Поперечность световых волн. Закон Малюса. Явление Брюстера. Методическая разработка по учебной дисциплине «Физика»Поперечность световых волн

21.09.2019

Дифракция и интерференция света подтверждает волновую природу света. Но волны могут быть продольными и поперечными. Рассмотрим следующий опыт.

Поляризация света

Пропустим пучок света через прямоугольную пластину турмалина, одна из граней которой параллельна оси кристалла. Никаких видимых изменений не произошло. Свет лишь частично погасился в пластине и приобрел зеленоватую окраску.

картинка

Теперь после поместим еще одну пластину после первой. Если оси обоих пластин будут сонаправлены, ничего не произойдет. Но если второй кристалл начать вращать, то свет будет гаситься. Когда оси будут перпендикулярны, света вообще не будет. Он целиком поглотиться второй пластиной.

картинка

Сделаем два вывода:

1. волна света симметрична относительно направления распространения.

2. После прохождения первого кристалла волна перестает обладать осевой симметрией.

С точки зрения продольных волн объяснить это не удастся. Следовательно, свет – поперечная волна. Кристалл турмалина является поляроидом. Он пропускает световые волны, колебания которых происходят в одной плоскости. Это свойство хорошо проиллюстрировано на следующем рисунке.

картинка

Поперечность световых волн и электромагнитная теория света

Свет, который получается после прохождения поляроида, называется плоскополяризованным светом. В поляризованном свете, колебания происходят только в одном – поперечном направлении.

Электромагнитная теория света берет свое начало в работах Максвелла. Во второй половине 19 века Максвелл доказал теоретически существование электромагнитных волн, которые могут распространяться даже в вакууме.

И он предположил, что свет тоже является электромагнитной волной. В основе электромагнитной теории света лежит тот факт, что скорость света и скорость распространения электромагнитных волн совпадают.

К концу 19 века было окончательно установлено, что световые волны возникают из-за движения заряженных частиц в атомах. С признанием этой теории отпала необходимость в светоносном эфире, в котором распространяются световые волны. Световые волны - это не механические, а электромагнитные волны.

Колебания световой волны состоят из колебаний двух векторов: вектора напряженности и вектора магнитной индукции. За направление колебаний в световых волнах принято считать направление колебаний вектора напряженности электрического поля.

Цель урока

Сформировать у школьников понятие «естественный и поляризованный свет»; познакомить с экспериментальным доказательством поперечности световых волн; изучить свойства поляризованного света, показать аналогию между поляризацией механических, электромагнитных и световых волн; сообщить о примерах использования поляроидов.

Урок по поляризации света является заключительными в теме «Волновая оптика». В связи с этим урок с использованием компьютерного моделирования можно построить как урок обобщающего повторения или часть урока отвести под решение задач по темам «Интерференция света», «Дифракция света». Мы предлагаем модель урока, на котором изучается новый материал по теме «Поляризация света», а затем проводится закрепление изученного материала на компьютерной модели. На данном уроке легко сочетать реальную демонстрацию с компьютерным моделированием, так как поляроиды можно дать детям в руки и показать гашение света при повороте одного из поляроидов.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 3
2 Объяснение нового материала по теме «Поляризация света» 28 Беседа, работа с учебником, демонстрация явления поляризации с помощью поляроидов и компьютерной модели «Закон Малюса»
3 Тест «Поляризация» 7 Работа на компьютере с тестом. Тест № 5
4 Анализ проделанной работы 5 Фронтальная беседа
5 Объяснение домашнего задания 2

Домашнее задание: § 74, задача № 1104, 1105.

Объяснение нового материала

Явления интерференции и дифракции не оставляют сомнений в том, что распространяющийся свет обладает свойствами волн. Но каких волн – продольных или поперечных?

Длительное время основатели волновой оптики Юнг и Френель считали световые волны продольными, то есть подобными звуковым волнам. В то время световые волны рассматривались как упругие волны в эфире, заполняющем пространство и проникающем внутрь всех тел. Такие волны, казалось, не могли быть поперечными, так как поперечные волны могут существовать только в твердом теле. Но как могут тела двигаться в твердом эфире, не встречая сопротивления? Ведь эфир не должен препятствовать движению тел. В противном случае не выполнялся бы закон инерции.

Однако постепенно набиралось все больше и больше экспериментальных фактов, которые никак не удавалось истолковать, считая световые волны продольными.

Опыты с турмалином

Рассмотрим подробно только один из экспериментов, очень простой и эффектный. Это опыт с кристаллами турмалина (прозрачными кристаллами зеленой окраски).

Продемонстрировать учащимся гашение света при повороте двух поляроидов. Кристалл турмалина имеет ось симметрии и принадлежит к числу так называемых одноосных кристаллов. Возьмем прямоугольную пластину турмалина, вырезанную таким образом, чтобы одна из ее граней была параллельна оси кристалла. Если направить нормально к такой пластине пучок света от электрической лампы или солнца, то вращение пластины вокруг пучка никакого изменения интенсивности света, прошедшего через нее, не вызовет (см. рис.). Можно подумать, что свет только частично поглотился в турмалине и приобрел зеленоватую окраску. Больше ничего не произошло. Но это не так. Световая волна приобрела новые свойства.

Эти новые свойства обнаруживаются, если пучок заставить пройти через второй точно такой же кристалл турмалина (см. рис. а), параллельный первому. При одинаково направленных осях кристаллов опять ничего интересного не происходит: просто световой пучок еще более ослабляется за счет поглощения во втором кристалле. Но если второй кристалл вращать, оставляя первый неподвижным (рис. б), то обнаружится удивительное явление – гашение света. По мере увеличения угла между осями интенсивность света уменьшается. И когда оси перпендикулярны друг другу, свет не проходит совсем (рис. в). Он целиком поглощается вторым кристаллом. Как это можно объяснить?

Поперечность световых волн

Из описанных выше опытов следует два факта: во-первых, что световая волна, идущая от источника света, полностью симметрична относительно направления распространения (при вращении кристалла вокруг луча в первом опыте интенсивность не менялась) и, во-вторых, что волна, вышедшая из первого кристалла, не обладает осевой симметрией (в зависимости от поворота второго кристалла относительно луча получается та или иная интенсивность прошедшего света).

Продольные волны обладают полной симметрией по отношению к направлению распространения (колебания происходят вдоль этого направления, и оно является осью симметрии волны). Поэтому объяснить опыт с вращением второй пластины, считая световую волну продольной, невозможно.

Полное объяснение опыта можно получить, сделав два предположения.

Первое предположение относится к самому свету. Свет – поперечная волна. Но в падающем от обычного источника пучке волн присутствуют колебания всевозможных направлений, перпендикулярных направлению распространения волн (см. рис.).

Продемонстрировать, что естественный свет содержит колебания во всех плоскостях.

Согласно этому предположению световая волна обладает осевой симметрией, являясь в то же время поперечной. Волны, например, на поверхности воды такой симметрией не обладают, так как колебания частиц воды происходят только в вертикальной плоскости.

Световая волна с колебаниями по всем направлениям, перпендикулярным направлению распространения, называется естественной . Такое название оправдано, так как в обычных условиях источники света создают именно такую волну. Данное предположение объясняет результат первого опыта. Вращение кристалла турмалина не меняет интенсивность прошедшего света, так как падающая волна обладает осевой симметрией (несмотря на то, что она поперечная).

Второе предположение, которое необходимо сделать, относится к кристаллу. Кристалл турмалина обладает способностью пропускать световые волны с колебаниями, лежащими в одной определенной плоскости (плоскость P на рисунке).


На компьютерной модели «Закон Малюса»

Продемонстрировать, что кристалл турмалина выделяет только одну плоскость колебаний света. Поворачивая поляризатор, а затем анализатор, можно показать, что интенсивность проходящего света меняется от максимального значения до нуля. Для гашения света угол между осями поляроидов должен быть 90° . Если оси поляроидов параллельны, то второй поляроид пропускает весь свет, прошедший сквозь первый.

Такой свет называется поляризованным , или, точнее, плоскополяризованным , в отличие от естественного света, который может быть назван также неполяризованным . Это предположение полностью объясняет результаты второго опыта. Из первого кристалла выходит плоскопо-ляризованная волна. При скрещенных кристаллах (угол между осями 90°) она не проходит сквозь второй кристалл. Если оси кристаллов составляют между собой некоторый угол, отличный от 90°, то проходят колебания, амплитуда которых равна проекции амплитуды волны, прошедшей через первый кристалл, на направление оси второго кристалла.

Итак, кристалл турмалина преобразует естественный свет в плоскополяризованный.

Механическая модель опытов с турмалином

Нетрудно построить простую наглядную механическую модель рассматриваемого явления. Можно создать поперечную волну в резиновом шнуре так, чтобы колебания быстро меняли свое направление в пространстве. Это аналог естественной световой волны. Пропустим теперь шнур сквозь узкий деревянный ящик (см. рис.). Из колебаний всевозможных направлений ящик «выделяет» колебания в одной определенной плоскости. Поэтому из ящика выходит поляризованная волна.


Если на ее пути имеется еще точно такой же ящик, но повернутый относительно первого на 90° , то колебания сквозь него не проходят. Волна целиком гасится.

Если в кабинете есть механическая модель поляризации можно, ее продемонстрировать. Если такой модели нет, то можно эту модель проиллюстрировать фрагментами видеофильма «Поляризация».

Поляроиды

Не только кристаллы турмалина способны поляризовать свет. Таким же свойством, например, обладают так называемые поляроиды . Поляроид представляет собой тонкую (0,1 мм) пленку кристаллов герапатита, нанесенную на целлулоид или стеклянную пластинку. С поляроидом можно проделать те же опыты, что и с кристаллом турмалина. Преимущество поляроидов в том, что можно создавать большие поверхности, поляризующие свет. К недостаткам поляроидов относится фиолетовый оттенок, который они придают белому свету.

Прямыми опытами доказано, что световая волна является поперечной. В поляризованной световой волне колебания происходят в строго определенном направлении.

В заключение можно рассмотреть применение поляризации в технике и проиллюстрировать этот материал фрагментами видиофильма «Поляризация».

Хотя явление интерференции едва ли допускает какую-нибудь иную интерпретацию, кроме как на базе волновой теории, всеобщее признание этой теории встретилось с двумя трудностями, которые, как мы видели, Ньютон считал решающими аргументами против нее: во-первых, прямолинейное распространение света в общем случае и, во-вторых, природу явления поляризации. Первая трудность была преодолена в рамках самой волновой теории, когда она достигла достаточного уровня развития: было установлено; что волны «огибают углы», но лишь в областях порядка длины волны. Поскольку последние в случае света чрезвычайно малы, то невооруженному глазу представляется, что тени имеют резкие границы, а лучи ограничены прямыми линиями. Лишь очень точные наблюдения позволяют заметить интерференционные полосы дифрагирующего света, параллельные границам тени.

Честь создания теории дифракции принадлежит Френелю, позднее - Кирхгофу (1882 г.), а в дальнейшем - Зоммерфельду (1895 г.). Они математически проанализировали эти тонкие явления и определили пределы, в которых применимо понятие луча света.

Вторая трудность связана с явлениями, обусловленными поляризацией света. Выше, говоря о волнах, мы всегда имели в виду продольные волны, подобные известным звуковым волнам. Действительно, звуковая волна состоит из периодических уплотнений и разрежений, при которых отдельные частицы воздуха движутся взад-вперед в направлении распространения волны.

Поперечные волны, конечно, тоже были известны: примером могут служить волны на поверхности воды или колебания растянутой струны, в которых частицы колеблются под прямым углом к направлению распространения волны. Но в этих случаях мы имеем дело не с волнами внутри вещества, а либо с явлениями на поверхности (волны на воде), либо с движениями целых конфигураций (колебание струны). Ни наблюдения, ни теория распространения волн в упругих твердых телах еще не были тогда известны. Этим объясняется кажущийся нам странным факт, что признание оптических волн как поперечных колебаний потребовало столь долгого времени. В самом деле примечательно, что толчком к развитию механики твердых упругих тел послужили опыты и концепции, связанные с динамикой невесомого и неосязаемого эфира.

Выше (стр. 91) мы объяснили, в чем состоит природа поляризации. Два луча, исходящие из двоякопреломляющего кристалла исландского шпата, ведут себя при прохождении через второй такой кристалл не как лучи обыкновенного света; именно, вместо пары одинаково интенсивных лучей они дают два луча неравной интенсивности, один из которых при определенных условиях может даже полностью исчезать.

В обычном, «естественном» свете различные направления в плоскости волны, т. е. в плоскости, перпендикулярной направлению луча, равноправны, или эквивалентны (фиг. 62). В луче же поляризованного света, например в одном из лучей, получающихся при двойном преломлении в кристалле исландского шпата, это уже не так. Малюс обнаружил (1808 г.), что поляризация - это особенность, присущая не только лучам света, претерпевшего двойное преломление в кристалле; это свойство можно получить и при простом отражении. Он смотрел сквозь пластинку из кристалла исландского шпата на отражающееся в окне заходящее солнце. Поворачивая свой кристалл, он заметил, что интенсивность двух изображений солнца меняется. Этого не происходит, если смотреть сквозь такой кристалл непосредственно на солнце. Брюстер (1815 г.) показал, что свет, отраженный от стеклянной пластинки под определенным углом, отражается от второй такой пластинки в различной мере, если последнюю поворачивать вокруг падающего луча (фиг. 63). Плоскость, перпендикулярная поверхности зеркала, в которой лежат падающие и отраженные лучи, называется плоскостью падения.

Фиг. 62. В луче естественного света ни одно направление, перпендикулярное плоскости распространения, не предпочтительнее другого.

Говоря, что отраженный луч поляризован в плоскости падения, имеют в виду не более чем тот факт, что такой луч ведет себя различным образом по отношению ко второму зеркалу в зависимости от того, в каком положении относительно друг друга находятся первая плоскость падения и вторая. Такие свойства корпускулярная теория не может объяснить, так как частицы света, падающие на стеклянную пластинку, должны либо проникать в пластинку, либо отражаться.

Два луча, исходящие из кристалла исландского шпата, поляризованы в перпендикулярных друг другу направлениях. Если направить их под соответствующим углом на зеркало, то один из них не будет отражаться совсем, тогда как другой будет отражаться полностью.

Френель и Араго выполнили решающий эксперимент (1816 г.), сделав попытку получить интерференционную картину от двух таких лучей, поляризованных перпендикулярно друг другу. Их попытка оказалась безуспешной. Отсюда Френель и Юнг (1817 г.) сделали окончательный вывод, что световые колебания должны быть поперечными.

Фиг. 63. К опыту по поляризации. Если поворачивать первую или вторую пластинку вокруг падающего луча как оси, интенсивность отраженного луча меняется.

По сути дела это заключение сразу делает понятным необычное поведение поляризованного света. Колебания частиц эфира осуществляются не в направлении распространения волны, а в плоскости, перпендикулярной этому направлению, - в плоскости волны (фиг. 62). Но всякое движение точки в плоскости можно рассматривать как состоящее из двух движений в двух взаимно перпендикулярных направлениях. Рассматривая кинематику точки (см. гл. II, § 3), мы видели, что ее движение определяется единственным образом заданием ее прямоугольных координат, изменяющихся в зависимости от времени. Далее очевидно, что двоякопреломляющий кристалл обладает способностью пропускать световые колебания с двумя различными скоростями в двух взаимно перпендикулярных направлениях. Отсюда, согласно принципу Гюйгенса, вытекает, что когда такие колебания проникают в кристалл, они испытывают различные отклонения или преломляются различным образом, т. е. разделяются в пространстве. Каждый выходящий из кристалла луч состоит, таким образом, лишь из колебаний в определенной плоскости, проходящей через направление луча, причем плоскости,

соответствующие каждому из двух выходящих лучей, взаимно перпендикулярны (фиг. 64). Два таких колебания, очевидно, не могут воздействовать друг на друга - они не могут интерферировать. Теперь, если поляризованный луч вновь попадает во второй кристалл, он пропускается без ослабления только в том случае, когда направление его колебаний имеет правильную ориентацию относительно кристалла - такую, в которой это колебание может распространяться без помех.

Фиг. 64. Два луча, полученные в результате двойного преломления, поляризованы перпендикулярно друг другу.

Фиг. 65. Отражение луча, падающего на поверхность под углом Брюстера. При определенном угле падения а отраженный луч оказывается поляризованным. Он несет колебания, происходящие лишь в одном направлении.

Во всех других положениях луч расщепляется на два, и интенсивность двух результирующих лучей изменяется в зависимости от ориентации второго кристалла.

Аналогичные условия имеют иместо и при отражении. Если отражение происходит под соответствующим углом, то из двух колебаний, одно из которых параллельно, а другое перпендикулярно к плоскости падения, отраженным оказывается лишь одно; другое проникает в зеркало, поглощаясь в случае металлического зеркала или проходя насквозь в случае стеклянной пластинки (фиг. 65). Какое из двух колебаний - перпендикулярное

или параллельное плоскости падения - оказывается отраженным, конечно, невозможно установить. (На фиг. 65 предполагается, что осуществляется второй вариант.) Однако этот вопрос об ориентации колебаний относительно плоскости падения или о направлении поляризации, как мы сейчас увидим, дал начало ряду глубоких исследований, теорий и дискуссий.

Явления интерференции и дифракции света подтверждают его волновую природу. В начале XIX века, Т. Юнг и О. Френель создав волновую теорию света, считали световые волны продольными, т.е. подобными звуковым волнам. Для этого им пришлось ввести некую гипотетическую среду, названную эфиром , в которой и происходило распространение продольных световых волн. В то время казалось невероятным, что свет – это поперечные волны, так как по аналогии с механическими волнами пришлось бы предполагать, что эфир – это твердое тело (поперечные механические волны не могут распространяться в газообразной или жидкой среде). Однако уже в то время существовали факты, противоречащие продольности световых волн.

Еще в средние века моряки привозили из Исландии необычные прозрачные камни, которые позже назвали исландским шпатом . Необычность их заключалась в том, что если кусочек исландского шпата положить на какую-либо надпись, то сквозь него надпись будет видеться раздвоенной.

В 1669 году датский ученый Бартолин сообщил интересные результаты своих опытов с кристаллами исландского шпата. При прохождении сквозь такой кристалл луч расщепляется на два (рис. 2.6.1). Эти лучи получили названия обыкновенный луч и необыкновенный луч , а само явление - двойное лучепреломление .

Обыкновенный луч подчиняется обычному закону преломления, а необыкновенный луч не подчиняется этому закону. Лучи раздваивались даже при их нормальном падении на кристалл исландского шпата. Если кристалл поворачивать относительно направления первоначального луча, то поворачиваются оба луча, прошедшие сквозь кристалл. Бартолин обнаружил также, что в кристалле существует некоторое направление, вдоль которого падающий луч не раздваивается. Однако объяснения этим явлениям он дать не мог.

Несколько лет спустя это открытие Бартолина привлекло к себе внимание Гюйгенса, который вводит понятие оптической оси кристалла (Бартолин фактически ее открыл).

Оптической осью кристалла называется выделенное направление в кристалле, вдоль которого обыкновенный и необыкновенный лучи распространяются не разделяясь.

В 1809 году французский инженер Э. Малюс провел опыт с кристаллами турмалина (прозрачными кристаллами зеленоватой окраски). В этом опыте свет последовательно пропускался через две одинаковые пластинки из турмалина. Если вторую пластинку поворачивать относительно первой, то интенсивность света, прошедшего через вторую пластинку изменялась от максимального значения до нуля (рис. 2.6.2). Зависимость интенсивности света I от угла j между оптическими осями обеих пластинок имеет вид:

(закон Малюса ), (2.6.1)

где I 0 – интенсивность падающего света.

Рис. 2.6.3 а . Рис. 2.6.3 б .

Ни двойное лучепреломление, ни закон Малюса не могут найти объяснение в рамках теории продольных световых волн. Для продольных волн направление распространения луча является осью симметрии. В продольной волне все направления в плоскости, перпендикулярной лучу, равноправны.

Чтобы понять, как ведет себя поперечная волна, рассмотрим волну, бегущую по шнуру в вертикальной плоскости. Если на пути этой волны поставить ящик с вертикальной щелью (рис. 2.6.3 а ), то волна свободно проходит через щель. В случае если щель в ящике расположена горизонтально, то волна сквозь нее уже не проходит (рис. 2.6.3 б ). Такая волна называется также плоско-поляризованной , т.к. колебания в ней происходят в одной (вертикальной) плоскости.

Опыты с кристаллами исландского шпата и турмалина позволили доказать, что световая волна является поперечной. Впервые догадку о поперечности световых волн высказал Т. Юнг (1816 г.). Френель, независимо от Юнга, также выдвинул концепцию поперечности световых волн, обосновал ее многочисленными экспериментами и создал теорию двойного лучепреломления света в кристаллах.

В середине 60-х годов XIX века Максвелл пришел к выводу о том, что свет – это электромагнитная волна. Этот вывод был сделан на основе совпадения скорости распространения электромагнитных волн, которая получается из теории Максвелла, с известным значением скорости света. К тому времени, когда Максвелл сделал вывод о существовании электромагнитных волн, поперечность световых волн уже была доказано экспериментально. Поэтому Максвелл полагал, что поперечность электромагнитных волн является еще одним важнейшим доказательством электромагнитной природы света.

В электромагнитной теории света исчезли также затруднения, связанные с необходимостью введения особой среды распространения волн – эфира, который приходилось рассматривать как твердое тело.

В электромагнитной волне вектора и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Принято плоскость, в которой колеблется вектор , называть плоскостью колебаний , а плоскость, в которой происходят колебания вектора , плоскостью поляризации . Поскольку во всех процессах взаимодействия света с веществом основную роль играет вектор напряженности электрического поля , то его называют световым вектором . Если при распространении электромагнитной волны световой вектор сохраняет свою ориентацию, такая волна называется линейно-поляризованной или плоско-поляризованной .

Линейно-поляризованный свет испускается лазерами. Однако, свет, испускаемый обычными источниками (например, солнечный свет, излучение ламп накаливания и т. п.), не поляризован. Это связано с тем, что атомы излучают свет отдельным цугами независимо друг от друга. В результате чего вектор в результирующей световой волне беспорядочно изменяет свою ориентацию во времени, так что в среднем все направления колебаний оказываются равноправными.

Световая волна, у которой направления колебаний светового вектора, хаотически меняются во времени, называется естественным или неполяризованным светом .

Естественный свет, пройдя через кристалл исландского шпата или турмалина, поляризуется. Явление двойного лучепреломления света объясняется тем, что во многих кристаллических веществах показатели преломления для двух взаимно перпендикулярно поляризованных волн различны. Поэтому кристалл раздваивает проходящие через него лучи (рис. 2.6.1). Два луча на выходе кристалла линейно поляризованы во взаимно перпендикулярных направлениях. Кристаллы, в которых происходит двойное лучепреломление, называются анизотропными .

Свет может оказаться поляризованным при отражении или рассеянии. В частности, голубой свет неба частично или полностью поляризован. Поляризация отраженного света впервые наблюдалась Малюсом, когда он смотрел сквозь кристалл исландского шпата на отражение заходящего солнца в окнах Люксембургского дворца в Париже. Малюс установил, что отраженный свет в той или иной степени поляризован. Степень поляризации отраженного пучка зависит от угла падения: при нормальном падении отраженный свет полностью не поляризован, а при падении под углом, который называется углом полной поляризации или углом Брюстера, отраженный луч поляризован на все 100 %. При отражении под углом Брюстера отраженный и преломленный лучи перпендикулярны между собой (рис. 2.5.4). Отраженный луч плоско-поляризован параллельно поверхности.

Т.к. , и , то угол Брюстера находится по формуле .

Поляризованный свет широко используется во многих областях техники (например, для плавной регулировки света, при исследовании упругих напряжений и т.д.). Человеческий глаз не различает поляризацию света, а глаза некоторых насекомых, например, пчел, воспринимают ее.


| | | | | | 7 |

© dagexpo.ru, 2024
Стоматологический сайт