Показательная функция, ее свойства и график — Гипермаркет знаний. Показательная функция – свойства, графики, формулы

16.10.2019

Введем сначала определение показательной функции.

Показательная функция $f\left(x\right)=a^x$, где $a >1$.

Введем свойства показательной функции, при $a >1$.

    \ \[корней\ нет.\] \

    Пересечение с осями координат. Функция не пересекает ось $Ox$, но пересекает ось $Oy$ в точке $(0,1)$.

    $f""\left(x\right)={\left(a^xlna\right)}"=a^x{ln}^2a$

    \ \[корней\ нет.\] \

    График (рис. 1).

Рисунок 1. График функции $f\left(x\right)=a^x,\ при\ a >1$.

Показательная функция $f\left(x\right)=a^x$, где $0

Введем свойства показательной функции, при $0

    Область определения -- все действительные числа.

    $f\left(-x\right)=a^{-x}=\frac{1}{a^x}$ -- функция ни четна, ни нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения -- интервал $(0,+\infty)$.

    $f"(x)=\left(a^x\right)"=a^xlna$

    \ \[корней\ нет.\] \ \[корней\ нет.\] \

    Функция выпукла на всей области определения.

    Поведение на концах области определения:

    \[{\mathop{lim}_{x\to -\infty } a^x\ }=+\infty \] \[{\mathop{lim}_{x\to +\infty } a^x\ }=0\]

    График (рис. 2).

Пример задачи на построение показательной функции

Исследовать и построить график функции $y=2^x+3$.

Решение.

Проведем исследование по примеру схемы выше:

    Область определения -- все действительные числа.

    $f\left(-x\right)=2^{-x}+3$ -- функция ни четна, ни нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения -- интервал $(3,+\infty)$.

    $f"\left(x\right)={\left(2^x+3\right)}"=2^xln2>0$

    Функция возрастает на всей области определения.

    $f(x)\ge 0$ на всей области определения.

    Пересечение с осями координат. Функция не пересекает ось $Ox$, но пересекает ось $Oy$ в точке ($0,4)$

    $f""\left(x\right)={\left(2^xln2\right)}"=2^x{ln}^22>0$

    Функция выпукла на всей области определения.

    Поведение на концах области определения:

    \[{\mathop{lim}_{x\to -\infty } a^x\ }=0\] \[{\mathop{lim}_{x\to +\infty } a^x\ }=+\infty \]

    График (рис. 3).

Рисунок 3. График функции $f\left(x\right)=2^x+3$

Концентрация внимания:

Определение. Функция вида называется показательной функцией .

Замечание. Исключение из числа значений основания a чисел 0; 1 и отрицательных значений a объясняется следующими обстоятельствами:

Само аналитическое выражение a x в указанных случаях сохраняет смысл и может встречаться в решении задач. Например, для выражения x y точка x = 1; y = 1 входит в область допустимых значений.

Построить графики функций: и .

График показательной функции
y = a x , a > 1 y = a x , 0< a < 1

Свойства показательной функции

Свойства показательной функции y = a x , a > 1 y = a x , 0< a < 1
  1. Область определения функции
2. Область значений функции
3.Промежутки сравнения с единицей при x > 0, a x > 1 при x > 0, 0< a x < 1
при x < 0, 0< a x < 1 при x < 0, a x > 1
4. Чётность, нечётность. Функция не является ни чётной, ни нечётной (функция общего вида).
5.Монотонность. монотонно возрастает на R монотонно убывает на R
6. Экстремумы. Показательная функция экстремумов не имеет.
7.Асимптота Ось O x является горизонтальной асимптотой.
8. При любых действительных значениях x и y ;

Когда заполняется таблица, то параллельно с заполнением решаются задания.

Задание № 1. (Для нахождения области определения функции).

Какие значения аргумента являются допустимыми для функций:

Задание № 2. (Для нахождения области значений функции).

На рисунке изображен график функции. Укажите область определения и область значений функции:

Задание № 3. (Для указания промежутков сравнения с единицей).

Каждую из следующих степеней сравните с единицей:

Задание № 4. (Для исследования функции на монотонность).

Сравнить по величине действительные числа m и n если:

Задание № 5. (Для исследования функции на монотонность).

Сделайте заключение относительно основания a , если:

y(x) = 10 x ; f(x) = 6 x ; z(x) - 4 x

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?

В одной координатной плоскости построены графики функций:

y(x) = (0,1) x ; f(x) = (0,5) x ; z(x) = (0,8) x .

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?

Число одна из важнейших постоянных в математике. По определению, оно равно пределу последовательности при неограниченном возрастании n . Обозначение e ввёл Леонард Эйлер в 1736 г. Он вычислил первые 23 знака этого числа в десятичной записи, а само число назвали в честь Непера «неперовым числом».

Число e играет особую роль в математическом анализе. Показательная функция с основанием e , называется экспонентой и обозначается y = e x .

Первые знаки числа e запомнить несложно: два, запятая, семь, год рождения Льва Толстого - два раза, сорок пять, девяносто, сорок пять.

Домашнее задание:

Колмогоров п. 35; № 445-447; 451; 453.

Повторить алгоритм построения графиков функций, содержащих переменную под знаком модуля.

ПОКАЗАТЕЛЬНАЯ И ЛОГАРИФМИЧЕСКАЯ ФУНКЦИИ VIII

§ 179 Основные свойства показательной функции

В этом параграфе мы изучим основные свойства показательной функции

у = а x (1)

Напомним, что под а в формуле (1) мы подразумеваем любое фиксированное положительное число, отличное от 1.

Свойство 1. Областью определения показательной функции является совокупность всех действительных чисел.

В самом деле, при положительном а выражение а x определено для любого действительного числа х .

Свойство 2 . Показательная функция принимает только положительные значения.

Действительно, если х > 0, то, как было доказано в § 176,

а x > 0.

Если же х <. 0, то

а x =

где - х уже больше нуля. Поэтому а - x > 0. Но тогда и

а x = > 0.

Наконец, при х = 0

а x = 1.

2-е свойство показательной функции имеет простое графическое истолкование. Оно заключается в том, что график этой функции (см. рис. 246 и 247) располагается целиком выше оси абсцисс.

Свойство 3 . Если а >1, то при х > 0 а x > 1, а при х < 0 а x < 1. Если же а < 1, то, наоборот, при х > 0 а x < 1, а при х < 0 а x > 1.

Это свойство показательной функции также допускает простую геометрическую интерпретацию. При а > 1 (рис. 246) кривые у = а x располагаются выше прямой у = 1 при х > 0 и ниже прямой у = 1 при х < 0.

Если же а < 1 (рис. 247), то, наоборот, кривые у = а x располагаются ниже прямой у = 1 при х > 0 и выше этой прямой при х < 0.

Приведем строгое доказательство 3-го свойства. Пусть а > 1 и х - произвольное положительное число. Покажем, что

а x > 1.

Если число х рационально (х = m / n ) , то а x = а m / n = n a m .

Поскольку а > 1, то и а m > 1, Но корень из числа, большего единицы, очевидно, также больше 1.

Если х иррационально, то существуют положительные рациональные числа х" и х" , которые служат десятичными приближениями числа x :

х" < х < х" .

Но тогда по определению степени с иррациональным показателем

а x" < а x < а x"" .

Как показано выше, число а x" больше единицы. Поэтому и число а x , большее, чем а x" , также должно быть больше 1,

Итак, мы показали, что при a >1 и произвольном положительном х

а x > 1.

Если бы число х было отрицательным, то мы имели бы

а x =

где число -х было бы уже положительным. Поэтому а - x > 1. Следовательно,

а x = < 1.

Таким образом, при а > 1 и произвольном отрицательном x

а x < 1.

Случай, когда 0 < а < 1, легко сводится к уже рассмотренному случаю. Учащимся предлагается убедиться в этом самостоятельно.

Свойство 4. Если х = 0, то независимо от а а x =1.

Это вытекает из определения нулевой степени; нулевая степень любого числа, отличного от нуля, равна 1. Графически это свойство выражается в том, что при любом а кривая у = а x (см. рис. 246 и 247) пересекает ось у в точке с ординатой 1.

Свойство 5. При а >1 показательная функция у = а x является монотонно возрастающей, а при а < 1 - монотонно убывающей.

Это свойство также допускает простую геометрическую интерпретацию.

При а > 1 (рис. 246) кривая у = а x с ростом х поднимается все выше и выше, а при а < 1 (рис. 247) - опускается все ниже и ниже.

Приведем строгое доказательство 5-гo свойства.

Пусть а > 1 и х 2 > х 1 . Покажем, что

а x 2 > а x 1

Поскольку х 2 > х 1 ., то х 2 = х 1 + d , где d -некоторое положительное число. Поэтому

а x 2 - а x 1 = а x 1 + d - а x 1 = а x 1 (а d - 1)

По 2-му свойству показательной функции а x 1 > 0. Так как d > 0, то по 3-му свойству показательной функции а d > 1. Оба множителя в произведении а x 1 (а d - 1) положительны, поэтому и само это произведение положительно. Значит, а x 2 - а x 1 > 0, или а x 2 > а x 1 , что и требовалось доказать.

Итак, при a > 1 функция у = а x является монотонно возрастающей. Аналогично доказывается, что при а < 1 функция у = а x является монотонно убывающей.

Следствие. Если две степени одного и того же положительного числа, отличного от 1, равны, то равны и их показатели.

Другими словами, если

а b = а c (а > 0 и а =/= 1),

b = с .

Действительно, если бы числа b и с были не равны, то в силу монотонности функции у = а x большему из них соответствовало бы при а >1 большее, а при а < 1 меньшее значение этой функции. Таким образом, было бы или а b > а c , или а b < а c . И то и другое противоречит условию а b = а c . Остается признать, что b = с .

Свойство 6. Если а > 1, то при неограниченном возрастании аргумента х (х -> ) значения функции у = а x также неограниченно растут (у -> ). При неограниченном убывании аргумента х (х -> -∞ ) значения этой функции стремятся к нулю, оставаясь при этом положительными (у ->0; у > 0).

Принимая во внимание доказанную выше монотонность функции у = а x , можно сказать, что в рассматриваемом случае функция у = а x монотонно возрастает от 0 до .

Если 0 < а < 1, то при неограниченном возрастании аргумента х (х -> ∞) значения функции у = а x стремятся к нулю, оставаясь при этом положительными (у ->0; у > 0). При неограниченном убывании аргумента х (х -> -∞ ) значения этой функции неограниченно растут (у -> ).

В силу монотонности функции у = а x можно сказать, что в этом случае функция у = а x монотонно убывает от до 0.

6-е свойство показательной функции наглядно отражено на рисунках 246 и 247. Строго доказывать его мы не будем.

Нам осталось лишь установить область изменения показательной функции у = а x (а > 0, а =/= 1).

Выше мы доказали, что функция у = а x принимает только положительные значения и либо монотонно возрастает от 0 до (при а > 1), либо монотонно убывает от до 0 (при 0 < а <. 1). Однако остался невыясненным следующий вопрос: не претерпевает ли функция у = а x при своем изменении каких-нибудь скачков? Любые ли положительные значения она принимает? Вопрос этот решается положительно. Ecли а > 0 и а =/= 1, то, каково бы ни было положительное число у 0 обязательно найдется х 0 , такое, что

а x 0 = у 0 .

(В силу монотонности функции у = а x указанное значение х 0 будет, конечно, единственным.)

Доказательство этого факта выходит за пределы нашей программы. Геометрическая интерпретация его состоит в том, что при любом положительном значении у 0 график функции у = а x обязательно пересечется с прямой у = у 0 и притом лишь в одной точке (рис. 248).

Отсюда можно сделать следующий вывод, который мы формулируем в виде свойства 7.

Свойство 7. Областью изменения показательной функции у = а x (а > 0, а =/= 1) служит множество всех положительных чисел.

Упражнения

1368. Найти области определения следующих функций:

1369. Какие из данных чисел больше 1 и какие меньше 1:

1370. На основании какого свойства показательной функции можно утверждать, что

а) (5 / 7) 2,6 > (5 / 7) 2,5 ; б) (4 / 3) 1,3 > (4 / 3) 1,2

1371. Какое число больше:

а) π - √3 или (1 / π ) - √3 ; в) (2 / 3) 1 + √6 или (2 / 3) √2 + √5 ;

б) ( π / 4) 1 + √3 или ( π / 4) 2 ; г) (√3 ) √2 - √5 или (√3 ) √3 - 2 ?

1372. Равносильны ли неравенства:

1373. Что можно сказать о числах х и у , если а x = а y , где а - заданное положительное число?

1374. 1) Можно ли среди всех значений функции у = 2 x выделить:

2) Можно ли среди всех значений функции у = 2 | x| выделить:

а) наибольшее значение; б) наименьшее значение?

1.Показательная функция – это функция вида у(х) =а х, зависящая от показателя степени х, при постоянном значении основания степени a , где а > 0, a ≠ 0, xϵR (R – множество действительных чисел).

Рассмотрим график функции, если основание не будет удовлетворять условию: а>0
a) a < 0
Если a < 0 – возможно возведение в целую степень или в рациональную степень с нечетным показателем.
а = -2

Если а = 0 – функция у = определена и имеет постоянное значение 0


в) а =1
Если а = 1 – функция у = определена и имеет постоянное значение 1



2. Рассмотрим подробнее показательную функцию:

0


Область определения функции (ООФ)

Область допустимых значений функции (ОДЗ)

3. Нули функции (у = 0)

4. Точки пересечения с осью ординат oy (x = 0)

5. Возрастания, убывания функции

Если , то функция f(x) возрастает
Если , то функция f(x) убывает
Функция y= , при 0 Функция у =, при a> 1 монотонно возрастает
Это следует из свойств монотонности степени с действительным показателем.

6. Чётность, нечётность функции

Функция у = не симметрична относительно оси 0у и относительно началу координат, следовательно не является ни чётной, ни нечётной. (Функция общего вида)

7. Функция у = экстремумов не имеет

8. Свойства степени с действительным показателем:

Пусть а > 0; a≠1
b> 0; b≠1

Тогда для xϵR; yϵR:


Свойства монотонности степени:

если , то
Например:




Если a> 0, , то .
Показательная функция непрерывна в любой точке ϵ R.

9. Относительное расположение фунцкции

Чем больше основание а, тем ближе к осям ох и оу

a > 1, a = 20




Если а0, то показательная функция принимает вид близкий к y = 0.
Если а1, то дальше от осей ох и оу и график принимает вид близкий к функции у = 1.

Пример 1.
Построить график у =



© dagexpo.ru, 2024
Стоматологический сайт