Последовательные методы распознавания образов. Экспертные методы выбора. Методы распознавания образов и их характеристики

21.09.2019

  • Tutorial

Давно хотел написать общую статью, содержащую в себе самые основы Image Recognition, некий гайд по базовым методам, рассказывающий, когда их применять, какие задачи они решают, что возможно сделать вечером на коленке, а о чём лучше и не думать, не имея команды человек в 20.

Какие-то статьи по Optical Recognition я пишу давненько, так что пару раз в месяц мне пишут различные люди с вопросами по этой тематике. Иногда создаётся ощущение, что живёшь с ними в разных мирах. С одной стороны понимаешь, что человек скорее всего профессионал в смежной теме, но в методах оптического распознавания знает очень мало. И самое обидное, что он пытается применить метод из близрасположенной области знаний, который логичен, но в Image Recognition полностью не работает, но не понимает этого и сильно обижается, если ему начать рассказывать что-нибудь с самых основ. А учитывая, что рассказывать с основ - много времени, которого часто нет, становится всё ещё печальнее.

Эта статья задумана для того, чтобы человек, который никогда не занимался методами распознавания изображений, смог в течении 10-15 минут создать у себя в голове некую базовую картину мира, соответствующую тематике, и понять в какую сторону ему копать. Многие методы, которые тут описаны, применимы к радиолокации и аудио-обработке.
Начну с пары принципов, которые мы всегда начинаем рассказывать потенциальному заказчику, или человеку, который хочет начать заниматься Optical Recognition:

  • При решении задачи всегда идти от простейшего. Гораздо проще повесить на персону метку оранжевого цвета, чем следить за человеком, выделяя его каскадами. Гораздо проще взять камеру с большим разрешением, чем разрабатывать сверхразрешающий алгоритм.
  • Строгая постановка задачи в методах оптического распознавания на порядки важнее, чем в задачах системного программирования: одно лишнее слово в ТЗ может добавить 50% работы.
  • В задачах распознавания нет универсальных решений. Нельзя сделать алгоритм, который будет просто «распознавать любую надпись». Табличка на улице и лист текста - это принципиально разные объекты. Наверное, можно сделать общий алгоритм(вот хороший пример от гугла), но это будет требовать огромного труда большой команды и состоять из десятков различных подпрограмм.
  • OpenCV - это библия, в которой есть множество методов, и с помощью которой можно решить 50% от объёма почти любой задачи, но OpenCV - это лишь малая часть того, что в реальности можно сделать. В одном исследовании в выводах было написано: «Задача не решается методами OpenCV, следовательно, она неразрешима». Старайтесь избегать такого, не лениться и трезво оценивать текущую задачу каждый раз с нуля, не используя OpenCV-шаблоны.
Очень сложно давать какой-то универсальный совет, или рассказать как создать какую-то структуру, вокруг которой можно строить решение произвольных задач компьютерного зрения. Цель этой статьи в структуризации того, что можно использовать. Я попробую разбить существующие методы на три группы. Первая группа это предварительная фильтрация и подготовка изображения. Вторая группа это логическая обработка результатов фильтрации. Третья группа это алгоритмы принятия решений на основе логической обработки. Границы между группами очень условные. Для решения задачи далеко не всегда нужно применять методы из всех групп, бывает достаточно двух, а иногда даже одного.

Список приведённых тут методов не полон. Предлагаю в комментариях добавлять критические методы, которые я не написал и приписывать каждому по 2-3 сопроводительных слова.

Часть 1. Фильтрация

В эту группу я поместил методы, которые позволяют выделить на изображениях интересующие области, без их анализа. Большая часть этих методов применяет какое-то единое преобразование ко всем точкам изображения. На уровне фильтрации анализ изображения не производится, но точки, которые проходят фильтрацию, можно рассматривать как области с особыми характеристиками.
Бинаризация по порогу, выбор области гистограммы
Самое просто преобразование - это бинаризация изображения по порогу. Для RGB изображения и изображения в градациях серого порогом является значение цвета. Встречаются идеальные задачи, в которых такого преобразования достаточно. Предположим, нужно автоматически выделить предметы на белом листе бумаги:




Выбор порога, по которому происходит бинаризация, во многом определяет процесс самой бинаризации. В данном случае, изображение было бинаризовано по среднему цвету. Обычно бинаризация осуществляется с помощью алгоритма, который адаптивно выбирает порог. Таким алгоритмом может быть выбор матожидания или моды . А можно выбрать наибольший пик гистограммы.

Бинаризация может дать очень интересные результаты при работе с гистограммами, в том числе в ситуации, если мы рассматриваем изображение не в RGB, а в HSV . Например, сегментировать интересующие цвета. На этом принципе можно построить как детектор метки так и детектор кожи человека.
Классическая фильтрация: Фурье, ФНЧ, ФВЧ
Классические методы фильтрации из радиолокации и обработки сигналов можно с успехом применять во множестве задач Pattern Recognition. Традиционным методом в радиолокации, который почти не используется в изображениях в чистом виде, является преобразование Фурье (конкретнее - БПФ). Одно из немногих исключение, при которых используется одномерное преобразование Фурье, - компрессия изображений . Для анализа изображений одномерного преобразования обычно не хватает, нужно использовать куда более ресурсоёмкое двумерное преобразование .

Мало кто его в действительности рассчитывает, обычно, куда быстрее и проще использовать свёртку интересующей области с уже готовым фильтром, заточенным на высокие (ФВЧ) или низкие(ФНЧ) частоты. Такой метод, конечно, не позволяет сделать анализ спектра, но в конкретной задаче видеообработки обычно нужен не анализ, а результат.


Самые простые примеры фильтров, реализующих подчёркивание низких частот (фильтр Гаусса) и высоких частот (Фильтр Габора).
Для каждой точки изображения выбирается окно и перемножается с фильтром того же размера. Результатом такой свёртки является новое значение точки. При реализации ФНЧ и ФВЧ получаются изображения такого типа:



Вейвлеты
Но что если использовать для свёртки с сигналом некую произвольную характеристическую функцию? Тогда это будет называться "Вейвлет-преобразование ". Это определение вейвлетов не является корректным, но традиционно сложилось, что во многих командах вейвлет-анализом называется поиск произвольного паттерна на изображении при помощи свёртки с моделью этого паттерна. Существует набор классических функций, используемых в вейвлет-анализе. К ним относятся вейвлет Хаара , вейвлет Морле , вейвлет мексиканская шляпа , и.т.д. Примитивы Хаара, про которые было несколько моих прошлых статей ( , ), относятся к таким функциям для двумерного пространства.


Выше приведено 4 примера классических вейвлетов. 3х-мерный вейвлет Хаара, 2х-мерные вейвлет Мейера, вейвлет Мексиканская Шляпа, вейвлет Добеши. Хорошим примером использования расширеной трактовки вейвлетов является задачка поиска блика в глазу, для которой вейвлетом является сам блик:

Классические вейвлеты обычно используются для сжатия изображений , или для их классификации (будет описано ниже).
Корреляция
После такой вольной трактовки вейвлетов с моей стороны стоит упомянуть собственно корреляцию, лежащую в их основе. При фильтрации изображений это незаменимый инструмент. Классическое применение - корреляция видеопотока для нахождения сдвигов или оптических потоков. Простейший детектор сдвига - тоже в каком-то смысле разностный коррелятор. Там где изображения не коррелируют - было движение.

Фильтрации функций
Интересным классом фильтров является фильтрация функций. Это чисто математические фильтры, которые позволяют обнаружить простую математическую функцию на изображении (прямую, параболу, круг). Строится аккумулирующее изображение, в котором для каждой точки исходного изображения отрисовывается множество функций, её порождающих. Наиболее классическим преобразованием является преобразование Хафа для прямых. В этом преобразовании для каждой точки (x;y) отрисовывается множество точек (a;b) прямой y=ax+b, для которых верно равенство. Получаются красивые картинки:


(первый плюсег тому, кто первый найдёт подвох в картинке и таком определении и объяснит его, второй плюсег тому, кто первый скажет что тут изображено)
Преобразование Хафа позволяет находить любые параметризуемые функции. Например окружности . Есть модифицированное преобразование, которое позволяет искать любые фигуры . Это преобразование ужасно любят математики. Но вот при обработке изображений, оно, к сожалению, работает далеко не всегда. Очень медленная скорость работы, очень высокая чувствительность к качеству бинаризации. Даже в идеальных ситуациях я предпочитал обходиться другими методами.
Аналогом преобразования Хафа для прямых является преобразование Радона . Оно вычисляется через БПФ, что даёт выигрыш производительности в ситуации, когда точек очень много. К тому же его возможно применять к не бинаризованному изображению.
Фильтрации контуров
Отдельный класс фильтров - фильтрация границ и контуров . Контуры очень полезны, когда мы хотим перейти от работы с изображением к работе с объектами на этом изображении. Когда объект достаточно сложный, но хорошо выделяемый, то зачастую единственным способом работы с ним является выделение его контуров. Существует целый ряд алгоритмов, решающих задачу фильтрации контуров:

Чаще всего используется именно Кэнни, который хорошо работает и реализация которого есть в OpenCV (Собель там тоже есть, но он хуже ищёт контуры).



Прочие фильтры
Сверху приведены фильтры, модификации которых помогают решить 80-90% задач. Но кроме них есть более редкие фильтры, используемые в локальных задачах. Таких фильтров десятки, я не буду приводить их все. Интересными являются итерационные фильтры (например активная модель внешнего вида), а так же риджлет и курвлет преобразования, являющиеся сплавом классической вейвлет фильтрации и анализом в поле радон-преобразования. Бимлет-преобразование красиво работает на границе вейвлет преобразования и логического анализа, позволяя выделить контуры:

Но эти преобразования весьма специфичны и заточены под редкие задачи.

Часть 2. Логическая обработка результатов фильтрации

Фильтрация даёт набор пригодных для обработки данных. Но зачастую нельзя просто взять и использовать эти данные без их обработки. В этом разделе будет несколько классических методов, позволяющих перейти от изображения к свойствам объектов, или к самим объектам.
Морфология
Переходом от фильтрации к логике, на мой взгляд, являются методы математической морфологии ( , , ). По сути, это простейшие операции наращивания и эрозии бинарных изображений. Эти методы позволяют убрать шумы из бинарного изображения, увеличив или уменьшив имеющиеся элементы. На базе математической морфологии существуют алгоритмы оконтуривания, но обычно пользуются какими-то гибридными алгоритмами или алгоритмами в связке.
Контурный анализ
В разделе по фильтрации уже упоминались алгоритмы получения границ. Полученные границы достаточно просто преобразуются в контуры. Для алгоритма Кэнни это происходит автоматически, для остальных алгоритмов требуется дополнительная бинаризация. Получить контур для бинарного алгоритма можно например алгоритмом жука .
Контур является уникальной характеристикой объекта. Часто это позволяет идентифицировать объект по контуру. Существует мощный математический аппарат, позволяющий это сделать. Аппарат называется контурным анализом ( , ).

Если честно, то у меня ни разу ни получилось применить контурный анализ в реальных задачах. Уж слишком идеальные условия требуются. То граница не найдётся, то шумов слишком много. Но, если нужно что-то распознавать в идеальных условиях - то контурный анализ замечательный вариант. Очень быстро работает, красивая математика и понятная логика.
Особые точки
Особые точки это уникальные характеристики объекта, которые позволяют сопоставлять объект сам с собой или с похожими классами объектов. Существует несколько десятков способов позволяющих выделить такие точки. Некоторые способы выделяют особые точки в соседних кадрах, некоторые через большой промежуток времени и при смене освещения, некоторые позволяют найти особые точки, которые остаются таковыми даже при поворотах объекта. Начнём с методов, позволяющих найти особые точки, которые не такие стабильные, зато быстро рассчитываются, а потом пойдём по возрастанию сложности:
Первый класс. Особые точки, являющиеся стабильными на протяжении секунд. Такие точки служат для того, чтобы вести объект между соседними кадрами видео, или для сведения изображения с соседних камер. К таким точкам можно отнести локальные максимумы изображения, углы на изображении (лучший из детекторов, пожалуй, детектор Хариса), точки в которых достигается максимумы дисперсии, определённые градиенты и.т.д.
Второй класс. Особые точки, являющиеся стабильными при смене освещения и небольших движениях объекта. Такие точки служат в первую очередь для обучения и последующей классификации типов объектов. Например, классификатор пешехода или классификатор лица - это продукт системы, построенной именно на таких точках. Некоторые из ранее упомянутых вейвлетов могут являются базой для таких точек. Например, примитивы Хаара, поиск бликов, поиск прочих специфических функций. К таким точкам относятся точки, найденные методом гистограмм направленных градиентов (HOG).
Третий класс. Стабильные точки. Мне известно лишь про два метода, которые дают полную стабильность и про их модификации. Это SURF и SIFT . Они позволяют находить особые точки даже при повороте изображения. Расчёт таких точек осуществляется дольше по сравнению с остальными методами, но достаточно ограниченное время. К сожалению эти методы запатентованы. Хотя, в России патентовать алгоритмы низя, так что для внутреннего рынка пользуйтесь.

Часть 3. Обучение

ретья часть рассказа будет посвящена методам, которые не работают непосредственно с изображением, но которые позволяют принимать решения. В основном это различные методы машинного обучения и принятия решений. Недавно Яндыкс выложил на Хабр курс по этой тематике, там очень хорошая подборка. Вот оно есть в текстовой версии. Для серьёзного занятия тематикой настоятельно рекомендую посмотреть именно их. Тут я попробую обозначить несколько основных методов используемых именно в распознавании образов.
В 80% ситуаций суть обучения в задаче распознавания в следующем:
Имеется тестовая выборка, на которой есть несколько классов объектов. Пусть это будет наличие/отсутствие человека на фотографии. Для каждого изображения есть набор признаков, которые были выделены каким-нибудь признаком, будь то Хаар, HOG, SURF или какой-нибудь вейвлет. Алгоритм обучения должен построить такую модель, по которой он сумеет проанализировать новое изображение и принять решение, какой из объектов имеется на изображении.
Как это делается? Каждое из тестовых изображений - это точка в пространстве признаков. Её координаты это вес каждого из признаков на изображении. Пусть нашими признаками будут: «Наличие глаз», «Наличие носа», «Наличие двух рук», «Наличие ушей», и.т.д… Все эти признаки мы выделим существующими у нас детекторами, которые обучены на части тела, похожие на людские. Для человека в таком пространстве будет корректной точка . Для обезьяны точка для лошади . Классификатор обучается по выборке примеров. Но не на всех фотографиях выделились руки, на других нет глаз, а на третьей у обезьяны из-за ошибки классификатора появился человеческий нос. Обучаемый классификатор человека автоматически разбивает пространство признаков таким образом, чтобы сказать: если первый признак лежит в диапазоне 0.5 По существу цель классификатора - отрисовать в пространстве признаков области, характеристические для объектов классификации. Вот так будет выглядеть последовательное приближение к ответу для одного из классификаторов (AdaBoost) в двумерном пространстве:


Существует очень много классификаторов. Каждый из них лучше работает в какой-то своей задачке. Задача подбора классификатора к конкретной задаче это во многом искусство. Вот немножко красивых картинок на тему.
Простой случай, одномерное разделение
Разберём на примере самый простой случай классификации, когда пространство признака одномерное, а нам нужно разделить 2 класса. Ситуация встречается чаще, чем может представиться: например, когда нужно отличить два сигнала, или сравнить паттерн с образцом. Пусть у нас есть обучающая выборка. При этом получается изображение, где по оси X будет мера похожести, а по оси Y -количество событий с такой мерой. Когда искомый объект похож на себя - получается левая гауссиана. Когда не похож - правая. Значение X=0.4 разделяет выборки так, что ошибочное решение минимизирует вероятность принятия любого неправильного решения. Именно поиском такого разделителя и является задача классификации.


Маленькая ремарка. Далеко не всегда оптимальным будет тот критерий, который минимизирует ошибку. Следующий график - это график реальной системы распознавания по радужной оболочке. Для такой системы критерий выбирается такой, чтобы минимизировать вероятность ложного пропуска постороннего человека на объект. Такая вероятность называется «ошибка первого рода», «вероятность ложной тревоги», «ложное срабатывание». В англоязычной литературе «False Access Rate ».
) АдаБуста - один из самых распространённых классификаторов. Например каскад Хаара построен именно на нём. Обычно используют когда нужна бинарная классификация, но ничего не мешает обучить на большее количество классов.
SVM ( , , , ) Один из самых мощных классификаторов, имеющий множество реализаций. В принципе, на задачах обучения, с которыми я сталкивался, он работал аналогично адабусте. Считается достаточно быстрым, но его обучение сложнее, чем у Адабусты и требуется выбор правильного ядра.

Ещё есть нейронные сети и регрессия. Но чтобы кратко их классифицировать и показать, чем они отличаются, нужна статья куда больше, чем эта.
________________________________________________
Надеюсь, у меня получилось сделать беглый обзор используемых методов без погружения в математику и описание. Может, кому-то это поможет. Хотя, конечно, статья неполна и нет ни слова ни о работе со стереоизображениями, ни о МНК с фильтром Калмана, ни об адаптивном байесовом подходе.
Если статья понравится, то попробую сделать вторую часть с подборкой примеров того, как решаются существующие задачки ImageRecognition.

И напоследок

Что почитать?
1) Когда-то мне очень понравилась книга «Цифровая обработка изображений» Б. Яне, которая написана просто и понятно, но в то же время приведена почти вся математика. Хороша для того, чтобы ознакомиться с существующими методами.
2) Классикой жанра является Р Гонсалес, Р. Вудс " Цифровая обработка изображений ". Почему-то она мне далась сложнее, чем первая. Сильно меньше математики, зато больше методов и картинок.
3) «Обработка и анализ изображений в задачах машинного зрения» - написана на базе курса, читаемого на одной из кафедр ФизТеха. Очень много методов и их подробного описания. Но на мой взгляд в книге есть два больших минуса: книга сильно ориентирована на пакет софта, который к ней прилагается, в книге слишком часто описание простого метода превращается в математические дебри, из которых сложно вынести структурную схему метода. Зато авторы сделали удобный сайт, где представлено почти всё содержание - wiki.technicalvision.ru Добавить метки

В целом, можно выделить три метода распознавания образов: Метод перебора. В этом случае производится сравнение с базой данных, где для каждого вида объектов представлены всевозможные модификации отображения. Например, для оптического распознавания образов можно применить метод перебора вида объекта под различными углами, масштабами, смещениями, деформациями и т. д. Для букв нужно перебирать шрифт, свойства шрифта и т. д. В случае распознавания звуковых образов, соответственно, происходит сравнение с некоторыми известными шаблонами (например, слово, произнесенное несколькими людьми).

Второй подход - производится более глубокий анализ характеристик образа. В случае оптического распознавания это может быть определение различных геометрических характеристик. Звуковой образец в этом случае подвергается частотному, амплитудному анализу и т. д.

Следующий метод - использование искусственных нейронных сетей (ИНС). Этот метод требует либо большого количества примеров задачи распознавания при обучении, либо специальной структуры нейронной сети, учитывающей специфику данной задачи. Тем не менее, его отличает более высокая эффективность и производительность.

4. История распознавания образов

Рассмотрим кратко математический формализм распознавания образов. Объект в распознавании образов описывается совокупностью основных характеристик (признаков, свойств). Основные характеристики могут иметь различную природу: они могут браться из упорядоченного множества типа вещественной прямой, либо из дискретного множества (которое, впрочем, так же может быть наделено структурой). Такое понимание объекта согласуется как потребностью практических приложений распознавания образов, так и с нашим пониманием механизма восприятия объекта человеком. Действительно, мы полагаем, что при наблюдении (измерении) объекта человеком, сведения о нем поступают по конечному числу сенсоров (анализируемых каналов) в мозг, и каждому сенсору можно сопоставить соответствующую характеристику объекта. Помимо признаков, соответствующих нашим измерениям объекта, существует так же выделенный признак, либо группа признаков, которые мы называем классифицирующими признаками, и в выяснении их значений при заданном векторе Х и состоит задача, которую выполняют естественные и искусственные распознающие системы.

Понятно, что для того, чтобы установить значения этих признаков, необходимо иметь информацию о том, как связаны известные признаки с классифицирующими. Информация об этой связи задается в форме прецедентов, то есть множества описаний объектов с известными значениями классифицирующих признаков. И по этой прецедентной информации и требуется построить решающее правило, которое будет ставить произвольному описанию объекта значения его классифицирующих признаков.

Такое понимание задачи распознавания образов утвердилось в науке начиная с 50-х годов прошлого века. И тогда же было замечено что такая постановка вовсе не является новой. С подобной формулировкой сталкивались и уже существовали вполне не плохо зарекомендовавшие себя методы статистического анализа данных, которые активно использовались для многих практических задач, таких как например, техническая диагностика. Поэтому первые шаги распознавания образов прошли под знаком статистического подхода, который и диктовал основную проблематику.

Статистический подход основывается на идее, что исходное пространство объектов представляет собой вероятностное пространство, а признаки (характеристики) объектов являют собой случайные величины заданные на нем. Тогда задача исследователя данных состояла в том, чтобы из некоторых соображений выдвинуть статистическую гипотезу о распределении признаков, а точнее о зависимости классифицирующих признаков от остальных. Статистическая гипотеза, как правило, представляла собой параметрически заданное множество функций распределения признаков. Типичной и классической статистической гипотезой является гипотеза о нормальности этого распределения (разновидностей таких гипотез статистики придумали великое множество). После формулировки гипотезы оставалось проверить эту гипотезу на прецедентных данных. Это проверка состояла в выборе некоторого распределения из первоначально заданного множества распределений (параметра гипотезы о распределении) и оценки надежности(доверительного интервала) этого выбора. Собственно эта функция распределения и была ответом к задаче, только объект классифицировался уже не однозначно, но с некоторыми вероятностями принадлежности к классам. Статистиками были разработано так же и ассимптотическое обоснование таких методов. Такие обоснования делались по следующей схеме: устанавливался некоторый функционал качества выбора распределения (доверительный интервал) и показывалось, что при увеличении числа прецедентов, наш выбор с вероятностью стремящейся к 1 становился верным в смысле этого функционала (доверительный интервал стремился к 0). Забегая вперед скажем, что статистический взгляд на проблему распознавания оказался весьма плодотворным не только в смысле разработанных алгоритмов (в число которых входят методы кластерного, дискриминантного анализов, непараметрическая регрессия и т.д.), но и привел впоследствии Вапника к созданию глубокой статистической теории распознавания.

Тем не менее существует серьезная аргументация в пользу того, что задачи распознавания образов не сводятся к статистике. Любую такую задачу, в принципе, можно рассматривать со статистической точки зрения и результаты ее решения могут интерпретироваться статистически. Для этого необходимо лишь предположить, что пространство объектов задачи является вероятностным. Но с точки зрения инструментализма, критерием удачности статистической интерпретации некоторого метода распознавания может служить лишь наличие обоснавания этого метода на языке статистики как раздела математики. Под обоснаванием здесь понимается выработка основных требований к задаче которые обеспечивают успех в применении этого метода. Однако на данный момент для большей части методов распознавания, в том числе и для тех, которые напрямую возникли в рамках статистического подхода, подобных удовлетворительных обоснований не найдено. Кроме этого, наиболее часто применяемые на данный момент статистические алгоритмы, типа линейного дискриминанта Фишера, парзеновского окна, EM-алгоритма, метода ближайших соседей, не говоря уже о байесовских сетях доверия, имеют сильно выраженный эвристический характер и могут иметь интерпретации отличные от статистических. И наконец, ко всему вышесказанному следует добавить, что помимо асимптотического поведения методов распознавания, которое и является основным вопросом статистики, практика распознавания ставит вопросы вычислительной и структурной сложности методов, которые выводят далеко за рамки одной лишь теории вероятностей.

Итого, вопреки стремлениям статистиков рассматривать распознавание образов как раздел статистики, в практику и идеологию распознавания входили совершенно другие идеи. Одна из них была вызвана исследованиями в области распознавания зрительных образов и основана на следующей аналогии.

Как уже отмечалось, в повседневной жизни люди постоянно решают (зачастую бессознательно) проблемы распознавания различных ситуаций, слуховых и зрительных образов. Подобная способность для ЭВМ представляет собой в лучшем случае дело будущего. Отсюда некоторыми пионерами распознавания образов был сделан вывод, что решение этих проблем на ЭВМ должно в общих чертах моделировать процессы человеческого мышления. Наиболее известной попыткой подойти к проблеме с этой стороны было знаменитое исследование Ф. Розенблатта по перцептронам .

К середине 50-х годов казалось, что нейрофизиологами были поняты физические принципы работы мозга (в книге "Новый Разум Короля" знаменитый британский физик-теоретик Р. Пенроуз интересно ставит под сомнение нейросетевую модель мозга, обосновывая существенную роль в его функционировании квантово-механических эффектов; хотя, впрочем, эта модель подвергалась сомнению с самого начала. Отталкиваясь от этих открытий Ф.Розенблатт разработал модель обучения распознаванию зрительных образов, названную им персептроном. Персептрон Розенблатта представляет собой следующую функцию (рис. 1):

Рис 1. Схема Персептрона

На входе персептрон получает вектор объекта, который в работах Розенблатта представлял собой бинарный вектор, показывавший какой из пикселов экрана зачернен изображением а какой нет. Далее каждый из признаков подается на вход нейрона, действие которого представляет собой простое умножение на некоторый вес нейрона. Результаты подаются на последний нейрон, который их складывает и общую сумму сравнивает с некоторым порогом. В зависимости от результатов сравнения входной объект Х признается нужным образом либо нет. Тогда задача обучения распознаванию образов состояла в таком подборе весов нейронов и значения порога, чтобы персептрон давал на прецедентных зрительных образах правильные ответы. Розенблатт полагал, что получившаяся функция будет неплохо распознавать нужный зрительный образ даже если входного объекта и не было среди прецедентов. Из бионических соображений им так же был придуман и метод подбора весов и порога, на котором останавливаться мы не будем. Скажем лишь, что его подход оказался успешным в ряде задач распознавания и породил собой целое направление исследований алгоритмов обучения основанных на нейронных сетях, частным случаем которых и является персептрон.

Далее были придуманы различные обобщения персептрона, функция нейронов была усложнена: нейроны теперь могли не только умножать входные числа или складывать их и сравнивать результат с порогами, но применять по отношению к ним более сложные функции. На рисунке 2 изображено одно из подобных усложнений нейрона:

Рис. 2 Схема нейронной сети.

Кроме того топология нейронной сети могла быть значительно сложнее той, что рассматривал Розенблатт, например такой:

Рис. 3. Схема нейронной сети Розенблатта.

Усложнения приводили к увеличению числа настраиваемых параметров при обучении, но при этом увеличивали возможность настраиваться на очень сложные закономерности. Исследования в этой области сейчас идут по двум тесно связанным направлениям - изучаются и различные топологии сетей и различные методы настроек.

Нейронные сети на данный момент являются не только инструментом решения задач распознавания образов, но получили применение в исследованиях по ассоциативной памяти, сжатию изображений. Хотя это направление исследований и пересекается сильно с проблематикой распознавания образов, но представляет собой отдельный раздел кибернетики. Для распознавателя на данный момент, нейронные сети не более чем очень специфически определенное, параметрически заданное множество отображений, которое в этом смысле не имеет каких-либо существенных преимуществ над многими другим подобными моделями обучения которые далее будут кратко перечислены.

В связи с данной оценкой роли нейронных сетей для собственно распознавания (то есть не для бионики, для которой они имеют первостепенное значение уже сейчас) хотелось бы отметить следующее: нейронные сети, будучи чрезвычайно сложным объектом для математического анализа, при грамотном их использовании, позволяют находить весьма нетривиальные законы в данных. Их трудность для анализа, в общем случае, объясняется их сложной структурой и как следствие, практически неисчерпаемыми возможностями для обобщения самых различных закономерностей. Но эти достоинства, как это часто и бывает, являются источником потенциальных ошибок, возможности переобучения. Как будет рассказано далее, подобный двоякий взгляд на перспективы всякой модели обучения является одним из принципов машинного обучения.

Еще одним популярным направлением в распознавании являются логические правила и деревья решений. В сравнении с вышеупомянутыми методами распознавания эти методы наиболее активно используют идею выражения наших знаний о предметной области в виде, вероятно самых естественных (на сознательном уровне) структур - логических правил. Под элементарным логическим правилом подразумевается высказывание типа «если неклассифицируемые признаки находятся в соотношении X то классифицируемые находятся в соотношении Y». Примером такого правила в медицинской диагностике служит следующее: если возраст пациента выше 60 лет и ранее он перенёс инфаркт, то операцию не делать - риск отрицательного исхода велик.

Для поиска логических правил в данных необходимы 2 вещи: определить меру «информативности» правила и пространство правил. И задача поиска правил после этого превращается в задачу полного либо частичного перебора в пространстве правил с целью нахождения наиболее информативных из них. Определение информативности может быть введено самыми различными способами и мы не будем останавливаться на этом, считая что это тоже некоторый параметр модели. Пространство же поиска определяется стандартно.

После нахождения достаточно информативных правил наступает фаза «сборки» правил в конечный классификатор. Не обсуждая глубоко проблемы которые здесь возникают (а их возникает немалое количество) перечислим 2 основных способа «сборки». Первый тип - линейный список. Второй тип – взвешенное голосование, когда каждому правилу ставится в соответствие некоторый вес, и объект относится классификатором к тому классу за который проголосовало наибольшее количество правил.

В действительности, этап построения правил и этап «сборки» выполняются сообща и, при построении взвешенного голосования либо списка, поиск правил на частях прецедентных данных вызывается снова и снова, чтобы обеспечить лучшее согласование данных и модели.

Обзор существующих методов распознавания образов

Л.П. Попова , И.О. Датьев

Способность "распознавать" считается основным свойством человеческих существ, как, впрочем, и других живых организмов. Распознавание образов - раздел кибернетики, разрабатывающий принципы и методы классификации, а также идентификации предметов, явлений, процессов, сигналов, ситуаций - всех тех объектов, которые могут быть описаны конечным набором некоторых признаков или свойств, характеризующих объект.

Образ представляет собой описание объекта. Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей.

В теории распознавания образов можно выделить два основных направления:

    изучение способностей к распознаванию, которыми обладают человеческие существа и другие живые организмы;

    развитие теории и методов построения устройств, предназначенных для решения отдельных задач распознавания образов в определенных прикладных областях.

Далее в статье описываются проблемы, принципы и методы реализации систем распознавания образов, связанные с развитием второго направления. Во второй части статьи рассматриваются нейросетевые методы распознавания образов, которые могут быть отнесены к первому направлению теории распознавания образов.

Проблемы построения систем распознавания образов

Задачи, возникающие при построении автоматических систем распознавания образов, можно обычно отнести к нескольким основным областям. Первая из них связана с представлением" исходных данных, полученных как результаты измерений для подлежащего распознаванию объекта. Это проблема чувствительности . Каждая измеренная величина является некоторой "характеристикой образа или объекта. Допустим, например, что образами являются буквенно-цифровые символы. B таком случае, в датчике может быть успешно использована измерительная сетчатка, подобно приведенной на рис. 1(а). Если сетчатка состоит из n-элементов, то результаты измерений можно представить в виде вектора измерений или вектора образа ,

где каждый элемент xi, принимает, например, значение 1, если через i-ю ячейку сетчатки проходит изображение символа, и значение 0 в противном случае.

Рассмотрим рис. 2(б). B этом случае образами служат непрерывные функции (типа звуковых сигналов) переменной t. Если измерение значений функций производится в дискретных точках t1,t2, ..., tn, то вектор образа можно сформировать, приняв x1= f(t1),x2=f(t2),... , xn = f(tn).

Рисунок 1. Измерительная сетчатка

Вторая проблема распознавания образов связана с выделением характерных признаков или свойств из полученных исходных данных и снижением размерности векторов образов. Эту проблему часто определяют как проблему предварительной обработки и выбора признаков .

Признаки класса образов представляют собой характерные свойства, общие для всех образов данного класса. Признаки, характеризующие различия между отдельными классами, можно интерпретировать как межклассовые признаки. Внутриклассовые признаки, общие для всех рассматриваемых классов, не несут полезной информации с точки зрения распознавания и могут не приниматься во внимание. Выбор признаков считается одной из важных задач, связанных с построением распознающих систем. Если результаты измерений позволяют получить полный набор различительных признаков для всех классов, собственно распознавание и классификация образов не вызовут особых затруднений. Автоматическое распознавание тогда сведется к процессу простого сопоставления или процедурам типа просмотра таблиц. B большинстве практических задач распознавания, однако, определение полного набора различительных признаков оказывается делом исключительно трудным, если вообще не невозможным. Из исходных данных обычно удается извлечь некоторые из различительных признаков и использовать их для упрощения процесса автоматического распознавания образов. B частности, размерность векторов измерений можно снизить с помощью преобразований, обеспечивающих минимизацию потери информации.

Третья проблема, связанная с построением систем распознавания образов, состоит в отыскании оптимальных решающих процедур, необходимых при идентификации и классификации. После того как данные, собранные о подлежащих распознаванию образах, представлены точками или векторами измерений в пространстве образов, предоставим машине выяснить, какому классу образов эти данные соответствуют. Пусть машина предназначена для различения M классов, обозначенных w1, w2, ... ..., wm. B таком случае, пространство образов можно считать состоящим из M областей, каждая из которых содержит точки, соответствующие образам из одного класса. При этом задача распознавания может рассматриваться как построение границ областей решений, разделяющих M классов, исходя из зарегистрированных векторов измерений. Пусть эти границы определены, например, решающими функциями d1(х),d2(x),..., dm(х). Эти функции, называемые также дискриминантными функциями, представляют собой скалярные и однозначные функции образа х. Если di (х) > dj (х), то образ х принадлежит классу w1. Другими словами, если i-я решающая функция di(x) имеет наибольшее значение, то содержательной иллюстрацией подобной схемы автоматической классификации, основанной на реализации процесса принятия решения, служит приведенная на рис. 2 (на схеме «ГР» - генератор решающих функций).

Рисунок 2. Схема автоматической классификации.

Решающие функции можно получать целым рядом способов. B тех случаях, когда о распознаваемых образах имеются полные априорные сведения, решающие функции могут быть определены точно на основе этой информации. Если относительно образов имеются лишь качественные сведения, могут быть выдвинуты разумные допущения о виде решающих функций. B последнем случае, границы областей решений могут существенно отклоняться от истинных, и поэтому необходимо создавать систему, способную приходить к удовлетворительному результату посредством ряда последовательных корректировок.

Объекты (образы), подлежащие распознаванию и классификации с помощью автоматической системы распознавания образов, должны обладать набором измеримых характеристик. Когда для целой группы образов результаты соответствующих измерений оказываются аналогичными, считается, что эти объекты принадлежат одному классу. Цель работы системы распознавания образов заключается в том, чтобы на основе собранной информации определить класс объектов с характеристиками, аналогичными измеренным у распознаваемых объектов. Правильность распознавания зависит от объема различающей информации, содержащейся в измеряемых характеристиках, и эффективности использования этой информации.

      Основные методы реализации систем распознавания образов

Распознаванием образов называются задачи построения и применения формальных операций над числовыми или символьными отображениями объектов реального или идеального мира, результаты, решения которых отражают отношения эквивалентности между этими объектами. Отношения эквивалентности выражают принадлежность оцениваемых объектов к каким-либо классам, рассматриваемым как самостоятельные семантические единицы.

При построении алгоритмов распознавания классы эквивалентности могут задаваться исследователем, который пользуется собственными содержательными представлениями или использует внешнюю дополнительную информацию о сходстве и различии объектов в контексте решаемой задачи. Тогда говорят о “распознавании с учителем”. В противном случае, т.е. когда автоматизированная система решает задачу классификации без привлечения внешней обучающей информации, говорят об автоматической классификации или “распознавании без учителя”. Большинство алгоритмов распознавания образов требует привлечения весьма значительных вычислительных мощностей, которые могут быть обеспечены только высокопроизводительной компьютерной техникой.

Различные авторы (Ю.Л. Барабаш , В.И. Васильев , А.Л. Горелик, В.А. Скрипкин , Р. Дуда, П. Харт , Л.Т.Кузин , Ф.И. Перегудов, Ф.П. Тарасенко , Темников Ф.Е., Афонин В.А., Дмитриев В.И. , Дж. Ту, Р. Гонсалес , П. Уинстон , К. Фу , Я.З. Цыпкин и др.) дают различную типологию методов распознавания образов. Одни авторы различают параметрические, непараметрические и эвристические методы, другие – выделяют группы методов, исходя из исторически сложившихся школ и направлений в данной области.

В то же время, известные типологии не учитывают одну очень существенную характеристику, которая отражает специфику способа представления знаний о предметной области с помощью какого-либо формального алгоритма распознавания образов. Д.А.Поспелов выделяет два основных способа представления знаний :

    Интенсиональное представление - в виде схемы связей между атрибутами (признаками).

    Экстенсиональное представление - с помощью конкретных фактов (объекты, примеры).

Необходимо отметить, что существование именно этих двух групп методов распознавания: оперирующих с признаками, и оперирующих с объектами, глубоко закономерно. С этой точки зрения ни один из этих методов, взятый отдельно от другого, не позволяет сформировать адекватное отражение предметной области. Между этими методами существует отношение дополнительности в смысле Н.Бора , поэтому перспективные системы распознавания должны обеспечивать реализацию обоих этих методов, а не только какого–либо одного из них.

Таким образом, в основу классификации методов распознавания, предложенной Д.А.Поспеловым , положены фундаментальные закономерности, лежащие в основе человеческого способа познания вообще, что ставит ее в совершенно особое (привилегированное) положение по сравнению с другими классификациями, которые на этом фоне выглядят более легковесными и искусственными.

Интенсиональные методы

Отличительной особенностью интенсиональных методов является то, что в качестве элементов операций при построении и применении алгоритмов распознавания образов они используют различные характеристики признаков и их связей. Такими элементами могут быть отдельные значения или интервалы значений признаков, средние величины и дисперсии, матрицы связей признаков и т. п., над которыми производятся действия, выражаемые в аналитической или конструктивной форме. При этом объекты в данных методах не рассматриваются как целостные информационные единицы, а выступают в роли индикаторов для оценки взаимодействия и поведения своих атрибутов.

Группа интенсиональных методов распознавания образов обширна, и ее деление на подклассы носит в определенной мере условный характер:

– методы, основанные на оценках плотностей распределения значений признаков

– методы, основанные на предположениях о классе решающих функций

– логические методы

– лингвистические (структурные) методы.

Методы, основанные на оценках плотностей распределения значений признаков. Эти методы распознавания образов заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к априорным вероятностям принадлежности объектов к тому или иному распознаваемому классу и условным плотностям распределения значений вектора признаков. Данные методы сводятся к определению отношения правдоподобия в различных областях многомерного пространства признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет прямое отношение к методам дискриминантного анализа. Байесовский подход к принятию решений и относится к наиболее разработанным в современной статистике так называемым параметрическим методам, для которых считается известным аналитическое выражение закона распределения (в данном случае нормальный закон) и требуется оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы).

К этой группе относится и метод вычисления отношения правдоподобия для независимых признаков. Этот метод, за исключением предположения о независимости признаков (которое в действительности практически никогда не выполняется), не предполагает знания функционального вида закона распределения. Его можно отнести к непараметрическим методам .

Другие непараметрические методы, применяемые тогда, когда вид кривой плотности распределения неизвестен и нельзя сделать вообще никаких предположений о ее характере, занимают особое положение. К ним относятся известные метод многомерных гистограмм, метод “k-ближайших соседей, метод евклидова расстояния, метод потенциальных функций и др., обобщением которых является метод, получивший название “оценки Парзена”. Эти методы формально оперируют объектами как целостными структурами, но в зависимости от типа задачи распознавания могут выступать и в интенсиональной и в экстенсиональной ипостасях.

Непараметрические методы анализируют относительные количества объектов, попадающих в заданные многомерные объемы, и используют различные функции расстояния между объектами обучающей выборки и распознаваемыми объектами. Для количественных признаков, когда их число много меньше объема выборки, операции с объектами играют промежуточную роль в оценке локальных плотностей распределения условных вероятностей и объекты не несут смысловой нагрузки самостоятельных информационных единиц. В то же время, когда количество признаков соизмеримо или больше числа исследуемых объектов, а признаки носят качественный или дихотомический характер, то ни о каких локальных оценках плотностей распределения вероятностей не может идти речи. В этом случае объекты в указанных непараметрических методах рассматриваются как самостоятельные информационные единицы (целостные эмпирические факты) и данные методы приобретают смысл оценок сходства и различия изучаемых объектов.

Таким образом, одни и те же технологические операции непараметрических методов в зависимости от условий задачи имеют смысл либо локальных оценок плотностей распределения вероятностей значений признаков, либо оценок сходства и различия объектов.

В контексте интенсионального представления знаний здесь рассматривается первая сторона непараметрических методов, как оценок плотностей распределения вероятностей. Многие авторы отмечают, что на практике непараметрические методы типа оценок Парзена работают хорошо. Основными трудностями применения указанных методов считаются необходимость запоминания всей обучающей выборки для вычисления оценок локальных плотностей распределения вероятностей и высокая чувствительность к непредставительности обучающей выборки.

Методы, основанные на предположениях о классе решающих функций. В данной группе методов считается известным общий вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности ищется наилучшее приближение решающей функции. Самыми распространенными являются представления решающих функций в виде линейных и обобщенных нелинейных полиномов. Функционал качества решающего правила обычно связывают с ошибкой классификации.

Основным достоинством методов, основанных на предположениях о классе решающих функций, является ясность математической постановки задачи распознавания, как задачи поиска экстремума. Решение этой задачи нередко достигается с помощью каких-либо градиентных алгоритмов. Многообразие методов этой группы объясняется широким спектром используемых функционалов качества решающего правила и алгоритмов поиска экстремума. Обобщением рассматриваемых алгоритмов, к которым относятся, в частности, алгоритм Ньютона, алгоритмы перцептронного типа и др., является метод стохастической аппроксимации. В отличие от параметрических методов распознавания успешность применения данной группы методов не так сильно зависит от рассогласования теоретических представлений о законах распределения объектов в пространстве признаков с эмпирической реальностью. Все операции подчинены одной главной цели - нахождению экстремума функционала качества решающего правила. В то же время результаты параметрических и рассматриваемых методов могут быть похожими. Как показано выше, параметрические методы для случая нормальных распределений объектов в различных классах с равными ковариационными матрицами приводят к линейным решающим функциям. Отметим также, что алгоритмы отбора информативных признаков в линейных диагностических моделях, можно интерпретировать как частные варианты градиентных алгоритмов поиска экстремума.

Возможности градиентных алгоритмов поиска экстремума, особенно в группе линейных решающих правил, достаточно хорошо изучены. Сходимость этих алгоритмов доказана только для случая, когда распознаваемые классы объектов отображаются в пространстве признаков компактными геометрическими структурами. Однако стремление добиться достаточного качества решающего правила нередко может быть удовлетворено с помощью алгоритмов, не имеющих строгого математического доказательства сходимости решения к глобальному экстремуму .

К таким алгоритмам относится большая группа процедур эвристического программирования, представляющих направление эволюционного моделирования. Эволюционное моделирование является бионическим методом, заимствованным у природы. Оно основано на использовании известных механизмов эволюции с целью замены процесса содержательного моделирования сложного объекта феноменологическим моделированием его эволюции.

Известным представителем эволюционного моделирования в распознавании образов является метод группового учета аргументов (МГУА). В основу МГУА положен принцип самоорганизации, и алгоритмы МГУА воспроизводят схему массовой селекции. В алгоритмах МГУА особым образом синтезируются и отбираются члены обобщенного полинома, который часто называют полиномом Колмогорова-Габора. Этот синтез и отбор производится с нарастающим усложнением, и заранее нельзя предугадать, какой окончательный вид будет иметь обобщенный полином. Сначала обычно рассматривают простые попарные комбинации исходных признаков, из которых составляются уравнения решающих функций, как правило, не выше второго порядка. Каждое уравнение анализируется как самостоятельная решающая функция, и по обучающей выборке тем или иным способом находятся значения параметров составленных уравнений. Затем из полученного набора решающих функций отбирается часть в некотором смысле лучших. Проверка качества отдельных решающих функций осуществляется на контрольной (проверочной) выборке, что иногда называют принципом внешнего дополнения. Отобранные частные решающие функции рассматриваются далее как промежуточные переменные, служащие исходными аргументами для аналогичного синтеза новых решающих функций и т. д. Процесс такого иерархического синтеза продолжается до тех пор, пока не будет достигнут экстремум критерия качества решающей функции, что на практике проявляется в ухудшении этого качества при попытках дальнейшего увеличения порядка членов полинома относительно исходных признаков.

Принцип самоорганизации, положенный в основу МГУА, называют эвристической самоорганизацией, так как весь процесс основывается на введении внешних дополнений, выбираемых эвристически. Результат решения может существенно зависеть от этих эвристик. От того, как разделены объекты на обучающую и проверочную выборки, как определяется критерий качества распознавания, какое количество переменных пропускается в следующий ряд селекции и т. д., зависит результирующая диагностическая модель.

Указанные особенности алгоритмов МГУА свойственны и другим подходам к эволюционному моделированию. Но отметим здесь еще одну сторону рассматриваемых методов. Это - их содержательная сущность. С помощью методов, основанных на предположениях о классе решающих функций (эволюционных и градиентных), можно строить диагностические модели высокой сложности и получать практически приемлемые результаты. В то же время достижению практических целей в данном случае не сопутствует извлечение новых знаний о природе распознаваемых объектов. Возможность извлечения этих знаний, в частности знаний о механизмах взаимодействия атрибутов (признаков), здесь принципиально ограничена заданной структурой такого взаимодействия, зафиксированной в выбранной форме решающих функций. Поэтому максимально, что можно сказать после построения той или иной диагностической модели - это перечислить комбинации признаков и сами признаки, вошедшие в результирующую модель. Но смысл комбинаций, отражающих природу и структуру распределений исследуемых объектов, в рамках данного подхода часто остается нераскрытым.

Логические методы . Логические методы распознавания образов базируются на аппарате алгебры логики и позволяют оперировать информацией, заключенной не только в отдельных признаках, но и в сочетаниях значений признаков. В этих методах значения какого-либо признака рассматриваются как элементарные события.

В самом общем виде логические методы можно охарактеризовать как разновидность поиска по обучающей выборке логических закономерностей и формирование некоторой системы логических решающих правил (например, в виде конъюнкций элементарных событий), каждое из которых имеет собственный вес. Группа логических методов разнообразна и включает методы различной сложности и глубины анализа. Для дихотомических (булевых) признаков популярными являются так называемые древообразные классификаторы, метод тупиковых тестов, алгоритм “Кора” и другие. Более сложные методы основываются на формализации индуктивных методов Д.С.Милля. Формализация осуществляется путем построения квазиаксиоматической теории и базируется на многосортной многозначной логике с кванторами по кортежам переменной длины .

Алгоритм “Кора”, как и другие логические методы распознавания образов, является достаточно трудоемким, поскольку при отборе конъюнкций необходим полный перебор. Поэтому при применении логических методов предъявляются высокие требования к эффективной организации вычислительного процесса, и эти методы хорошо работают при сравнительно небольших размерностях пространства признаков и только на мощных компьютерах.

Лингвистические (синтаксические или структурные) методы. Лингвистические методы распознавания образов основаны на использовании специальных грамматик порождающих языки, с помощью которых может описываться совокупность свойств распознаваемых объектов . Грамматикой называют правила построения объектов из этих непроизводных элементов.

Если описание образов производится с помощью непроизводных элементов (подобразов) и их отношений, то для построения автоматических систем распознавания применяется лингвистический или синтаксический подход с использованием принципа общности свойств. Образ можно описать с помощью иерархической структуры подобразов, аналогичной синтаксической структуре языка. Это обстоятельство позволяет применять при решении задач распознавания образов теорию формальных языков. Предполагается, что грамматика образов содержит конечные множества элементов, называемых переменными, непроизводными элементами и правилами подстановки. Характер правил подстановки определяет тип грамматики. Среди наиболее изученных грамматик можно отметить регулярные, бесконтекстные и грамматики непосредственно составляющих. Ключевыми моментами данного подхода являются выбор непроизводных элементов образа, объединение этих элементов и связывающих их отношений в грамматики образов и, наконец, реализация в соответствующем языке процессов анализа и распознавания. Такой подход особенно полезен при работе с образами, которые либо не могут быть описаны числовыми измерениями, либо столь сложны, что их локальные признаки идентифицировать не удается и приходится обращаться к глобальным свойствам объектов.

Например, Е.А. Бутаков, В.И. Островский, И.Л. Фадеев предлагают следующую структуру системы для обработки изображений (рис. 3), использующую лингвистический подход, где каждый из функциональных блоков является программным (микропрограммным) комплексом (модулем), реализующим соответствующие функции.

Рисунок 3. Структурная схема распознающего устройства

Попытки применить методы математической лингвистики к задаче анализа изображений приводят к необходимости решить ряд проблем, связанных с отображением двумерной структуры изображения на одномерные цепочки формального языка.

Экстенсиональные методы

В методах данной группы, в отличие от интенсионального направления, каждому изучаемому объекту в большей или меньшей мере придается самостоятельное диагностическое значение. По своей сути эти методы близки к клиническому подходу, который рассматривает людей не как проранжированную по тому или иному показателю цепочку объектов, а как целостные системы, каждая из которых индивидуальна и имеет особенную диагностическую ценность . Такое бережное отношение к объектам исследования не позволяет исключать или утрачивать информацию о каждом отдельном объекте, что происходит при применении методов интенсионального направления, использующих объекты только для обнаружения и фиксации закономерностей поведения их атрибутов.

Основными операциями в распознавании образов с помощью обсуждаемых методов являются операции определения сходства и различия объектов. Объекты в указанной группе методов играют роль диагностических прецедентов. При этом в зависимости от условий конкретной задачи роль отдельного прецедента может меняться в самых широких пределах: от главной и определяющей и до весьма косвенного участия в процессе распознавания. В свою очередь условия задачи могут требовать для успешного решения участия различного количества диагностических прецедентов: от одного в каждом распознаваемом классе до полного объема выборки, а также разных способов вычисления мер сходства и различия объектов. Этими требованиями объясняется дальнейшее разделение экстенсиональных методов на подклассы:

    метод сравнения с прототипом;

    метод k–ближайших соседей;

    коллективы решающих правил.

Метод сравнения с прототипом. Это наиболее простой экстенсиональный метод распознавания. Он применяется, например, тогда, когда распознаваемые классы отображаются в пространстве признаков компактными геометрическими группировками. В таком случае обычно в качестве точки – прототипа выбирается центр геометрической группировки класса (или ближайший к центру объект).

Для классификации неизвестного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и этот прототип. Очевидно, никаких обобщенных образов классов в данном методе не формируется.

В качестве меры близости могут применяться различные типы расстояний. Часто для дихотомических признаков используется расстояние Хэмминга, которое в данном случае равно квадрату евклидова расстояния. При этом решающее правило классификации объектов эквивалентно линейной решающей функции.

Указанный факт следует особо отметить. Он наглядно демонстрирует связь прототипной и признаковой репрезентации информации о структуре данных. Пользуясь приведенным представлением, можно, например, любую традиционную измерительную шкалу, являющуюся линейной функцией от значений дихотомических признаков, рассматривать как гипотетический диагностический прототип. В свою очередь, если анализ пространственной структуры распознаваемых классов позволяет сделать вывод об их геометрической компактности, то каждый из этих классов достаточно заменить одним прототипом который, фактически эквивалентен линейной диагностической модели.

На практике, конечно, ситуация часто бывает отличной от описанного идеализированного примера. Перед исследователем, намеревающимся применить метод распознавания, основанный на сравнении с прототипами диагностических классов, встают непростые проблемы. Это, в первую очередь, выбор меры близости (метрики), от которого может существенно измениться пространственная конфигурация распределения объектов. И, во-вторых, самостоятельной проблемой является анализ многомерных структур экспериментальных данных. Обе эти проблемы особенно остро встают перед исследователем в условиях высокой размерности пространства признаков, характерной для реальных задач.

Метод k-ближайших соседей. Метод k-ближайших соседей для решения задач дискриминантного анализа был впервые предложен еще в 1952 году. Он заключается в следующем.

При классификации неизвестного объекта находится заданное число (k) геометрически ближайших к нему в пространстве признаков других объектов (ближайших соседей) с уже известной принадлежностью к распознаваемым классам. Решение об отнесении неизвестного объекта к тому или иному диагностическому классу принимается путем анализа информации об этой известной принадлежности его ближайших соседей, например, с помощью простого подсчета голосов.

Первоначально метод k-ближайших соседей рассматривался как непараметрический метод оценивания отношения правдоподобия. Для этого метода получены теоретические оценки его эффективности в сравнении с оптимальным байесовским классификатором. Доказано, что асимптотические вероятности ошибки для метода k-ближайших соседей превышают ошибки правила Байеса не более чем в два раза.

Как отмечалось выше, в реальных задачах часто приходится оперировать объектами, которые описываются большим количеством качественных (дихотомических) признаков. При этом размерность пространства признаков соизмерима или превышает объем исследуемой выборки. В таких условиях удобно интерпретировать каждый объект обучающей выборки, как отдельный линейный классификатор. Тогда тот или иной диагностический класс представляется не одним прототипом, а набором линейных классификаторов. Совокупное взаимодействие линейных классификаторов дает в итоге кусочно-линейную поверхность, разделяющую в пространстве признаков распознаваемые классы. Вид разделяющей поверхности, состоящей из кусков гиперплоскостей, может быть разнообразным и зависит от взаимного расположения классифицируемых совокупностей.

Также можно использовать другую интерпретацию механизмов классификации по правилу k-ближайших соседей. В ее основе лежит представление о существовании некоторых латентных переменных, абстрактных или связанных каким-либо преобразованием с исходным пространством признаков. Если в пространстве латентных переменных попарные расстояния между объектами такие же, как и в пространстве исходных признаков, и количество этих переменных значительно меньше числа объектов, то интерпретация метода k-ближайших соседей может рассматриваться под углом зрения сравнения непараметрических оценок плотностей распределения условных вероятностей. Приведенное здесь представление о латентных переменных близко по своей сути к представлению об истинной размерности и другим представлениям, используемым в различных методах снижения размерности.

При использовании метода k-ближайших соседей для распознавания образов исследователю приходится решать сложную проблему выбора метрики для определения близости диагностируемых объектов. Эта проблема в условиях высокой размерности пространства признаков чрезвычайно обостряется вследствие достаточной трудоемкости данного метода, которая становится значимой даже для высокопроизводительных компьютеров. Поэтому здесь так же, как и в методе сравнения с прототипом, необходимо решать творческую задачу анализа многомерной структуры экспериментальных данных для минимизации числа объектов, представляющих диагностические классы.

Алгоритмы вычисления оценок (голосования). Принцип действия алгоритмов вычисления оценок (АВО) состоит в вычислении приоритете (оценок сходства), характеризующих “близость” распознаваемого и эталонных объектов по системе ансамблей признаков, представляющей собой систему подмножеств заданного множества признаков.

В отличие от всех ранее рассмотренных методов алгоритмы вычисления оценок принципиально по-новому оперируют описаниями объектов. Для этих алгоритмов объекты существуют одновременно в самых разных подпространствах пространства признаков. Класс АВО доводит идею использования признаков до логического конца: поскольку не всегда известно, какие сочетания признаков наиболее информативны, то в АВО степень сходства объектов вычисляется при сопоставлении всех возможных или определенных сочетаний признаков, входящих в описания объектов .

Коллективы решающих правил. В решающем правиле применяется двухуровневая схема распознавания. На первом уровне работают частные алгоритмы распознавания, результаты которых объединяются на втором уровне в блоке синтеза. Наиболее распространенные способы такого объединения основаны на выделении областей компетентности того или иного частного алгоритма. Простейший способ нахождения областей компетентности заключается в априорном разбиении пространства признаков исходя из профессиональных соображений конкретной науки (например, расслоение выборки по некоторому признаку). Тогда для каждой из выделенных областей строится собственный распознающий алгоритм. Другой способ базируется на применении формального анализа для определения локальных областей пространства признаков как окрестностей распознаваемых объектов, для которых доказана успешность работы какого-либо частного алгоритма распознавания.

Самый общий подход к построению блока синтеза рассматривает результирующие показатели частных алгоритмов как исходные признаки для построения нового обобщенного решающего правила. В этом случае могут использоваться все перечисленные выше методы интенсионального и экстенсионального направлений в распознавании образов. Эффективными для решения задачи создания коллектива решающих правил являются логические алгоритмы типа “Кора” и алгоритмы вычисления оценок (АВО), положенные в основу так называемого алгебраического подхода, обеспечивающего исследование и конструктивное описание алгоритмов распознавания, в рамки которого укладываются все существующие типы алгоритмов .

Нейросетевые методы

Нейросетевые методы - это методы, базирующиеся на применении различных типов нейронных сетей (НС). Основные направления применения различных НС для распознавания образов и изображений :

    применение для извлечение ключевых характеристик или признаков заданных образов,

    классификация самих образов или уже извлечённых из них характеристик (в первом случае извлечение ключевых характеристик происходит неявно внутри сети),

    решение оптимизационных задач.

Многослойные нейронные сети. Архитектура многослойной нейронной сети (МНС) состоит из последовательно соединённых слоёв, где нейрон каждого слоя своими входами связан со всеми нейронами предыдущего слоя, а выходами - следующего.

Простейшее применение однослойной НС (называемой автоассоциативной памятью) заключается в обучении сети восстанавливать подаваемые изображения. Подавая на вход тестовое изображение и вычисляя качество реконструированного изображения, можно оценить насколько сеть распознала входное изображение. Положительные свойства этого метода заключаются в том, что сеть может восстанавливать искажённые и зашумленные изображения, но для более серьёзных целей он не подходит.

МНС так же используется для непосредственной классификации изображений – на вход подаётся или само изображение в каком-либо виде, или набор ранее извлечённых ключевых характеристик изображения, на выходе нейрон с максимальной активностью указывает принадлежность к распознанному классу (рис. 4). Если эта активность ниже некоторого порога, то считается, что поданный образ не относится ни к одному из известных классов. Процесс обучения устанавливает соответствие подаваемых на вход образов с принадлежностью к определённому классу. Это называется обучением с учителем . Такой подход хорош для задач контроля доступа небольшой группы лиц. Такой подход обеспечивает непосредственное сравнение сетью самих образов, но с увеличением числа классов время обучения и работы сети возрастает экспоненциально. Поэтому для таких задач, как поиск похожего человека в большой базе данных, требует извлечения компактного набора ключевых характеристик, на основе которых можно производить поиск.

Подход к классификации с использованием частотных характеристик всего изображения, описан в . Применялась однослойная НС, основанная на многозначных нейронах.

В показано применение НС для классификации изображений, когда на вход сети поступают результаты декомпозиции изображения по методу главных компонент.

В классической МНС межслойные нейронные соединения полносвязны, и изображение представлено в виде одномерного вектора, хотя оно двумерно. Архитектура свёрточной НС направлена на преодоление этих недостатков. В ней использовались локальные рецепторные поля (обеспечивают локальную двумерную связность нейронов), общие веса (обеспечивают детектирование некоторых черт в любом месте изображения) и иерархическая организация с пространственными подвыборками (spatial subsampling). Свёрточная НС (СНС) обеспечивает частичную устойчивость к изменениям масштаба, смещениям, поворотам, искажениям.

МНС применяются и для обнаружения объектов определённого типа. Кроме того, что любая обученная МНС в некоторой мере может определять принадлежность образов к “своим” классам, её можно специально обучить надёжному детектированию определённых классов. В этом случае выходными классами будут классы принадлежащие и не принадлежащие к заданному типу образов. В применялся нейросетевой детектор для обнаружения изображения лица во входном изображении. Изображение сканировалось окном 20х20 пикселей, которое подавалось на вход сети, решающей принадлежит ли данный участок к классу лиц. Обучение производилось как с использованием положительных примеров (различных изображений лиц), так и отрицательных (изображений, не являющихся лицами). Для повышения надёжности детектирования использовался коллектив НС, обученных с различными начальными весами, вследствие чего НС ошибались по разному, а окончательное решение принималось голосованием всего коллектива.

Рисунок 5. Главные компоненты (собственные лица) и разложение изображения на главные компоненты

НС применяется так же для извлечения ключевых характеристик изображения, которые затем используются для последующей классификации. В , показан способ нейросетевой реализации метода анализа главных компонент. Суть метода анализа главных компонент заключается в получении максимально декореллированных коэффициентов, характеризующих входные образы. Эти коэффициенты называются главными компонентами и используются для статистического сжатия изображений, в котором небольшое число коэффициентов используется для представления всего образа. НС с одним скрытым слоем содержащим N нейронов (которое много меньше чем размерность изображения), обученная по методу обратного распространения ошибки восстанавливать на выходе изображение, поданное на вход, формирует на выходе скрытых нейронов коэффициенты первых N главных компонент, которые и используются для сравнения. Обычно используется от 10 до 200 главных компонент. С увеличением номера компоненты её репрезентативность сильно понижается, и использовать компоненты с большими номерами не имеет смысла. При использовании нелинейных активационных функций нейронных элементов возможна нелинейная декомпозиция на главные компоненты. Нелинейность позволяет более точно отразить вариации входных данных. Применяя анализ главных компонент к декомпозиции изображений лиц, получим главные компоненты, называемые собственными лицами , которым так же присуще полезное свойство – существуют компоненты, которые в основном отражают такие существенные характеристики лица как пол, раса, эмоции. При восстановлении компоненты имеют вид, похожий на лицо, причём первые отражают наиболее общую форму лица, последние – различные мелкие отличия между лицами (рис. 5). Такой метод хорошо применим для поиска похожих изображений лиц в больших базах данных. Показана так же возможность дальнейшего уменьшения размерности главных компонент при помощи НС . Оценивая качество реконструкции входного изображения можно очень точно определять его принадлежность к классу лиц.

Нейронные сети высокого порядка. Нейронные сети высокого порядка (НСВП) отличаются от МНС тем, что у них только один слой, но на входы нейронов поступают так же термы высокого порядка, являющиеся произведением двух или более компонент входного вектора . Такие сети так же могут формировать сложные разделяющие поверхности.

Нейронные сети Хопфилда. НС Хопфилда (НСХ) является однослойной и полносвязной (связи нейронов на самих себя отсутствуют), её выходы связаны со входами. В отличие от МНС, НСХ является релаксационной – т.е. будучи установленной в начальное состояние, функционирует до тех пор, пока не достигнет стабильного состояния, которое и будет являться её выходным значением. Для поиска глобального минимума применительно к оптимизационным задачам используют стохастические модификации НСХ .

Применение НСХ в качестве ассоциативной памяти позволяет точно восстанавливать образы, которым сеть обучена, при подаче на вход искажённого образа. При этом сеть “вспомнит” наиболее близкий (в смысле локального минимума энергии) образ, и таким образом распознает его. Такое функционирование так же можно представить как последовательное применение автоассоциативной памяти, описанной выше. В отличие от автоассоциативной памяти НСХ идеально точно восстановит образ. Для избежания интерференционных минимумов и повышения ёмкости сети используют различные методы .

Самоорганизующиеся нейронные сети Кохонена. Самоорганизующиеся нейронные сети Кохонена (СНСК) обеспечивают топологическое упорядочивание входного пространства образов. Они позволяют топологически непрерывно отображать входное n-мерное пространство в выходное m-мерное, m<

Когнитрон. Когнитрон своей архитектурой похож на строение зрительной коры, имеет иерархическую многослойную организацию, в которой нейроны между слоями связаны только локально. Обучается конкурентным обучением (без учителя). Каждый слой мозга реализует различные уровни обобщения; входной слой чувствителен к простым образам, таким, как линии, и их ориентации в определенных областях визуальной области, в то время как реакция других слоев является более сложной, абстрактной и независимой от позиции образа. Аналогичные функции реализованы в когнитроне путем моделирования организации зрительной коры.

Неокогнитрон является дальнейшим развитием идеи когнитрона и более точно отражает строение зрительной системы, позволяет распознавать образы независимо от их преобразований, вращений, искажений и изменений масштаба.

Когнитрон является мощным средством распознавания изображений, однако требует высоких вычислительных затрат, которые на сегодняшний день недостижимы .

Рассмотренные нейросетевые методы обеспечивают быстрое и надёжное распознавание изображений, но при использовании этих методов возникают проблемы распознавания трёхмерных объектов. Тем не менее, данный подход имеет массу достоинств.

      Заключение

В настоящее время существует достаточно большое количество систем автоматического распознавания образов для различных прикладных задач.

Распознавание образов формальными методами как фундаментальное научное направление является неисчерпаемым.

Математические методы обработки изображений имеют самые разнообразные применения: наука, техника, медицина, социальная сфера. В дальнейшем роль распознавания образов в жизни человека будет возрастать еще больше.

Нейросетевые методы обеспечивают быстрое и надёжное распознавание изображений. Данный подход имеет массу достоинств и является одним из наиболее перспективных.

Литература

    Д.В. Брилюк, В.В. Старовойтов. Нейросетевые методы распознавания изображений // /

    Кузин Л.Т. Основы кибернетики: Основы кибернетических моделей. Т.2. - М.: Энергия, 1979. - 584с.

    Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ: Учебное пособие. – М.: Высшая школа, 1997. - 389с.

    Темников Ф.Е., Афонин В.А., Дмитриев В.И. Теоретические основы информационной техники. - М.: Энергия, 1979. - 511с.

    Ту Дж., Гонсалес Р. Принципы распознавания образов. /Пер. с англ. - М.: Мир, 1978. - 410с.

    Уинстон П. Искусственный интеллект. /Пер. с англ. - М.: Мир, 1980. - 520с.

    Фу К. Структурные методы в распознавании образов: Пер.с англ. - М.: Мир, 1977. - 320с.

    Цыпкин Я.З. Основы информационной теории идентификации. - М.: Наука, 1984. - 520с.

    Поспелов Г.С. Искусственный интеллект - основа новой информационной технологии. - М.: Наука, 1988. - 280с.

    Ю. Лифшиц, Статистические методы распознавания образов ///modern/07modernnote.pdf

    Бор Н. Атомная физика и человеческое познание. /Пер.с англ. - М.: Мир, 1961. - 151с.

    Бутаков Е.А., Островский В.И., Фадеев И.Л. Обработка изображений на ЭВМ.1987.-236с.

    Дуда Р., Харт П. Распознавание образов и анализ сцен. /Пер.с англ. - М.: Мир, 1978. - 510с.

    Дюк В.А. Компьютерная психодиагностика. - СПб: Братство, 1994. - 365с.

    Aizenberg I. N., Aizenberg N. N. and Krivosheev G.A. Multi-valued and Universal Binary Neurons: Learning Algorithms, Applications to Image Processing and Recognition. Lecture Notes in Artificial Intelligence – Machine Learning and Data Mining in Pattern Recognition, 1999, pp. 21-35.

    Ranganath S. and Arun K. Face recognition using transform features and neural networks. Pattern Recognition 1997, Vol. 30, pp. 1615-1622.

    Головко В.А. Нейроинтеллект: Теория и применения. Книга 1. Организация и обучение нейронных сетей с прямыми и обратными связями – Брест:БПИ, 1999, - 260с.

    Vetter T. and Poggio T. Linear Object Classes and Image Synthesis From a Single Example Image. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997, Vol. 19, pp. 733-742.

    Головко В.А. Нейроинтеллект: Теория и применения. Книга 2. Самоорганизация, отказоустойчивость и применение нейронных сетей – Брест:БПИ, 1999, - 228с.

    Lawrence S., Giles C. L., Tsoi A. C. and Back A. D. Face Recognition: A Convolutional Neural Network Approach. IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern Recognition, pp. 1-24.

    Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика, 1992 – 184с.

    Rowley H. A., Baluja S. and Kanade T. Neural Network-Based Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998, Vol. 20, pp. 23-37.

    Valentin D., Abdi H., O"Toole A. J. and Cottrell G. W. Connectionist models of face processing: a survey. IN: Pattern Recognition 1994, Vol. 27, pp. 1209-1230.

    Документ

    Им составляют алгоритмы распознавания образов . Методы распознавания образов Как отмечалось выше... реальности не существует "экосистемы вообще", а существуют только отдельные... выводы из этого детального обзора методов распознавания мы представили в...

  1. Обзор методов идентификации людей на основе изображений лиц с учетом особенностей визуального распознавания

    Обзор

    ... распознавания человеком слабоконтрастных объектов, в т.ч. лиц. Приведен обзор распространенных методов ... Существует целый ряд методов ... образом , в результате проведенного исследования подготовлена платформа для разработки метода распознавания ...

  2. Имени Глазкова Валентина Владимировна ИССЛЕДОВАНИЕ И РАЗРАБОТКА МЕТОДОВ ПОСТРОЕНИЯ ПРОГРАММНЫХ СРЕДСТВ КЛАССИФИКАЦИИ МНОГОТЕМНЫХ ГИПЕРТЕКСТОВЫХ ДОКУМЕНТОВ Специальность 05

    Автореферат диссертации

    Гипертекстовых документов. В главе приведён обзор существующих методов решения рассматриваемой задачи, описание... отсечением наименее релевантных классов // Математические методы распознавания образов : 13-я Всероссийская конференция. Ленинградская обл...

  3. Слайд 0 Обзор задач биоинформатики связанных с анализом и обработкой генетических текстов

    Лекция

    Последовательностей ДНК и белков. Обзор задач биоинформатики как задач... сигналов требует применения современных методов распознавания образов , статистических подходов и... с низкой плотностью генов. Существующие программы предсказания генов не...

И т. п. объектов , которые характеризуются конечным набором некоторых свойств и признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно или нельзя переходить улицу.

Необходимость в таком распознавании возникает в самых разных областях - от военного дела и систем безопасности до оцифровки аналоговых сигналов.

Проблема распознавания образа приобрела выдающееся значение в условиях информационных перегрузок, когда человек не справляется с линейно-последовательным пониманием поступающих к нему сообщений, в результате чего его мозг переключается на режим одновременности восприятия и мышления, которому такое распознавание свойственно.

Неслучайно, таким образом, проблема распознавания образа оказалась в поле междисциплинарных исследований - в том числе в связи с работой по созданию искусственного интеллекта , а создание технических систем распознавания образа привлекает к себе всё большее внимание.

Энциклопедичный YouTube

    1 / 4

    Введение в распознавание образов

    Р.В. Шамин. Лекция № 6 Сети Хопфилда и Хемминга в задачах распознавания образов

    [ДДШ-2016]: Нейронные сети и современное компьютерное зрение

    Лекция 9. Экспоненциальное сглаживание. Распознавание образов: метод к-го ближайшего соседа

    Субтитры

Направления в распознавании образов

Можно выделить два основных направления :

  • Изучение способностей к распознаванию, которыми обладают живые существа, объяснение и моделирование их;
  • Развитие теории и методов построения устройств, предназначенных для решения отдельных задач в прикладных целях.

Формальная постановка задачи

Распознавание образов - это отнесение исходных данных к определенному классу с помощью выделения существенных признаков, характеризующих эти данные, из общей массы несущественных данных.

При постановке задач распознавания стараются пользоваться математическим языком, стремясь - в отличие от теории искусственных нейронных сетей , где основой является получение результата путём эксперимента, - заменить эксперимент логическими рассуждениями и математическими доказательствами .

Классическая постановка задачи распознавания образов : Дано множество объектов. Относительно них необходимо провести классификацию. Множество представлено подмножествами, которые называются классами. Заданы: информация о классах, описание всего множества и описание информации об объекте, принадлежность которого к определенному классу неизвестна. Требуется по имеющейся информации о классах и описании объекта установить - к какому классу относится этот объект.

Наиболее часто в задачах распознавания образов рассматриваются монохромные изображения , что дает возможность рассматривать изображение как функцию на плоскости. Если рассмотреть точечное множество на плоскости T {\displaystyle T} , где функция выражает в каждой точке изображения его характеристику - яркость, прозрачность, оптическую плотность, то такая функция есть формальная запись изображения.

Множество же всех возможных функций f (x , y) {\displaystyle f(x,y)} на плоскости T {\displaystyle T} - есть модель множества всех изображений X {\displaystyle X} . Вводя понятие сходства между образами можно поставить задачу распознавания. Конкретный вид такой постановки сильно зависит от последующих этапов при распознавании в соответствии с тем или иным подходом.

Некоторые методы распознавания графических образов

Для оптического распознавания образов можно применить метод перебора вида объекта под различными углами, масштабами, смещениями и т. д. Для букв нужно перебирать шрифт, свойства шрифта и т. д.

Второй подход - найти контур объекта и исследовать его свойства (связность, наличие углов и т. д.)

Ещё один подход - использовать искусственные нейронные сети . Этот метод требует либо большого количества примеров задачи распознавания (с правильными ответами), либо специальной структуры нейронной сети, учитывающей специфику данной задачи.

Персептрон как метод распознавания образов

Ф. Розенблатт, вводя понятие о модели мозга , задача которой состоит в том, чтобы показать, как в некоторой физической системе, структура и функциональные свойства которой известны, могут возникать психологические явления, описал простейшие эксперименты по различению. Данные эксперименты целиком относятся к методам распознавания образов, но отличаются тем, что алгоритм решения не детерминированный.

Простейший эксперимент, на основе которого можно получить психологически значимую информацию о некоторой системе, сводится к тому, что модели предъявляются два различных стимула и требуется, чтобы она реагировала на них различным образом. Целью такого эксперимента может быть исследование возможности их спонтанного различения системой при отсутствии вмешательства со стороны экспериментатора, или, наоборот, изучение принудительного различения, при котором экспериментатор стремится обучить систему проводить требуемую классификацию.

В опыте с обучением персептрону обычно предъявляется некоторая последовательность образов, в которую входят представители каждого из классов, подлежащих различению. В соответствии с некоторым правилом модификации памяти правильный выбор реакции подкрепляется. Затем персептрону предъявляется контрольный стимул и определяется вероятность получения правильной реакции для стимулов данного класса. В зависимости от того, совпадает или не совпадает выбранный контрольный стимул с одним из образов, которые использовались в обучающей последовательности, получают различные результаты:

  1. Если контрольный стимул не совпадает ни с одним из обучающих стимулов, то эксперимент связан не только с чистым различением , но включает в себя и элементы обобщения .
  2. Если контрольный стимул возбуждает некоторый набор сенсорных элементов, совершенно отличных от тех элементов, которые активизировались при воздействии ранее предъявленных стимулов того же класса, то эксперимент является исследованием чистого обобщения .

Персептроны не обладают способностью к чистому обобщению, но они вполне удовлетворительно функционируют в экспериментах по различению, особенно если контрольный стимул достаточно близко совпадает с одним из образов, относительно которых персептрон уже накопил определенный опыт.

Примеры задач распознавания образов

  • Распознавание штрих-кодов
  • Распознавание автомобильных номеров
  • Распознавание изображений
  • Распознавание локальных участков земной коры, в которых находятся месторождения
В этой статье я задался целью осветить некоторые фундаментальные результаты теории машинного обучения таким образом, чтобы концепции были понятны читателям, немного знакомыми с задачами классификации и регрессии. Идея написать такую статью все четче проявлялась в моем сознании с каждой прочитанной книгой, в которой идеи обучения машин распознаванию рассказывались как бы с середины и совершенно не понятно, на что авторы того или иного метода опирались при его разработке. С другой стороны существует ряд книг, посвященных основным концепциям в машинном обучении, но изложение материала в них может показаться слишком сложным для первого прочтения.

Мотивация

Рассмотрим такую задачу. У нас есть яблоки двух классов - вкусные и не вкусные, 1 и 0. Яблоки обладают признаками - цветом и размером. Цвет изменятся непрерывно от 0 до 1, т.е. 0 -полностью зеленое яблоко, 1 - полностью красное. Размер может меняться аналогично, 0 - яблоко маленькое, 1 - большое. Мы хотели бы разработать алгоритм, который бы получал на вход цвет и размер, а на выходе отдавал класс яблока - вкусное оно или нет. Весьма желательно, чтобы число ошибок при этом было чем меньше тем лучше. При этом мы обладаем конечным списком, в котором указаны исторические данные о цвете, размере и классе яблок. Как бы мы могли решать такую задачу?

Логический подход

Решая нашу задачу, первый метод, который возможно придет на ум, может быть такой: давайте вручную составим правила типа if-else и в зависимости от значений цвета и размера будем присваивать яблоку определенный класс. Т.е. у нас есть предпосылки - это цвет и размер, и есть следствие - вкус яблока. Вполне разумно, когда признаков немного и можно на глаз оценить пороги для сравнения. Но может случится так, что придумать четкие условия не получится, и из данных не очевидно какие пороги брать, да и число признаков может увеличиваться в перспективе. А что делать, если в нашем списке с историческими данными, мы обнаружили два яблока с одинаковыми цветом и размером, но одно помечено как вкусное, а другое нет? Таким образом наш первый метод не настолько гибкий и масштабируемый, как нам бы хотелось.

Обозначения

Введем следующую нотацию. Будем обозначать -ое яблоко как . В свою очередь каждый состоит из двух чисел - цвета и размера. Этот факт мы будем обозначать парой чисел: . Класс каждого -го яблока мы обозначим как . Список с историческими данными обозначим буквой , длина этого списка равна . -ый элемент этого списка есть значение признаков яблока и его класс. Т.е. . Так же будем называть выборкой. Большими буквами и мы обозначим переменные, которые могут принимать значения конкретного признака и класса. Веедем новое понятие - решающее правило есть функция, которая принимает на вход значение цвета и размера , а на выходе возвращает метку класса:

Вероятностный подход

Развивая идею логического метода с предпосылками и следствиями, зададим себе вопрос - а какова вероятность того, что -ое яблоко, которое не принадлежит нашей выборке будет вкусное, при условии измеренных значений цвета и размера? В нотации теории вероятностей этот вопрос можно записать так:

В этом выражении можно интерпретировать как посылку, как следствие, но переход от посылки к следствию будет подчинятся вероятностным законам, а не логическим. Т.е. вместо таблицы истинности с булевскими значениями 0 и 1 для класса, будут значения вероятности, которые принимают значения от 0 до 1. Применим формулу Байеса и получим следующее выражение:

Рассмотрим правую часть этого выражения более подробно. Множитель называется априорной вероятностью и означает вероятность встретить вкусное яблоко среди всех возможных яблок. Априорная вероятность встретить невкусное яблоко есть . Эта вероятность может отражать наше личное знание о том, как распределены вкусные и невкусные яблоки в природе. Например, по нашему прошлому опыту мы знаем, что 80% всех яблок - вкусные. Или мы можем оценить это значение просто посчитав долю вкусных яблок в нашем списке с историческими данными S. Следующий множитель - показывает, насколько вероятно получить конкретное значение цвета и размера для яблока класса 1. Это выражение так же называется функцией правдоподобия и может иметь вид какого-нибудь конкретного распределения, например, нормального. Знаменатель мы используем в качестве нормировочной константы, что бы искомая вероятность изменялась в пределах от 0 до 1. Нашей конечной целью является не поиск вероятностей, а поиск решающего правила, которое бы сразу давало нам класс. Конечный вид решающего правила зависит от того, какие значения и параметры нам известны. Например, мы можем знать только значения априорной вероятности, а остальные значения оценить невозможно. Тогда решающее правило будет такое - ставить всем яблокам значение того класса, для которого априорная вероятность наибольшая. Т.е. если мы знаем, что 80% яблок в природе вкусные, то каждому яблоку ставим класс 1. Тогда наша ошибка составит 20%. Если же мы к тому же можем оценить значения функции правдоподобия $p(X=x_m | Y=1)$, то можем и найти значение искомой вероятности по формуле Байеса, как написано сверху. Решающее правило здесь будет таким: поставить метку того класса, для которого вероятность максимальна:

Это правило назовем Байесовским классификатором. Поскольку мы имеем дело с вероятностями, то даже большое значение вероятности не дает гарантий, что яблоко не принадлежит к классу 0. Оценим вероятность ошибки на яблоке следующим образом: если решающее правило вернуло значение класса равное 1, то вероятность ошибиться будет и наоборот:

Нас интересует вероятность ошибки классификатора не только на данном конкретном примере, но и вообще для всех возможных яблок:

Это выражение является математическим ожидаем ошибки . Итак, решая исходную проблему мы пришли к байесовскому классификатору, но какие у него есть недостатки? Главная проблема - оценить из данных условную вероятность . В нашем случае мы представляем объект парой чисел - цвет и размер, но в более сложных задачах размерность признаков может быть в разы выше и для оценки вероятности многомерной случайной величины может не хватить числа наблюдений из нашего списка с историческими данными. Далее мы попробуем обобщить наше понятие ошибки классификатора, а так же посмотрим, можно ли подобрать какой-либо другой классификатор для решения проблемы.

Потери от ошибок классификатора

Предположим, что у нас уже есть какое-либо решающее правило . Тогда оно может совершить два типа ошибок - первый, это причислить объект к классу 0, у которого реальный класс 1 и наоборот, причислить объект к классу 1, у которого реальный класс 0. В некоторых задачах бывает важно различать эти случаи. Например, мы страдаем больше от того, что яблоко, помеченное как вкусное, оказалось невкусным и наоборот. Степень нашего дискомфорта от обманутых ожиданий мы формализуем в понятии Более обще - у нас есть функция потерь, которая возвращает число для каждой ошибки классификатора. Пусть - реальная метка класса. Тогда функция потерь возвращает величину потерь для реальной метки класса и значения нашего решающего правила . Пример применения этой функции - берем из яблоко с известным классом , передаем яблоко на вход нашему решающему правилу , получаем оценку класса от решающего правила, если значения и совпали, то считаем что классификатор не ошибся и потерь нет, если значения не совпадают, то величину потерь скажет наша функция

Условный и байесовский риск

Теперь, когда у нас есть функция потерь и мы знаем, сколько мы теряем от неправильной классификации объекта , было бы неплохо понять, сколько мы теряем в среднем, на многих объектах. Если мы знаем величину - вероятность того, что -ое яблоко будет вкусное, при условии измеренных значений цвета и размера, а так же реальное значение класса(например возьмем яблоко из выборки S, см. в начале статьи), то можем ввести понятие условного риска. Условный риск есть средняя величина потерь на объекте для решающего правила :

В нашем случае бинарной классификации когда получается:

Выше мы описывали решающее правило, которое относит объект к тому классу, который имеет наибольшее значение вероятности Такое правило доставляет минимум нашим средним потерям(байесовскому риску), поэтому Байесовский классификатор является оптимальным с точки зрения введенного нами функционала риска. Это значит, что Байесовский классификатор имеет наименьшую возможную ошибку классификации.

Некоторые типовые функции потерь

Одной из наиболее частовстречающихся функций потерь является симметричная функция, когда потери от первого и второго типов ошибок равнозначны. Например, функция потерь 1-0 (zero-one loss) определяется так:

Тогда условный риск для a(x) = 1 будет просто значением вероятности получить класс 0 на объектке :

Аналогично для a(x) = 0:

Функция потерь 1-0 принимает значение 1, если классификатор делает ошибку на объекте и 0 если не делает. Теперь сделаем так, чтобы значение на ошибке равнялось не 1, а другой функции Q, зависящей от решающего правила и реальной метки класса:

Тогда условный риск можно записать так:

Замечания по нотации

Предыдущий текст был написан согласно нотации, принятой в книге Дуды и Харта. В оригинальной книге В.Н. Вапника рассматривался такой процесс: природа выбирает объект согласно распределению $p(x)$, а затем ставит ему метку класса согласно условному распределению $p(y|x)$. Тогда риск(матожидание потерь) определяется как

Где - функция, которой мы пытаемся аппроксимировать неизвестную зависимость, - функция потерь для реального значения и значения нашей функции . Эта нотации более наглядна для того чтобы ввести следущее понятие - эмпирический риск.

Эмпирический риск

На данном этапе мы уже выяснили, что логический метод нам не подходит, потому что он недостаточно гибкий, а байесовский классификатор мы не можем использовать, когда признаков много, а данных для обучения ограниченное число и мы не сможем восстановить вероятность . Так же нам известно, что байесовский классификатор обладает наименьшей возможной ошибкой классификации. Раз уж мы не можем использовать байесовский классификатор, давайте возьмем что-нибудь по проще. Давайте зафиксируем некоторое параметрическое семейство функций H и будем подбирать классификатор из этого семейства.

Пример: пусть множество всех функций вида

Все функции этого множества будут отличаться друг от друга только коэффициентами Когда мы выбрали такое семейство, мы предположили, что в координатах цвет-размер между точками класса 1 и точками класса 0 можно провести прямую линию с коэффициентами таким образом, что точки с разными классами находятся по разные стороны от прямой. Известно, что у прямой такого вида вектор коэффициентов является нормалью к прямой. Теперь делаем так - берем наше яблоко, меряем у него цвет и размер и наносим точку с полученными координатами на график в осях цвет-размер. Далее меряем угол между этой точкой и вектором $w$. Замечаем, что наша точка может лежать либо по одну, либо по другую сторону от прямой. Тогда угол между и точкой будет либо острый, либо тупой, а скалярное произведение либо положительное, либо отрицательное. Отсюда вытекает решающее правило:

После того как мы зафиксировали класс функций $Н$, возникает вопрос - как выбрать из него функцию с нужными коэффициентами? Ответ - давайте выберем ту функцию, которая доставляет минимум нашему байесовскому риску $R()$. Опять проблема - чтобы посчитать значения байесовского риска, нужно знать распределение $p(x,y)$, а оно нам не дано, и восстановиь его не всегда возможно. Другая идея - минимизировать риск не на всех возможных объектах, а только на выборке. Т.е. минимизировать функцию:

Эта функция и называется эмпирическим риском. Следующий вопрос - почему мы решили, что минимизируя эмпирический риск, мы при этом так же минимизируем байесовский риск? Напомню, что наша задача практическая - допустить как можно меньше ошибок классификации. Чем меньше ошибок, тем меньше байесовский риск. Обоснование о сходимости эмпирического риска к байесовскому с ростом объема данных было получено в 70-е годы двумя учеными - В. Н. Вапником и А. Я. Червоненкисом.

Гарантии сходимости. Простейший случай

Итак, мы пришли к тому, что байесовский классификатор дает наименьшую возможною ошибку, но обучить его в большинстве случаев мы не можем и ошибку(риск) посчитать мы тоже не в силах. Однако, мы можем посчитать приближение к байесовскокому риску, которое называется эмпирический риск, а зная эмпирический риск подобрать такую аппроксимирующую функцию, которая бы минимизировала эмпирический риск. Давайте рассмотрим простейшую ситуацию, когда минимизация эмпирического риска дает классификатор, так же минимизирующий байесовский риск. Для простейшего случая нам придется сделать предположение, которое редко выполняется на практике, но которое в дальнейшем можно будет ослабить. Зафиксируем конечный класс функций из которого мы будем выбирать наш классификатор и предположим, что настоящая функция, которую использует природа для разметки наших яблок на вкусы находится в этом конечном множестве гипотез: . Так же у нас есть выборка , полученная из распределения над объектами . Все объекты выборки считаем одинаково независимо распределенными(iid). Тогда будет верна следующая

Теорема

Выбирая функцию из класса с помощью минимизации эмпирического риска мы гарантированно найдем такую , что она имеет небольшое значение байесовского риска если выборка, на которой мы производим минимизацию имеет достаточный размер.

Что значит «небольшое значение» и «достаточный размер» см. в литературе ниже.

Идея доказательства

По условию теоремы мы получаем выборку из распределения , т.е. процесс выбора объектов из природы случаен. Каждый раз, когда мы собираем выборку она будет из того же распределения, но сами объекты в ней могут быть различны. Главная идея доказательства состоит в том, что мы можем получить такую неудачную выборку , что алгоритм, который мы выберем с помощью минимизации эмпирического риска на данной выборке будет плохо минимизировать байесовский риск но при этом хорошо минимизировать эмпирический риск, но вероятность получить такую выборку мала и ростом размера выборки эта вероятность падает. Подобные теоремы существуют и для более реалистичных предположений, но здесь мы не будем их рассматривать.

Практические результаты

Имея доказательства того, что функция, найденная при минимизации эмпирического риска не будет иметь большую ошибку на ранее не наблюдаемых данных при достаточном размере обучающей выборки мы можем использовать этот принцип на практике, например, следующим образом - берем выражение:

И подставляем разные функции потерь, в зависимости от решаемой задачи. Для линейной регрессии:

Для логистической регресии:

Несмотря на то, что за методом опорных векторов лежит в основном геометрическая мотивация, его так же можно представить как проблему минимизации эмпирического риска.

Заключение

Многие методы обучения с учителем можно рассматривать в том числе как частные случаи теории, разработанной В. Н. Вапником и А. Я. Червоненкисом. Эта теория дает гарантии относительно ошибки на тестовой выборке при условии достаточного размера обучающей выборки и некоторых требований к пространству гипотез, в котором мы ищем наш алгоритм.

Используемая литература

  • The Nature of Statistical Learning Theory, Vladimir N. Vapnik
  • Pattern Classification, 2nd Edition, Richard O. Duda, Peter E. Hart, David G. Stork
  • Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz, Shai Ben-David
P.S. Просьба писать в личку обо всех неточностях и опечатках

Теги: Добавить метки



© dagexpo.ru, 2024
Стоматологический сайт