Пример модуль суммы векторов. Определение разности двух векторов

21.09.2019

Многие физические величины полностью определяются заданием некоторого числа. Это, например, объем, масса, плотность, температура тела и др. Такие величины называются скалярными. В связи с этим числа иногда называют скалярами. Но есть и такие величины, которые определяются заданием не только числа, но и некоторого направления. Например, при движении тела следует указать не только скорость, с которой движется тело, но и направление движения. Точно так же, изучая действие какой-либо силы, необходимо указать не только значение этой силы, но и направление ее действия. Такие величины называются векторными. Для их описания было введено понятие вектора, оказавшееся полезным для математики.

Определение вектора

Любая упорядоченная пара точек А к В пространства определяет направленный отрезок , т.е. отрезок вместе с заданным на нем направлением. Если точка А первая, то ее называют началом направленного отрезка, а точку В - его концом. Направлением отрезка считают направление от начала к концу.

Определение
Направленный отрезок называется вектором.

Будем обозначать вектор символом \(\overrightarrow{AB} \), причем первая буква означает начало вектора, а вторая - его конец.

Вектор, у которого начало и конец совпадают, называется нулевым и обозначается \(\vec{0} \) или просто 0.

Расстояние между началом и концом вектора называется его длиной и обозначается \(|\overrightarrow{AB}| \) или \(|\vec{a}| \).

Векторы \(\vec{a} \) и \(\vec{b} \) называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. Коллинеарные векторы могут быть направлены одинаково или противоположно.

Теперь можно сформулировать важное понятие равенства двух векторов.

Определение
Векторы \(\vec{a} \) и \(\vec{b} \) называются равными (\(\vec{a} = \vec{b} \)), если они коллинеарны, одинаково направлены и их длины равны.

На рис. 1 изображены слева неравные, а справа - равные векторы \(\vec{a} \) и \(\vec{b} \). Из определения равенства векторов следует, что если данный вектор перенести параллельно самому себе, то получится вектор, равный данному. В связи с этим векторы в аналитической геометрии называют свободными.

Проекция вектора на ось

Пусть в пространстве заданы ось \(u \) и некоторый вектор \(\overrightarrow{AB} \). Проведем через точки А и В плоскости, перпендикулярные оси \(u \). Обозначим через А" и В" точки пересечения этих плоскостей с осью (см. рисунок 2).

Проекцией вектора \(\overrightarrow{AB} \) на ось \(u \) называется величина А"В" направленного отрезка А"В" на оси \(u \). Напомним, что
\(A"B" = |\overrightarrow{A"B"}| \) , если направление \(\overrightarrow{A"B"} \) совпадает c направлением оси \(u \),
\(A"B" = -|\overrightarrow{A"B"}| \) , если направление \(\overrightarrow{A"B"} \) противоположно направлению оси \(u \),
Обозначается проекция вектора \(\overrightarrow{AB} \) на ось \(u \) так: \(Пр_u \overrightarrow{AB} \).

Теорема
Проекция вектора \(\overrightarrow{AB} \) на ось \(u \) равна длине вектора \(\overrightarrow{AB} \) , умноженной на косинус угла между вектором \(\overrightarrow{AB} \) и осью \(u \) , т.е.

\(Пр_u \overrightarrow{AB} = |\overrightarrow{AB}|\cos \varphi \) где \(\varphi \) - угол между вектором \(\overrightarrow{AB} \) и осью \(u \).

Замечание
Пусть \(\overrightarrow{A_1B_1}=\overrightarrow{A_2B_2} \) и задана какая-то ось \(u \). Применяя к каждому из этих векторов формулу теоремы, получаем

\(Пр_u \overrightarrow{A_1B_1} = Пр_u \overrightarrow{A_2B_2} \) т.е. равные векторы имеют равные проекции на одну и ту же ось.

Проекции вектора на оси координат

Пусть в пространстве заданы прямоугольная система координат Oxyz и произвольный вектор \(\overrightarrow{AB} \). Пусть, далее, \(X = Пр_u \overrightarrow{AB}, \;\; Y = Пр_u \overrightarrow{AB}, \;\; Z = Пр_u \overrightarrow{AB} \). Проекции X, Y, Z вектора \(\overrightarrow{AB} \) на оси координат называют его координатами. При этом пишут
\(\overrightarrow{AB} = (X;Y;Z) \)

Теорема
Каковы бы ни были две точки A(x 1 ; y 1 ; z 1) и B(x 2 ; y 2 ; z 2), координаты вектора \(\overrightarrow{AB} \) определяются следующими формулами:

X = x 2 -x 1 , Y = y 2 -y 1 , Z = z 2 -z 1

Замечание
Если вектор \(\overrightarrow{AB} \) выходит из начала координат, т.е. x 2 = x, y 2 = y, z 2 = z, то координаты X, Y, Z вектора \(\overrightarrow{AB} \) равны координатам его конца:
X = x, Y = y, Z = z.

Направляющие косинусы вектора

Пусть дан произвольный вектор \(\vec{a} = (X;Y;Z) \); будем считать, что \(\vec{a} \) выходит из начала координат и не лежит ни в одной координатной плоскости. Проведем через точку А плоскости, перпендикулярные осям. Вместе с координатными плоскостями они образуют прямоугольный параллелепипед, диагональю которого служит отрезок ОА (см. рисунок).

Из элементарной геометрии известно, что квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его измерений. Следовательно,
\(|OA|^2 = |OA_x|^2 + |OA_y|^2 + |OA_z|^2 \)
Но \(|OA| = |\vec{a}|, \;\; |OA_x| = |X|, \;\; |OA_y| = |Y|, \;\;|OA_z| = |Z| \); таким образом, получаем
\(|\vec{a}|^2 = X^2 + Y^2 + Z^2 \)
или
\(|\vec{a}| = \sqrt{X^2 + Y^2 + Z^2} \)
Эта формула выражает длину произвольного вектора через его координаты.

Обозначим через \(\alpha, \; \beta, \; \gamma \) углы между вектором \(\vec{a} \) и осями координат. Из формул проекции вектора на ось и длины вектора получаем
\(\cos \alpha = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \beta = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \gamma = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \alpha, \;\; \cos \beta, \;\; \cos \gamma \) называются направляющими косинусами вектора \(\vec{a} \) .

Возводя в квадрат левую и правую части каждого из предыдущих равенств и суммируя полученные результаты, имеем
\(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \)
т.е. сумма квадратов направляющих косинусов любого вектора равна единице.

Линейные операции над векторами и их основные свойства

Линейными операциями над векторами называются операции сложения и вычитания векторов и умножения векторов на числа.

Сложение двух векторов

Пусть даны два вектора \(\vec{a} \) и \(\vec{b} \). Суммой \(\vec{a} + \vec{b} \) называется вектор, который идет из начала вектора \(\vec{a} \) в конец вектора \(\vec{b} \) при условии, что вектор \(\vec{b} \) приложен к концу вектора \(\vec{a} \) (см. рисунок).

Замечание
Действие вычитания векторов обратно действию сложения, т.е. разностью \(\vec{b} - \vec{a} \) векторов \(\vec{b} \) и \(\vec{a} \) называется вектор, который в сумме с вектором\(\vec{a} \) дает вектор \(\vec{b} \) (см. рисунок).

Замечание
Определив сумму двух векторов, можно найти сумму любого числа данных векторов. Пусть, например, даны три вектора \(\vec{a},\;\; \vec{b}, \;\; \vec{c} \). Сложив \(\vec{a} \) и \(\vec{b} \), получим вектор \(\vec{a} + \vec{b} \). Прибавив теперь к нему вектор \(\vec{c} \), получим вектор \(\vec{a} + \vec{b} + \vec{c} \)

Произведение вектора на число

Пусть даны вектор \(\vec{a} \neq \vec{0} \) и число \(\lambda \neq 0 \). Произведением \(\lambda \vec{a} \) называется вектор, который коллинеарен вектору \(\vec{a} \), имеет длину, равную \(|\lambda| |\vec{a}| \), и направление такое же, как и вектор \(\vec{a} \) , если \(\lambda > 0 \), и противоположное, если \(\lambda Геометрический смысл операции умножения вектора \(\vec{a} \neq \vec{0} \) на число \(\lambda \neq 0 \) можно выразить следующим образом: если \(|\lambda| >1 \), то при умножении вектора \(\vec{a} \) на число \(\lambda \) вектор \(\vec{a} \) «растягивается» в \(\lambda \) раз, а если \(|\lambda| 1 \).

Если \(\lambda =0 \) или \(\vec{a} = \vec{0} \), то произведение \(\lambda \vec{a} \) считаем равным нулевому вектору.

Замечание
Используя определение умножения вектора на число нетрудно доказать, что если векторы \(\vec{a} \) и \(\vec{b} \) коллинеарны и \(\vec{a} \neq \vec{0} \), то существует (и притом только одно) число \(\lambda \) такое, что \(\vec{b} = \lambda \vec{a} \)

Основные свойства линейных операций

1. Переместительное свойство сложения
\(\vec{a} + \vec{b} = \vec{b} + \vec{a} \)

2. Сочетательное свойство сложения
\((\vec{a} + \vec{b})+ \vec{c} = \vec{a} + (\vec{b}+ \vec{c}) \)

3. Сочетательное свойство умножения
\(\lambda (\mu \vec{a}) = (\lambda \mu) \vec{a} \)

4. Распределительное свойство относительно суммы чисел
\((\lambda +\mu) \vec{a} = \lambda \vec{a} + \mu \vec{a} \)

5. Распределительное свойство относительно суммы векторов
\(\lambda (\vec{a}+\vec{b}) = \lambda \vec{a} + \lambda \vec{b} \)

Замечание
Эти свойства линейных операций имеют фундаментальное значение, так как дают возможность производить над векторами обычные алгебраические действия. Например, в силу свойств 4 и 5 можно выполнять умножение скалярного многочлена на векторный многочлен «почленно».

Теоремы о проекциях векторов

Теорема
Проекция суммы двух векторов на ось равна сумме их проекций на эту ось, т.е.
\(Пр_u (\vec{a} + \vec{b}) = Пр_u \vec{a} + Пр_u \vec{b} \)

Теорему можно обобщить на случай любого числа слагаемых.

Теорема
При умножении вектора \(\vec{a} \) на число \(\lambda \) его проекция на ось также умножается на это число, т.е. \(Пр_u \lambda \vec{a} = \lambda Пр_u \vec{a} \)

Следствие
Если \(\vec{a} = (x_1;y_1;z_1) \) и \(\vec{b} = (x_2;y_2;z_2) \), то
\(\vec{a} + \vec{b} = (x_1+x_2; \; y_1+y_2; \; z_1+z_2) \)

Следствие
Если \(\vec{a} = (x;y;z) \), то \(\lambda \vec{a} = (\lambda x; \; \lambda y; \; \lambda z) \) для любого числа \(\lambda \)

Отсюда легко выводится условие коллинеарности двух векторов в координатах.
В самом деле, равенство \(\vec{b} = \lambda \vec{a} \) равносильно равенствам \(x_2 = \lambda x_1, \; y_2 = \lambda y_1, \; z_2 = \lambda z_1 \) или
\(\frac{x_2}{x_1} = \frac{y_2}{y_1} = \frac{z_2}{z_1} \) т.е. векторы \(\vec{a} \) и \(\vec{b} \) коллинеарны в том и только в том случае, когда их координаты пропорциональны.

Разложение вектора по базису

Пусть векторы \(\vec{i}, \; \vec{j}, \; \vec{k} \) - единичные векторы осей координат, т.e. \(|\vec{i}| = |\vec{j}| = |\vec{k}| = 1 \), и каждый из них одинаково направлен с соответствующей осью координат (см. рисунок). Тройка векторов \(\vec{i}, \; \vec{j}, \; \vec{k} \) называется базисом.
Имеет место следующая теорема.

Теорема
Любой вектор \(\vec{a} \) может быть единственным образом разложен по базису \(\vec{i}, \; \vec{j}, \; \vec{k}\; \), т.е. представлен в виде
\(\vec{a} = \lambda \vec{i} + \mu \vec{j} + \nu \vec{k} \)
где \(\lambda, \;\; \mu, \;\; \nu \) - некоторые числа.

Сумма векторов. Длина вектора. Дорогие друзья, в составе типов задний экзамена присутствует группа задач с векторами. Задания довольно широкого спектра (важно знать теоретические основы). Большинство решается устно. Вопросы связаны с нахождением длины вектора, суммы (разности) векторов, скалярного произведения. Так же много заданий, при решении которых необходимо осуществить действия с координатами векторов.

Теория касающаяся темы векторов несложная, и её необходимо хорошо усвоить. В этой статье разберём задачи связанные с нахождением длины вектора, также суммы (разности) векторов. Некоторые теоретические моменты:

Понятие вектора

Вектор — это направленный отрезок.

Все векторы, имеющие одинаковое направление и равные по длине являются равными.


*Все представленные выше четыре вектора равны!

То есть, если мы будем при помощи параллельного переноса перемещать данный нам вектор, то всегда получим вектор равный исходному. Таким образом, равных векторов может быть бесчисленное множество.

Обозначение векторов

Вектор может быть обозначен латинскими заглавными буквами, например:


При данной форме записи сначала записывается буква обозначающая начало вектора, затем буква обозначающая конец вектора.

Ещё вектор обозначается одной буквой латинского алфавита (прописной):

Возможно также обозначение без стрелок:

Суммой двух векторов АВ и ВС будет являться вектор АС .

Записывается как АВ +ВС =АС .

Это правило называется – правилом треугольника .

То есть, если мы имеем два вектора – назовём их условно (1) и (2), и конец вектора (1) совпадает с началом вектора (2), то суммой этих векторов будет вектор, начало которого совпадает с началом вектора (1), а конец совпадает с концом вектора (2).

Вывод: если мы имеем на плоскости два вектора, то всегда сможем найти их сумму. При помощи параллельного переноса можно переместить любой из данных векторов и соединить его начало с концом другого. Например:

Перенесём вектор b , или по-другому – построим равный ему:

Как находится сумма нескольких векторов? По тому же принципу:

* * *

Правило параллелограмма

Это правило является следствием изложенного выше.

Для векторов с общим началом их сумма изображается диагональю параллелограмма, построенного на этих векторах.

Построим вектор равный вектору b так, чтобы его начало совпадало с концом вектора a , и мы можем построить вектор, который будет являться их суммой:

Ещё немного важной информации, необходимой для решения задач.

Вектор, равный по длине исходному, но противоположно направленный, обозначается также но имеет противоположный знак:

Эта информация крайне полезна для решения задач, в которых стоит вопрос о нахождении разности векторов. Как видите, разность векторов это та же сумма в изменнёном виде.

Пусть даны два вектора, найдём их разность:

Мы построили вектор противоположный вектору b, и нашли разность.

Координаты вектора

Чтобы найти координаты вектора, нужно из координат конца вычесть соответствующие координаты начала:

То есть, координаты вектора представляют собой пару чисел.

Если

И координаты векторов имеют вид:

То c 1 = a 1 + b 1 c 2 = a 2 + b 2

Если

То c 1 = a 1 – b 1 c 2 = a 2 – b 2

Модуль вектора

Модулем вектора называется его длина, определяется по формуле:

Формула для определения длины вектора, если известны координаты его начала и конца:

Рассмотрим задачи:

Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке О. Найдите длину разности векторов АО и ВО .

Найдём вектор, который будет являться результатом АО –ВО:

АО –ВО =АО +(–ВО )=АВ

То есть разность векторов АО и ВО будет являться вектор АВ. А его длина равна восьми.

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ +AD .

Найдём вектор, который будет являться суммой векторов AD и AB BC равен вектору AD . Значит AB +AD =AB +BC =AC

AC это длина диагонали ромба АС , она равна 16.

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО +ВО .

Найдём вектор, который будет являться суммой векторов АО и ВО ВО равен вектору OD, з начит

AD это длина стороны ромба. Задача сводится к нахождению гипотенузы в прямоугольном треугольнике AOD. Вычислим катеты:

По теореме Пифагора:

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО –ВО .

Найдём вектор, который будет являться результатом АО –ВО :

АВ это длина стороны ромба. Задача сводится к нахождению гипотенузы АВ в прямоугольном треугольнике AOB. вычислим катеты:

По теореме Пифагора:

Стороны правильного треугольника ABC равны 3.

Найдите длину вектора АВ –АС .

Найдём результат разности векторов:

СВ равна трём, так как в условии сказано, что треугольник равносторонний и его стороны равны 3.

27663. Найдите длину вектора а (6;8).

27664. Найдите квадрат длины вектора АВ .

Математические или физические величины могут быть представлены как скалярными величинами (численным значением), так и векторными величинами (величиной и направлением в пространстве).

Вектор представляет собой направленный отрезок прямой, для которого указано, какая из его граничных точек является началом, а какая - концом. Таким образом, в векторе присутствует две составляющих – это его длина и направление.

Изображение вектора на чертеже.

При работе с векторами часто вводят некоторую декартову систему координат в которой определяют координаты вектора, раскладывая его по базисным векторам:

Для вектора, расположенного в пространстве координат (x,y,z) и выходящего из начала координат

Расстояние между началом и концом вектора называется его длиной, а для обозначения длины вектора (его абсолютной величины) пользуются символом модуля.

Векторы расположенные либо на одной прямой, либо на параллельных прямых называются коллинеарными. Нулевой вектор считается коллинеарным любому вектору. Среди коллинеарных векторов различают одинаково направленные (сонаправленные) и противоположно направленные векторы. Векторы называются компланарными, если они лежат либо на одной плоскости, либо на прямых, параллельных одной и той же плоскости.

1.Длина вектора (модуль вектора)

Длина вектора определяет его скалярное значение и зависит от его координат, но не зависит от его направления. Длина вектора (или модуль вектора) вычисляется через арифметический квадратный корень из суммы квадратов координат (компонент) вектора (используется правило вычисления гипотенузы в прямоугольном треугольнике, где сам вектор становится гипотенузой).

Через координаты модуль вектора вычисляется следующим образом:

Для вектора, расположенного в пространстве координат (x,y) и выходящего из начала координат

Для вектора, расположенного в пространстве координат (x,y,z) и выходящего из начала координат, формула будет аналогична формуле диагонали прямоугольного параллелепипеда, так как вектор в пространстве принимает такое же положение относительно осей координат.

2. Угол между векторами

Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения второго вектора. Угол между векторами определяется с использованием выражения для определения скалярного произведения векторов

Таким образом, косинус угла между векторами равен отношению скалярного произведения к произведению длин или модулей векторов. Данной формулой можно пользоваться в случае, если известны длины векторов и их скалярное произведение, либо векторы заданы координатами в прямоугольной системе координат на плоскости или в пространстве в виде: и .

Если векторы A и B заданы в трехмерном пространстве и координаты каждого из них заданы в виде: и , то угол между векторами определяется по следующему выражению:

Следует отметить, что угол между векторами и можно также определить применяя теорему косинусов для треугольника: квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

где AB, OA, OB – соответствующая сторона треугольника.

Теорема косинусов для треугольника

Применительно к векторным исчислением данная формула перепишется следующим образом:

Таким образом, угол между векторами и определяется по следующему выражению:

где и - модуль (длина) вектора, а - модуль (длина) вектора, который определяется из разности двух векторов. Неизвестные входящие в уравнение определяются по координатам векторов и .

3.Сложение векторов

Сложение двух векторов и (сумма двух векторов) - это операция вычисления вектора , все элементы которого равны попарной сумме соответствующих элементов векторов и . В случае если вектора заданы в прямоугольной системе координат сумму векторов

В графическом виде, сложение двух свободных векторов можно осуществлять как по правилу треугольника, так и по правилу параллелограмма.

Сложение двух векторов

Сложение двух скользящих векторов определено лишь в случае, когда прямые, на которых они расположены, пересекаются. Сложение двух фиксированных векторов определено лишь в случае, когда они имеют общее начало.

Правило треугольника .

Для сложения двух векторов и по правилу треугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора, а конец с концом второго вектора.

где - угол между векторами, когда начало одного совпадает с концом другого.

Правило параллелограмма .

Для сложения двух векторов и по правилу параллелограмма оба эти вектора переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала.

Модуль (длину) вектора суммы определяют по теореме косинусов:

где - угол между векторами выходящими из одной точки.

Примечание:

Как видно, в зависимости от того какой угол выбирается, изменяется знак перед косинусом угла в формуле для определения модуля (длины) вектора суммы.

4.Разность векторов

Разность векторов и (вычитание векторов) - это операция вычисления вектора , все элементы которого равны попарной разности соответствующих элементов векторов и . В случае если вектора заданы в прямоугольной системе координат разность векторов и можно найти по следующей формуле:

В графическом виде, разностью векторов и называется сумма вектора и вектора противоположного вектору , т.е.

Разность двух свободных векторов

Разность двух свободных векторов в графическом виде может быть определена как по правилу треугольника, так и по правилу параллелограмма. Модуль (длина) вектора разности определяется по теореме косинусов. В зависимости от используемого угла в формуле изменяется знак перед косинусом (рассматривалось ранее).

5.Скалярное произведение векторов

Скалярным произведением двух векторов называется действительное число, равное произведению длин умножаемых векторов на косинус угла между ними. Скалярное произведение векторов и обозначается одним из следующих обозначений или или и определяется по формуле:

где- длины векторов и соответственно, а - косинус угла между векторами.

Скалярное произведение двух векторов

Скалярное произведение также можно вычислить через координаты векторов в прямоугольной системе координат на плоскости или в пространстве.

Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов и .

Таким образом, для векторов и на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет следующий вид:

Для трехмерного пространства формула для вычисления скалярного произведения векторов и имеет следующий вид:

Свойства скалярного произведения.

1.Свойство коммутативности скалярного произведения

2.Свойство дистрибутивности скалярного произведения

3.Сочетательное свойство скалярного произведения (ассоциативность)

где - произвольное действительное число.

Следует отметить, что в случае:

Если скалярное произведение положительно, следовательно, угол между векторами – острый (менее 90 градусов);

Если скалярное произведение отрицательно, следовательно, угол между векторами – тупой (больше 90 градусов);

Если скалярное произведение равно 0, следовательно, вектора являются ортогональными (которые лежат перпендикулярно друг к другу);

Если скалярное произведение равно произведению длин векторов, следовательно, данные векторы коллинеарные между собой (параллельные).

6.Векторное произведение векторов

Векторным произведением двух векторов и называется вектор для которого выполняются следующие условия:

1. вектор ортогонален (перпендикулярен) плоскости векторов и ;



© dagexpo.ru, 2024
Стоматологический сайт