По какой формуле определяется работа силы тяжести. Работа силы тяжести,упругой силы,пары сил

21.09.2019

Работа, энергия, мощность

Силы служат причиной либо ускорения тела (динамическое действие), либо изменения его формы (статическое действие).

Если сила перемещает тело на некоторое расстояние, то она совершает над телом работу.

Работа = Сила х Перемещение.

При F = const (в случае постоянной силы в процессе перемещения) A = F s, в случае переменной силы – интеграл от силы по перемещению A = .

Мощность – отношение произведенной работы на время, в течение которой она произведена:

Мощность = Работа / Время.

Мгновенная мощность – производная работы по времени: Р = dA /dt . Поскольку dA = Fds (сила на перемещение), то Р = Fds /dt = Fv . Мгновенная мощность равна произведению мгновенной силы на мгновенную скорость.

Энергия – способность тела совершать работу, единая мера различных форм движения. Количественные характеристики зависят от вида энергии (механическая, внутренняя, химическая, ядерная, электромагнитная и др.).

Два способа передачи движения и соответствующей ему энергии от одного тела к другому – в форме работы и в форме теплоты (путем теплообмена). Для микрочастиц (атомы, электроны) эти понятия неприменимы.

Если тело движется в направлении действия силы тяжести, то над телом совершается работа A = G h или A т = mg h .

Чтобы поднять тело (увеличить расстояние от центра Земли), над ним следует совершить работу. Работа, совершаемая силой F при движении против силы тяжести (подъеме тела) на высоту h не зависит от пути – зависит только от того, насколько тело может опуститься до заданного уровня. Эта работа запасается в виде потенциальной энергии тела (энергии положения) A =W п = mgh , равной работе, затраченной на подъем тела.

Это не полная потенциальная энергия – только приращение энергии при подъеме тела на высоту (начало отсчета выбирается произвольно). С учетом изменения гравитационного поля по высоте W п = m .

Потенциальной энергией называется энергия, зависящая только от взаимного расположения материальных точек (или тел).

Силы, действующие на материальную точку (тело), называются потенциальными, если работа этих сил при перемещении точки (тела) зависит только от начального и конечного положения точки (тела) в пространстве и не зависит от пути перемещения.

Во всех физических явлениях важна не сама потенциальная энергия, а ее изменение, которым определяется совершаемая работа. Уровень отсчета изменений заранее оговаривается.

Потенциальная энергия включает энергию положения и энергию упругой деформации.



Потенциальной энергией может обладать не только система взаимодействующих сил, но и отдельно взятое упруго деформируемое тело (сжатая пружина, растянутый стержень). В этом случае потенциальная энергия зависит от взаимного расположения отдельных частей тела (витков пружины).

Кинетическая энергия тела является мерой его механического движения и измеряется той работой, которую может совершить тело при торможении до полной остановки.

Из состояния покоя изменение скорости и пути к моменту t: V=at, S=Vt/2=at 2 /2.

При торможении на тело действует сила, направленная против его движения. До полной остановки тело под действием силы F совершит работу А : А = Fs = F v 2 /2a = mv 2 /2.

Кинетическая энергия тела К = mv 2 /2


При подъеме на высоту накопилась потенциальная энергия W п, при падении с этой высоты эта потенциальная энергия превратилась в кинетическую W к. W п = W к = mgh = mv 2 /2 .

Пример : определение скорости с помощью маятника-груза.

1. Формулировка содержательной модели

Определить скорость пули. Задача решается с помощью маятника-груза, подвешенного на легком жестком и свободно вращающемся стержне. Исходные данные – в соответствии с рисунком.

2. Формулировка концептуальной модели

Пуля, застрявшая в грузе, сообщит системе "пуля-груз" свою кинетическую энергию, которая в момент наибольшего отклонения стержня от вертикали полностью перейдет в потенциальную энергию системы. В основе решения задачи – закон сохранения энергии. Не учитываются потери энергии на разогрев пули и груза, на преодоление сопротивления воздуха, разгон стержня и т.д.

3. Разработка математической модели.

Эта трансформация описывается цепочкой равенств, из которых определяется искомая скорость v .

(M + m)V 2 /2 = (M + m) gl (1 – cosα).

4. Исследования модели и решение задачи.

Процессы, происходящие при проникновении пули в груз, уже не являются чисто механическими. Примененный закон дает только нижнюю границу оценки – сохраняется полная, а не механическая энергия системы – для правильного решения задачи надо воспользоваться законом сохранения импульса.

Работа силы тяжести. Решение задач

Цель урока: определить формулу для работы силы тяжести; определить, что работы силы тяжести не зависит от траектории движения тела; развить практические навыки по решению задач.

Ход урока.

1.Организационный момент. Приветствие учащихся, проверка отсутствующих, постановка цели урока.

2.Проверка домашней работы.

3.Изучение нового материала. На предыдущем уроке мы с вами определили формулу для определения работы. Какой формулой определяется работа постоянной силы? (А= FScosα )

Что такое А и S ?

Теперь же применим эту формулу для силы тяжести. Но для начала вспомним, чему равна сила тяжести? (F = mg )

Рассмотрим случай а) тело падает вертикально вниз. Как мы с вами знаем сила тяжести всегда направленно строго вниз. Для того чтобы определить направление S необходимо вспомнить определение. (Перемещение-это вектор соединяющий начальную и конечную точку. Направлен он от начала к концу)

Т.о. для определения , Так как направление перемещения и силы тяжести совпадают, то α =0 и работа силы тяжести равна:

Рассмотрим случай б) тело двигается вертикально вверх. Т.к. направление силы тяжести и перемещении противоположны, то то α =0 и работа силы тяжести равна .

Т.о. образом если сравнить две формулы по модулю, то они будут одинаковы.

Рассмотрим случай в) тело движется по наклонной плоскости. Работа силы равна скалярному произведению вектора силы на вектор перемещения тела, совершённого под действием данной силы, то есть работа сила тяжести в данном случае будет равна , где – угол между векторами силы тяжести и перемещения. На рисунке видно, что перемещение () представляет собой гипотенузу прямоугольного треугольника, а высота h – катет. Согласно свойству прямоугольного треугольника:

.Следовательно

Т.о. какой можно сделать вывод? (что работа силы тяжести не зависит от траектории движения.)

Рассмотрим последний пример, когда траектория движения будет замкнутая линия. Кто скажет чему будет равна работа и почему? (А=0, т.к. перемещение равно 0)

Отметим!: работа силы тяжести при движении тела по замкнутой траектории равна нулю.

4. Закрепление материала.

Задача 1. Охотник стреляет со скалы под углом 40° к горизонту. За время падения пули работа силы тяжести составила 5 Дж. Если пуля вошла в землю на расстоянии 250 м от скалы, то какова её масса?

Задача 2. Находясь на Нептуне, тело совершило перемещение так, как показано на рисунке. При этом перемещении работа силы тяжести составила 840 Дж. Если масса данного тела равна 5 кг, то каково ускорение свободного падения на Нептуне?

5. Домашнее задание.

«Физика - 10 класс»

Вычислим работу силы тяжести при падении тела (например, камня) вертикально вниз.

В начальный момент времени тело находилось на высоте hx над поверхностью Земли, а в конечный момент времени - на высоте h 2 (рис. 5.8). Модуль перемещения тела |Δ| = h 1 - h 2 .

Направления векторов силы тяжести T и перемещения Δ совпадают. Согласно определению работы (см. формулу (5.2)) имеем

А = | Т | |Δ|cos0° = mg(h 1 - h 2) = mgh 1 - mgh 2 . (5.12)

Пусть теперь тело бросили вертикально вверх из точки, расположенной на высоте h 1 над поверхностью Земли, и оно достигло высоты h 2 (рис. 5.9). Векторы Т и Δ направлены в противоположные стороны, а модуль перемещения |Δ| = h 2 - h 1 . Работу силы тяжести запишем так:

А = | Т | |Δ|cos180° = -mg(h 2 - h 1) = mgh 1 - mgh 2 . (5.13)

Если же тело перемещается по прямой так, что направление перемещения составляет угол а с направлением силы тяжести (рис. 5.10), то работа силы тяжести равна:

А = | Т | |Δ|cosα = mg|BC|cosα.

Из прямоугольного треугольника BCD видно, что |BC|cosα = BD = h 1 - h 2 . Следовательно,

А = mg(h 1 - h 2) = mgh 1 - mgh 2 . (5.14)

Это выражение совпадает с выражением (5.12).

Формулы (5.12), (5.13), (5.14) дают возможность подметить важную закономерность. При прямолинейном движении тела работа силы тяжести в каждом случае равна разности двух значений величины, зависящей от положений тела, определяемых высотами h 1 и h 2 над поверхностью Земли.

Более того, работа силы тяжести при перемещении тела массой т из одного положения в другое не зависит от формы траектории, по которой движется тело. Действительно, если тело перемещается вдоль кривой ВС (рис. 5.11), то, представив эту кривую в виде ступенчатой линии, состоящей из вертикальных и горизонтальных участков малой длины, увидим, что на горизонтальных участках работа силы тяжести равна нулю, так как сила перпендикулярна перемещению, а сумма работ на вертикальных участках равна работе, которую совершила бы сила тяжести при перемещении тела по вертикальному отрезку длиной h 1 - h 2 . Таким образом, работа силы тяжести при перемещении вдоль кривой ВС равна:

А = mgh 1 - mgh 2 .

Работа силы тяжести не зависит от формы траектории, а зависит только от положений начальной и конечной точек траектории.

Определим работу А при перемещении тела по замкнутому контуру, например по контуру BCDEB (рис. 5.12). Работа А 1 силы тяжести при перемещении тела из точки В в точку D по траектории BCD: А 1 = mg(h 2 - h 1), по траектории DEB: А 2 = mg(h 1 - h 2).

Тогда суммарная работа А = А 1 + А 2 = mg(h 2 - h 1) + mg(h 1 - h 2) = 0.

При движении тела по замкнутой траектории работа силы тяжести равна нулю.

Итак работа силы тяжести не зависит от формы траектории тела; она определяется лишь начальным и конечным положениями тела. При перемещении тела по замкнутой траектории работа силы тяжести равна нулю.

Силы, работа которых не зависит от формы траектории точки приложения силы и по замкнутой траектории равна нулю, называют консервативными силами .

Сила тяжести является консервативной силой.

С механической работой (работой силы) вы уже знакомы из курса физики основной школы. Напомним приведенное там определение механической работы для следующих случаев.

Если сила направлена так же, как перемещение тела, то работа силы


В этом случае работа силы положительна.

Если сила направлена противоположно перемещению тела, то работа силы

В этом случае работа силы отрицательна.

Если сила f_vec направлена перпендикулярно перемещению s_vec тела, то работа силы равна нулю:

Работа – скалярная величина. Единицу работы называют джоуль (обозначают: Дж) в честь английского ученого Джеймса Джоуля, сыгравшего важную роль в открытии закона сохранения энергии. Из формулы (1) следует:

1 Дж = 1 Н * м.

1. Брусок массой 0,5 кг переместили по столу на 2 м, прикладывая к нему силу упругости, равную 4 Н (рис. 28.1). Коэффициент трения между бруском и столом равен 0,2. Чему равна работа действующей на брусок:
а) силы тяжести m?
б) силы нормальной реакции ?
в) силы упругости ?
г) силы трения скольжения тр?


Суммарную работу нескольких сил, действующих на тело, можно найти двумя способами:
1. Найти работу каждой силы и сложить эти работы с учетом знаков.
2. Найти равнодействующую всех приложенных к телу сил и вычислить работу равнодействующей.

Оба способа приводят к одному и тому же результату. Чтобы убедиться в этом, вернитесь к предыдущему заданию и ответьте на вопросы задания 2.

2. Чему равна:
а) сумма работ всех действующих на брусок сил?
б) равнодействующая всех действующих на брусок сил?
в) работа равнодействующей? В общем случае (когда сила f_vec направлена под произвольным углом к перемещению s_vec) определение работы силы таково.

Работа A постоянной силы равна произведению модуля силы F на модуль перемещения s и на косинус угла α между направлением силы и направлением перемещения:

A = Fs cos α (4)

3. Покажите, что из общего определения работы следуют к выводы, показанные на следующей схеме. Сформулируйте их словесно и запишите в тетрадь.


4. К находящемуся на столе бруску приложена сила, модуль которой 10 Н. Чему равен угол между этой силой и перемещением бруска, если при перемещении бруска по столу на 60 см эта сила совершила работу: а) 3 Дж; б) –3 Дж; в) –3 Дж; г) –6 Дж? Сделайте пояснительные чертежи.

2. Работа силы тяжести

Пусть тело массой m движется вертикально от начальной высоты h н до конечной высоты h к.

Если тело движется вниз (h н > h к, рис. 28.2, а), направление перемещения совпадает с направлением силы тяжести, поэтому работа силы тяжести положительна. Если же тело движется вверх (h н < h к, рис. 28.2, б), то работа силы тяжести отрицательна.

В обоих случаях работа силы тяжести

A = mg(h н – h к). (5)

Найдем теперь работу силы тяжести при движении под углом к вертикали.

5. Небольшой брусок массой m соскользнул вдоль наклонной плоскости длиной s и высотой h (рис. 28.3). Наклонная плоскость составляет угол α с вертикалью.


а) Чему равен угол между направлением силы тяжести и направлением перемещения бруска? Сделайте пояснительный чертеж.
б) Выразите работу силы тяжести через m, g, s, α.
в) Выразите s через h и α.
г) Выразите работу силы тяжести через m, g, h.
д) Чему равна работа силы тяжести при движении бруска вдоль всей этой же плоскости вверх?

Выполнив это задание, вы убедились, что работа силы тяжести выражается формулой (5) и тогда, когда тело движется под углом к вертикали – как вниз, так и вверх.

Но тогда формула (5) для работы силы тяжести справедлива при движении тела по любой траектории, потому что любую траекторию (рис. 28.4, а) можно представить как совокупность малых «наклонных плоскостей» (рис. 28.4, б).

Таким образом,
работа силы тяжести при движении но любой траектории выражается формулой

A т = mg(h н – h к),

где h н – начальная высота тела, h к – его конечная высота.
Работа силы тяжести не зависит от формы траектории.

Например, работа силы тяжести при перемещении тела из точки A в точку B (рис. 28.5) по траектории 1, 2 или 3 одинакова. Отсюда, в частности, следует, что рибота силы тяжести при перемещении по замкнутой траектории (когда тело возвращается в исходную точку) равна нулю.

6. Шар массой m, висящий на нити длиной l, отклонили на 90º, держа нить натянутой, и отпустили без толчка.
а) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия (рис. 28.6)?
б) Чему равна работа силы упругости нити за то же время?
в) Чему равна работа равнодействующей сил, приложенных к шару, за то же время?


3. Работа силы упругости

Когда пружина возвращается в недеформированное состояние, сила упругости совершает всегда положительную работу: ее направление совпадает с направлением перемещения (рис. 28.7).

Найдем работу силы упругости .
Модуль этой силы связан с модулем деформации x соотношением (см. § 15)

Работу такой силы можно найти графически.

Заметим сначала, что работа постоянной силы численно равна площади прямоугольника под графиком зависимости силы от перемещения (рис. 28.8).

На рисунке 28.9 изображен график зависимости F(x) для силы упругости. Разобьем мысленно все перемещение тела на столь малые промежутки, чтобы на каждом из них силу можно было считать постоянной.

Тогда работа на каждом из этих промежутков численно равна площади фигуры под соответствующим участком графика. Вся же работа равна сумме работ на этих участках.

Следовательно, и в этом случае работа численно равна площади фигуры под графиком зависимости F(x).

7. Используя рисунок 28.10, докажите, что

работа силы упругости при возвращении пружины в недеформированное состояние выражается формулой

A = (kx 2)/2. (7)


8. Используя график на рисунке 28.11, докажите, что при изменении деформации пружины от x н до x к работа силы упругости выражается формулой

Из формулы (8) мы видим, что работа силы упругости зависит только от начальной и конечной деформации пружины, Поэтому если тело сначала деформируют, а потом оно возвращается в начальное состояние, то работа силы упругости равна нулю. Напомним, что таким же свойством обладает и работа силы тяжести.

9. В начальный момент растяжение пружины жесткостью 400 Н/м равно 3 см. Пружину растянули еще на 2 см.
а) Чему равна конечная деформация пружины?
б) Чему равна работа силы упругости пружины?

10. В начальный момент пружина жесткостью 200 Н/м растянута на 2 см, а в конечный момент она сжата на 1 см. Чему равна работа силы упругости пружины?

4. Работа силы трения

Пусть тело скользит по неподвижной опоре. Действующая на тело сила трения скольжения направлена всегда противоположно перемещению и, следовательно, работа силы трения скольжения отрицательно при любом направлении перемещения (рис. 28.12).

Поэтому если сдвинуть брусок вправо, а пегом на такое же расстояние влево, то, хотя он и вернется в начальное положение, суммарная работа силы трения скольжения не будет равна нулю. В этом состоит важнейшее отличие работы силы трения скольжения от работы силы тяжести и силы упругости. Напомним, что работа этих сил при перемещении тела по замкнутой траектории равна нулю.

11. Брусок массой 1 кг передвигали по столу так, что его траекторией оказался квадрат со стороной 50 см.
а) Вернулся ли брусок в начальную точку?
б) Чему равна суммарная работа действовавшей на брусок силы трения? Коэффициент трения между бруском и столом равен 0,3.

5. Мощность

Часто важна не только совершаемая работа, но и скорость совершения работы. Она характеризуется мощностью.

Мощностью P называют отношение совершенной работы A к промежутку времени t, за который эта работа совершена:

(Иногда мощность в механике обозначают буквой N, а в электродинамике – буквой P. Мы считаем более удобным одинаковое обозначение мощности.)

Единица мощности – ватт (обозначают: Вт), названная в честь английского изобретателя Джеймса Уатта. Из формулы (9) следует, что

1 Вт = 1 Дж/c.

12. Какую мощность развивает человек, равномерно поднимая ведро воды массой 10 кг на высоту 1 м в течение 2 с?

Часто мощность удобно выражать не через работу и время, а через силу и скорость.

Рассмотрим случай, когда сила направлена вдоль перемещения. Тогда работа силы A = Fs. Подставляя это выражение в формулу (9) для мощности, получаем:

P = (Fs)/t = F(s/t) = Fv. (10)

13. Автомобиль едет по горизонтальной дороге со скоростью 72 км/ч. При этом его двигатель развивает мощность 20 кВт. Чему равна сила сопротивления движению автомобиля?

Подсказка. Когда автомобиль движется по горизонтальной дороге с постоянной скоростью, сила тяги равна по модулю силе сопротивления движению автомобиля.

14. Сколько времени потребуется для равномерного подъема бетонного блока массой 4 т на высоту 30 м, если мощность двигателя подъемного крана 20 кВт, а КПД электродвигателя подъемного крана равен 75%?

Подсказка. КПД электродвигателя равен отношению работы по подъему груза к работе двигателя.

Дополнительные вопросы и задания

15. Мяч массой 200 г бросили с балкона высотой 10 и под углом 45º к горизонту. Достигнув в полете максимальной высоты 15 м, мяч упал на землю.
а) Чему равна работа силы тяжести при подъеме мяча?
б) Чему равна работа силы тяжести при спуске мяча?
в) Чему равна работа силы тяжести за все время полета мяча?
г) Есть ли в условии лишние данные?

16. Шар массой 0,5 кг подвешен к пружине жесткостью 250 Н/м и находится в равновесии. Шар поднимают так, чтобы пружина стала недеформированной, и отпускают без толчка.
а) На какую высоту подняли шар?
б) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия?
в) Чему равна работа силы упругости за время, в течение которого шар движется к положению равновесия?
г) Чему равна работа равнодействующей всех приложенных к шару сил за время, в течение которого шар движется к положению равновесия?

17. Санки массой 10 кг съезжают без начальной скорости со снежной горы с углом наклона α = 30º и проезжают некоторое расстояние по горизонтальной поверхности (рис. 28.13). Коэффициент трения между санками и снегом 0,1. Длина основания горы l = 15 м.

а) Чему равен модуль силы трения при движении санок по горизонтальной поверхности?
б) Чему равна работа силы трения при движении санок по горизонтальной поверхности на пути 20 м?
в) Чему равен модуль силы трения при движении санок по горе?
г) Чему равна работа силы трения при спуске санок?
д) Чему равна работа силы тяжести при спуске санок?
е) Чему равна работа равнодействующей сил, действующих на санки, при их спуске с горы?

18. Автомобиль массой 1 т движется со скоростью 50 км/ч. Двигатель развивает мощность 10 кВт. Расход бензина составляет 8 л на 100 км. Плотность бензина 750 кг/м 3 , а его удельная теплота сгорания 45 МДж/кг. Чему равен КПД двигателя? Есть ли в условии лишние данные?
Подсказка. КПД теплового двигателя равен отношению совершенной двигателем работы к количеству теплоты, которое выделилось при сгорании топлива.



© dagexpo.ru, 2024
Стоматологический сайт