урала и Кавказа.

Электроэнергия производится на электрических станциях зачастую при помощи электромеханических индукционных генераторов. Существует 2 основных вида электростанций — тепловые электростанции (ТЭС) и гидроэлектрические электростанции (ГЭС) — различающиеся характером двигателей, которые вращают роторы генераторов.

Источником энергии на ТЭС является топливо: мазут, горючие сланцы, нефть, угольная пыль. Роторы электрогенераторов приводятся во вращение при помощи паровых и газовых турбин либо двигателями внутреннего сгорания (ДВС).

Как известно, КПД тепловых двигателей увеличивается с ростом начальной температуры рабочего тела. Поэтому пар, который поступает в турбину, доводят до порядка 550 °С при давлении около 25 МПа . КПД ТЭС достигает 40 %.

На тепловых электростанциях (ТЭЦ) большая часть энергии отработанного пара применяется на промышленных предприятиях и для бытовых нужд. КПД ТЭЦ может достигать 60-70 %.

На ГЭС для вращения роторов генераторов применяют потенциальную энергию воды. Ро-торы приводятся во вращение гидравлическими турбинами.

Мощность станции зависит от разности уровней воды , которые создаются плотиной (напо-ра), и от массы воды, которая проходит через турбину за 1 секунду (расхода воды).

Часть электроэнергии, которая потребляется в России (примерно 10 %), производится на атомных электростанциях (АЭС).

Передача электроэнергии.

В основном, этот процесс сопровождается существенными потерями, которые связаны с нагревом проводов линий электропередачи током. Согласно закону Джоуля-Ленца энергия, которая расходуется на нагрев проводов, является пропорциональной квадрату силы тока и сопротивлению линии, так что при большой длине линии передача электроэнергии может стать экономически невыгодной. Поэтому нужно уменьшать силу тока , что при заданной передаваемой мощнос-ти приводит к необходимости увеличения напряжения. Чем длиннее линия электропередачи, тем выгоднее применять большие напряжения (на некоторых напряжение достигает 500 кВ). Генераторы переменного тока выдают напряжения, которые не могут быть больше 20 кВ (что связано со свойствами используемых изоляционных материалов).

Поэтому на электростанциях ставят повышающие трансформаторы, которые увеличивают напряжение и во столько же раз уменьшают силу тока. Для подачи потребителям электроэнергии необходимого (низкого) напряжения на концах линии электропередачи ставят трансфор-маторы понижающие. Понижение напряжения обычно производится поэтапно.

Использование электроэнергии.

Основные потребители электроэнергии:

  1. промышленность — 70%;
  2. транспорт (электрическая тяга);
  3. бытовые потребители (освещение жилищ, электроприборы).

Практически вся используемая электроэнергия переходит в механическую энергию. Практически все механизмы в промышленности приводятся в движение электродвигателями.

Примерно треть электроэнергии, которая потребляется промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и так далее).

Технологическая карта урока.

Урок 15. Производство, преобразование, распределение, накопление и передача энергии как технология

Задачи урока:

Формирование понятий: производство, преобразование, распределение, накопление и передача энергии;

Актуализация сведений из личного опыта;

Развитие логического мышления;

Формирование навыков работы с информацией;

Умение работать в группах и индивидуально.

1

Организационный момент

Дети рассаживаются по местам, проверяют наличие принадлежностей

Личностные УУД:

- формирование навыков самоорганизации

Поверка домашнего задания

Устный опрос:

    Что такое технология?

    Какое значение имеют технологии для производства?

    По какой причине возникают новые технологии?

Коммуникативные УУД:

Личностные УУД:

Развитие речи,

Формулирование целей урока

Тема нашего урока сегодня «Производство, преобразование, распределение, накопление и передача энергии как технология»

Регулятивные УУД:

Умение ставить учебную задачу

Объяснение темы урока

Все технологические процессы любого производства связаны с потреблением энергии.

Важнейшую роль на промышленном предприятии играет электрическая энергия – самый универсальный вид энергии, являющейся основным источником получения механической энергии.

Преобразование энергии различных видов в электрическую происходит на электростанциях .

Электростанциями называются предприятия или установки, предназначенные для производства электроэнергии. Топливом для электрических станций служат природные богатства – уголь, торф, вода, ветер, солнце, атомная энергия и др.

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы: тепловые, атомные, гидроэлектростанции, ветряные, солнечные и др.

Основная часть электроэнергии (до 80 %) вырабатывается на тепловых электростанциях (ТЭС). Процесс получения электрической энергии на ТЭС заключается в последовательном преобразовании энергии сжигаемого топлива в тепловую энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединённую с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат каменный уголь, торф, горючие сланцы, естественный газ, нефть, мазут, древесные отходы.

Атомные электростанции (АЭС) отличаются от обычной паротурбинной станции тем, что на АЭС в качестве источника энергии используется процесс деления ядер урана, плутония, тория и др. В результате расщепления этих материалов в специальных устройствах – реакторах, выделяется огромное количество тепловой энергии.

По сравнению с ТЭС атомные электростанции расходуют незначительное количество горючего. Такие станции можно сооружать в любом месте, т.к. они не связаны с местом расположения естественных запасов топлива. Кроме того, окружающая среда не загрязняется дымом, золой, пылью и сернистым газом.

На гидроэлектростанциях (ГЭС) водная энергия преобразуется в электрическую при помощи гидравлических турбин и соединённых с ними генераторов.

Достоинствами ГЭС являются их высокий КПД и низкая себестоимость выработанной электроэнергии. Однако следует учитывать большую стоимость капитальных затрат при сооружении ГЭС и значительные сроки их сооружения, что определяет большой срок их окупаемости.

Особенностью работы электростанций является то, что они должны вырабатывать столько энергии, сколько её требуется в данный момент для покрытия нагрузки потребителей, собственных нужд станций и потерь в сетях. Поэтому оборудование станций должно быть всегда готово к периодическому изменению нагрузки потребителей в течении дня или года.

Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места её потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Её необходимо распределить среди множества разнообразных потребителей – промышленных предприятий, транспорта, жилых зданий и т.д. Передача происходит через трансформаторные подстанции и электрические сети.

Перерывы в электроснабжении предприятий, даже кратковременные, приводят к нарушениям технологического процесса, порче продукции, повреждению оборудования и невосполнимым убыткам. В некоторых случаях перерыв в электроснабжении может создать взрыво- и пожароопасную обстановку на предприятиях.

Распределение электроэнергии производится с помощью электропроводок – совокупности проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями.

Личностные УУД:

- закрепление знаниевой компоненты

Развитие речи

Умение кратко формулировать мысль

Умение приводить примеры из личного опыта

Развитие навыков чтения

Закрепление учебного материала

Ответить на вопросы теста:

    Что такое ТЭС, АЭС, ГЭС?

    Где происходит преобразование различных видов энергии в электрическую?

    В чем преимущество атомной электростанции перед тепловой электростанцией?

    Как происходит передача электроэнергии?

    Чем опасны перерывы в электроснабжении предприятий?

Коммуникативные УУД:

Умение слушать и исправлять ошибки других Личностные УУД:

Формирование навыков письма

Развитие логического мышления

Итоги урока

Проверка теста, выставление оценок.

Личностные УУД:

- развитие самооценки



© dagexpo.ru, 2024
Стоматологический сайт