Простейшим обитающим в эритроцитах крови человека является. Норма эритроцитов в крови – повышены или понижены – основные причины. Что такое эритроциты

19.07.2019

1. Кровь как разновидность тканей внутренней среды. Эритроциты: размеры, форма, строение, химический состав, функция, продолжительность жизни. Особенности строения и химического состава ретикулоцитов, их процентное содержание.

КРОВЬ

Кровь- одна из тканей внутренней среды. Жидкое межклеточное вещество (плазма) и взвешенные в нем клетки - два основных компонента крови. Свернувшаяся кровь состоит из тромба (сгустка), включающего форменные элементы и некоторые белки плазмы, сыворотки - прозрачной жидкости, сходной с плазме но лишённой фибриногена. У взрослого человека общий объём крови около 5 л; около 1 л находится в депо крови, преимущественно в селезёнке. Кровь циркулирует в замкнутой системе сосудов и переносит газы, питательные вещества, гормоны, белки, ионы, продукты метаболизма. Кровь поддерживает постоянство внутренней среды организма, регулирует температуру тела, осмотическое равновесие и кислотно-щелочной баланс. Клетки участвуют в уничтожении микроорганизмов, воспалительных и иммунных реакциях. Кровь содержит тромбоциты и плазменные факторы свёртывания, ппри нарушении целостности сосудистой стенки образуют тромб, препятствующий потере крови.

Эритроциты: размеры, форма, строение, химический состав, функция, продолжительность жизни.

Эритроциты, или красные кровяные тельца, человека и млекопитающих представляют собой безъядерные клетки, утратившие в процессе фило- и онтогенеза ядро и большинство органелл. Эритроциты являются высокодифференцированными постклеточными структурами, неспособными к делению

Размеры

Эритроцитов в нормальной крови также варьируют. Большинство эритроцитов (75 %) имеют диаметр около 7,5 мкм и называются нормоцитами. Остальная часть эритроцитов представлена микроцитами (~ 12,5 %) и макроцитами (~ 12,5 %). Микроциты имеют диаметр < 7,5 мкм, а макроциты >7,5 мкм. Изменение размеров эритроцитов встречается при заболеваниях крови и называется анизоцитозом.

Форма и строение.

Популяция эритроцитов неоднородна по форме и размерам. В нормальной крови человека основную массу (80-90 %) составляют эритроциты двояковогнутой формы - дискоциты. Кроме того, имеются планоциты (с плоской поверхностью) и стареющие формы эритроцитов - шиловидные эритроциты, или эхиноциты (~ 6 %), куполообразные, или стоматоциты (~ 1-3 %), и шаровидные, или сфероциты (~ 1 %) (рис). Процесс старения эритроцитов идет двумя путями - кренированием (образование зубцов на плазмолемме) или путем инвагинации участков плазмолеммы. При кренировании образуются эхиноциты с различной степенью формирования выростов плазмолеммы, впоследствии отпадающих, при этом формируется эритроцит в виде микросфероцита. При инвагинации плазмолеммы эритроцита образуются стоматоциты, конечной стадией которых также является микросфероцит. Одним из проявлений процессов старения эритроцитов является их гемолиз, сопровождающийся выхождением гемоглобина; при этом в крови обнаруживаются «тени» (оболочки) эритроцитов.

При заболеваниях могут появляться аномальные формы эритроцитов,что чаще всего обусловлено изменением структуры гемоглобина (НЬ). Замена даже одной аминокислоты в молекуле НЬ может быть причиной изменения формы эритроцитов. В качестве примера можно привести появления эритроцитов серповидной формы при серповидно-клеточной анемии, когда у больного имеет место генетическое повреждение в р-цепи гемоглобина. Процесс нарушения формы эритроцитов при заболеваниях получил название пойкилоцитоз.

Рис. Эритроциты различной формы в сканирующем электронном микроскопе (по Г.Н.Никитиной).

1 - дискоциты-нормоциты; 2 - дискоцит-макроцит; 3,4 - эхиноциты; 5 - стоматоцит; 6 - сфероцит.

Химический состав

Плазмолемма. Плазмолемма эритроцита состоит из бислоя липидов и белков, представленных приблизительно в равных количествах, а также небольшого количества углеводов, формирующих гликокаликс. Большинство липидных молекул, содержащих холин (фосфатидилхолин, сфин-гомиелин), расположены во внешнем слое плазмолеммы, а липиды, несущие на конце аминогруппу (фосфатидилсерин, фосфатидилэтаноламин), лежат во внутреннем слое. Часть липидов (~ 5 %) наружного слоя соединены с молекулами олигосахаров и называются гликолипидами. Распространены мембранные гликопротеины - гликофорины. С ними связывают антигенные различия между группами крови человека.

Цитоплазма эритроцита состоит из воды (60 %) и сухого остатка (40 %), содержащего около 95 % гемоглобина и 5 % других веществ. Наличие гемоглобина обусловливает желтую окраску отдельных эритроцитов свежей крови, а совокупность эритроцитов - красный цвет крови. При окрашивании мазка крови азур П-эозином по Романовскому -Гимзе большинство эритроцитов приобретают оранжево-розовый цвет (оксифильны), что обусловлено высоким содержанием в них гемоглобина.

Рис. Строение плазмолеммы и цитоскелета эритроцита.

А - схема: 1 - плазмолемма; 2 - белок полосы 3; 3 - гликофорин; 4 - спектрин (α- и β-цепи); 5 - анкирин; 6 - белок полосы 4.1; 7 - узловой комплекс, 8 - актин;

Б - плазмолемма и цитоскелет эритроцита в сканирующем электронном микроскопе, 1 - плазмолемма;

2 - сеть спектрина,

Продолжительность жизни и старение эритроцитов. Средняя продолжительность жизни эритроцитов составляет около 120 дней. В организме ежедневно разрушается около 200 млн эритроцитов. При их старении происходят изменения в плазмолемме эритроцита: в частности, в гликокаликсе снижается содержание сиаловых кислот, определяющих отрицательный заряд оболочки. Отмечаются изменения цитоскелетного белка спектрина, что приводит к преобразованию дисковидной формы эритроцита в сферическую. В плазмолемме появляются специфические рецепторы к аутологичным антителам, которые при взаимодействии с этими антителами образуют комплексы, обеспечивающие «узнавание» их макрофагами и последующий фагоцитоз. В стареющих эритроцитах снижаются интенсивность гликолиза и соответственно содержание АТФ. Вследствие нарушения проницаемости плазмолеммы снижается осмотическая резистентность, наблюдаются выход из эритроцитов ионов К^ в плазму и увеличение в них содержания Nа + . При старении эритроцитов отмечается нарушение их газообменной функции.

Функции:

1. Дыхательная - перенос кислорода в ткани и углекислого газа от тканей в легкие.

2. Регуляторная и защитная функции - перенос на поверхности различных биологически активных, токсических веществ, защитных факторов: аминокислот, токсинов, антигенов, антител и др. На поверхности эритроцитов часто может происходить реакция антиген-антитело, поэтому они пассивно участвуют в защитных реакциях.

В различных ситуациях, при постановке некоторых диагнозов, врачи зачастую настоятельно рекомендуют нам сдавать анализ крови. Он очень информативен и позволяет оценить защитные свойства нашего организма при том или ином недуге. Показателей в нем достаточно много, одним из них является объем эритроцитов. Многие из вас, наверное, никогда не задумывались об этом. А зря. Ведь все природой продумано до мелочей. Вот так же и в случае с эритроцитами. Давайте разберемся подробнее.

Что такое эритроциты?

Кровяные клетки эритроциты играют в человеческом организме важную роль. Их главная задача - поставлять кислород, поступающий при дыхании ко всем тканям и органам нашего тела. Образовавшийся в данной ситуации диоксид углерода нужно срочно вывести из организма, и здесь эритроцит - главный помощник. Кстати, питательными веществами эти кровяные тельца тоже обогащают наш организм. В состав эритроцитов входит известный всем красный пигмент под наименованием гемоглобин. Именно он способен в легких связать кислород для его более удобного выведения, а в тканях - высвободить. Конечно, как и любой другой показатель в организме человека, количество эритроцитов может уменьшаться или увеличиваться. И на это есть свои причины:

  • рост числа кровяных телец в крови свидетельствует о серьезном обезвоживании организма либо о (эритремия);
  • снижение данного показателя будет говорить об анемии (это не болезнь, но такое состояние крови может способствовать развитию большого количества других заболеваний);
  • кстати, как ни странно, эритроциты часто выявляются в моче пациентов, которые жалуются на проблемы с мочевыделительной системой (мочевым пузырем, почками и др.).

Очень интересный факт: размер эритроцита может иногда значительно меняться, происходит это за счет эластичности этих клеток. К примеру, диаметр капилляра, по которому может пройти красное кровяное тельце величиной 8 мкм, составляет всего 2-3 мкм.

Функции эритроцитов

Казалось бы, что может полезного сделать маленькое красное кровяное тельце в таком большом организме человека. Но размер эритроцита не имеет здесь никакого значения. Важно, что эти клетки выполняют жизненно важные функции:

  • Защищают организм от токсинов: связывают их для последующего выведения. Происходит это благодаря наличию на поверхности эритроцитов белковых веществ.
  • Переносят ферменты, называемые в медицинской литературе специфическими белковыми катализаторами, к клеткам и тканям.
  • За счет них осуществляется дыхание человека. Это происходит по причине (он способен присоединять и отдавать кислород, а также углекислый газ).
  • Эритроциты питают организм за счет аминокислот, которые они легко транспортируют от органов ЖКТ к клеткам и тканям.

Место образования эритроцитов

Важно знать, где образуются красные кровяные тельца, чтобы в случае возникновения проблем с их концентрацией в крови суметь вовремя принять меры. Сам процесс их создания сложен.

Место образования эритроцитов - костный мозг, позвоночник и ребра. Рассмотрим более подробно первое из них: сначала ткани мозга растут за счет деления клеток. Позже из клеток, которые отвечают за создание всей кровеносной системы человека, формируется одно большое красное тельце, имеющее ядро и гемоглобин. Из него непосредственно получается предшественник красного кровяного тельца (ретикулоцит), который, попадая в кровь, за 2-3 часа трансформируется в эритроцит.

Строение красного кровяного тельца

Так как в эритроцитах присутствует в большом количестве гемоглобин, это обуславливает их ярко-красный цвет. При этом клетка имеет двояковогнутую форму. Строение эритроцитов несозревших клеток предусматривает наличие ядра, чего нельзя сказать об окончательно сформированном тельце. Диаметр эритроцитов 7-8 мкм, а толщина меньше - 2-2,5 мкм. То, что в зрелых эритроцитах уже нет ядра, позволяет кислороду проникать в них быстрее. Общее количество красных кровяных телец, находящихся в крови человека, очень велико. Если их сложить в одну линию, то ее длина будет составлять около 150 тыс. км. К эритроцитам применяют различные термины, характеризующие отклонения в их размере, цвете и других характеристиках:

  • нормоцитоз - нормальный средний размер;
  • микроцитоз - размер меньше нормального;
  • макроцитоз - размер больше нормального;
  • анитоцитоз - при этом размеры клеток значительно варьируются, т. е. одни из них слишком большие, другие чересчур маленькие;
  • гипохромия - когда количество гемоглобина в эритроцитах меньше нормы;
  • пойкилоцитоз - форма клеток значительно изменена, причем одни из них овальные, другие - серповидной формы;
  • нормохромия - количество гемоглобина в клетках нормальное, поэтому и окрашены они правильно.

Как живет эритроцит

Из вышесказанного мы уже выяснили, что место образования эритроцитов - это костный мозг черепа, ребра и позвоночник. Но, попав в кровь, долго ли эти клетки там находятся? Ученые выяснили, что жизнь эритроцита достаточно коротка - в среднем около 120 дней (4 месяца). К этому времени он начинает стареть по двум причинам. Это метаболизм (распад) глюкозы и повышение содержания в нем жирных кислот. Эритроцит начинает терять энергию и эластичность мембраны, из-за этого на ней появляются многочисленные выросты. Чаще всего разрушаются эритроциты внутри сосудов крови или же в некоторых органах (печень, селезенка, костный мозг). Соединения, образовавшиеся в результате распада эритроцитов, легко выводятся из организма человека с мочой и калом.

Последний из них реже показывает наличие красных телец, и зачастую это связано именно с наличием какой-то патологии. А вот кровь человека всегда содержит эритроциты, и важно знать нормы этого показателя. распределение эритроцитов в крови абсолютно здорового человека равномерно, а их содержание достаточно велико. Т. е. если была бы возможность посчитать все их количество у него, получилась бы огромная цифра, не несущая никакой информации. Поэтому в ходе лабораторных исследований принято пользоваться следующим методом: считать эритроциты в определенном объеме (1 кубический миллиметр крови). Кстати, такое значение позволит правильно оценить уровень эритроцитов и выявить существующие патологии или проблемы со здоровьем. Немаловажно, что на него особое влияние оказывает место проживания пациента, его пол и возраст.

Нормы эритроцитов в крови

У здорового человека редко наблюдаются какие-либо отклонения в данном показателе на протяжении всей жизни.

Итак, существуют следующие его нормы для детей:

  • первые 24 часа жизни малыша - 4,3-7,6 млн/1 куб. мм крови;
  • первый месяц жизни - 3,8-5,6 млн/1 куб. мм крови;
  • первые 6 месяцев жизни ребенка - 3,5-4,8 млн/1 куб. мм крови;
  • в течение 1-го года жизни - 3,6-4,9 млн/1 куб. мм крови;
  • 1 год - 12 лет - 3,5-4,7 млн/1 куб. мм крови;
  • после 13 лет - 3,6-5,1 млн/1 куб. мм крови.

Большое количество эритроцитов в крови малыша объяснить легко. Когда он находится в утробе мамы, образование эритроцитов идет у него в ускоренном режиме, ведь только так все его клетки и ткани смогут получить нужный объем кислорода и питательных веществ для своего роста и развития. Когда ребенок появляется на свет, эритроциты начинают усиленно распадаться, и их концентрация в крови снижается (если этот процесс слишком быстрый, у малыша возникает желтуха).

  • Мужчины: 4,5-5,5 млн/1 куб. мм крови.
  • Женщины: 3,7-4,7 млн/1 куб. мм крови.
  • Люди пожилого возраста: менее 4 млн/1 куб. мм крови.

Конечно, отклонение от нормы может быть связано с какой-либо проблемой в организме человека, но здесь обязательно необходима консультация специалиста.

Эритроциты в моче - может ли возникнуть такая ситуация?

Да, ответ врачей однозначно положительный. Конечно, в редких случаях это может возникнуть из-за того, что человек носил тяжелый груз или долго находился в вертикальном положении. Но зачастую повышенная концентрация эритроцитов в моче свидетельствует о наличии проблем и требует консультации грамотного специалиста. Запомните некоторые ее нормы в данном веществе:

  • нормальное значение должно составлять 0-2 шт. в поле зрения;
  • когда проводится исследование мочи по методу Нечипоренко, эритроцитов может быть более тысячи штук в лаборанта;

Врач при наличии у больного таких анализов мочи будет искать конкретную причину появления в ней эритроцитов, допуская следующие варианты:

  • если речь идет о детях, то рассматриваются пиелонефрит, цистит, гломерулонефрит;
  • уретрит (при этом учитывают и наличие других симптомов: боли внизу живота, болезненное мочеиспускание, повышение температуры тела);
  • мочекаменная болезнь: пациент параллельно жалуется на примесь крови в моче и приступы почечной колики;
  • гломерулонефрит, пиелонефрит (болит поясница и температура повышается);
  • опухоли почек;
  • аденома предстательной железы.

Изменение количества эритроцитов в крови: причины

Предполагает наличие в них большого количества гемоглобина, а значит, вещества, способного присоединять кислород и выводить углекислый газ.

Поэтому отклонения от нормы, характеризующей количество красных кровяных телец в крови, могут быть опасны для вашего здоровья. в крови у человека (эритроцитоз) наблюдается не часто и может быть связано с некоторыми простыми причинами: это стрессы, излишние физические нагрузки, либо проживание в горной местности. Но если дело не в этом, обратите внимание на следующие болезни, которые вызывают повышение данного показателя:

  • Проблемы с кровью, в том числе эритремия. Обычно человек при этом имеет красную окраску кожи шеи, лица.
  • Развитие патологий в легких и сердечно-сосудистой системе.

Снижение количества красных кровяных телец, именуемое в медицине эритропенией, может быть вызвано тоже несколькими причинами. В первую очередь это анемия, или малокровие. Она может быть связана с нарушением образования эритроцитов в костном мозге. Когда человек теряет определенное количество крови или эритроциты слишком быстро разрушаются в его крови, такая ситуация тоже возникает. Зачастую врачи ставят пациентам диагноз под названием "железодефицитная анемия". Железо просто может не поступать в достаточном количестве в организм человека или плохо им усваиваться. Чаще всего для исправления ситуации специалисты назначают больным витамин В 12 и фолиевую кислоту наряду с железосодержащими препаратами.

Показатель СОЭ: что он обозначает

Часто врач, приняв пациента, который жалуется на какие-либо простудные заболевания (не проходящие уже длительное время), назначает ему сдачу общего анализа в крови.

В нем зачастую на самой последней строчке вы увидите интересный показатель эритроцитов крови, характеризующий скорость их оседания (СОЭ). Как в лаборатории можно провести такое исследование? Очень легко: кровь больного помещают в тонкую стеклянную трубку и оставляют в вертикальном положении на некоторое время. Эритроциты обязательно осядут на дно, оставив в верхнем слое крови прозрачную плазму. Единица оседания эритроцитов - мм/час. Данный показатель может варьироваться в зависимости от половой принадлежности и возраста, к примеру:

  • дети: 1-месячные малыши - 4-8 мм/час; 6-месячные - 4-10 мм/час; 1 год-12 лет - 4-12 мм/час;
  • мужчины: 1-10 мм/час;
  • женщины: 2-15 мм/час; беременные представительницы прекрасного пола - 45 мм/час.

Насколько информативен данные показатель? Конечно, в последнее время врачи все реже стали обращать на него внимание. Считается, что есть множество погрешностей в нем, которые могут быть связаны, например у деток, с возбужденным состоянием (крик, плач) во время взятия крови. Но вообще повышенная скорость оседания эритроцитов - это результат развивающегося в вашем организме воспалительного процесса (скажем, бронхита, воспаления легких, любого другого простудного или инфекционного заболевания). Также рост СОЭ наблюдается во время беременности, менструации, имеющихся у человека хронических патологий или болезней, а также травм, инсульта, инфаркта и т.д. Безусловно, снижение СОЭ наблюдается гораздо реже и уже свидетельствует о наличии более серьезных проблем:это лейкоз, гепатит, гипербилирубинемия и другое.

Как мы выяснили, место образования эритроцитов - это костный мозг, ребра и позвоночник. Поэтому при наличии проблем с количеством эритроцитов в крови нужно в первую очередь обратить внимание на первое из них. Каждому человеку необходимо четко понимать, что все показатели в анализах, которые мы сдаем, очень важны для нашего организма, и халатно к ним лучше не относиться. Поэтому, если вы прошли такое исследование, будьте добры обратиться к грамотному специалисту для его расшифровки. Это не значит, что при малейшем отклонении от нормы в анализе нужно сразу впадать в панику. Просто доводите дело до конца, особенно когда речь идет о вашем здоровье.

Эритробласт

Родоначальной клеткой эритроидного ряда является эритробласт . Он происходит из эритропоэтинчувствительной клетки, которая развивается из клетки-предшественника миелопоэза.

Эритробласт достигает в диаметре 20-25 мкм. Ядро его имеет почти геометрически круглую форму, окрашивается в красно-фиолетовый цвет. По сравнению с недифференцируемыми бластами можно отметить более грубую структуру и более яркую окраску ядра, хотя хроматиновые нити довольно тонкие, переплетение их равномерное, нежносетчатое. В ядре находятся два - четыре ядрышка и более. Цитоплазма клетки с фиолетовым оттенком. Вокруг ядра наблюдается просветление (перинуклеарная зона), иногда с розовым оттенком. Указанные морфологические и тинкториальные признаки позволяют легко распознать эрктробласт.

Пронормоцит

Пронормоцит (пронормобласт) подобно эритробласту характеризуется четко очерченным круглым ядром и выраженной базофилией цитоплазмы. Отличить пронормоцит от эритробласта можно по более грубой структуре ядра и отсутствию в нем ядрышек.

Нормоцит

Нормоцит (нормобласт) по величине приближается к зрелым безъядерным эритроцитам (8-12 мкм) с отклонениями в ту или другую сторону (микро- и макроформы).

В зависимости от степени насыщения гемоглобином различают базофильные, полихроматофильные и оксифильные (ортохромные) нормоциты . Накопление гемоглобина в цитоплазме нормоцитов происходит при непосредственном участии ядра. Об этом свидетельствует и появление его вначале вокруг ядра, в околоядерной зоне. Постепенно накопление гемоглобина в цитоплазме сопровождается полихромазией - цитоплазма становится полихроматофильной, т. е. воспринимает и кислые, и основные красители. При насыщении клетки гемоглобином цитоплазма нормоцита в окрашенных препаратах становится розовой.

Одновременно с накоплением в цитоплазме гемоглобина подвергается закономерным изменениям и ядро, в котором происходят процессы конденсации ядерного хроматина. В результате этого исчезают ядрышки, хроматиновая сеть становится более грубой и ядро приобретает характерную радиарную (колесовидную) структуру, в нем отчетливо различимы хроматин и парахроматин. Эти изменения характерны для полихроматофильного нормоцита.

Полихроматофильный нормоцит - последняя клетка красного ряда, которая еще способна к делению. В дальнейшем в оксифильном нормоците хроматин ядра уплотняется, становится грубопикнотичным, клетка лишается ядра и превращается в эритроцит.

В нормальных условиях из костного мозга в кровяное русло поступают зрелые эритроциты. В условиях патологии, связанной с дефицитом цианокобаламина - витамина B 12 (его кофермента метилкобаламина) или фолиевой кислоты, в костном мозге появляются мегалобластические формы эритрокариоцитов.

Промегалобласт

Промегалобласт - наиболее молодая форма мегалобластического ряда. Установить морфологические различия между промегалобластом и про- эритрокариоцитом удается не всегда. Обычно промегалобласт большего диаметра (25-35 мкм), структура его ядра отличается четкостью рисунка хроматиновой сети с границей хроматина и парахроматина. Цитоплазма обычно более широкая, чем у пронормоцита, ядро часто располагается эксцентрически. Иногда обращает на себя внимание неравномерная (нитчатая) интенсивная окраска базофильной цитоплазмы.

Мегалобласт

Наряду с крупными мегалобластами (гигантские бласты) могут наблюдаться клетки небольших размеров, по величине соответствующие нормоцитам. От последних мегалобласты отличаются нежной структурой ядра. У нормоцита ядро грубопетлистое, с радиарной исчерченностью, у мегалобласта оно сохраняет нежную сетчатость, мелкую зернистость хроматиновых глыбок, располагается в центре или эксцентрически, не имеет ядрышек.

Раннее насыщение цитоплазмы гемоглобином является вторым важным признаком, позволяющим отличить мегалобласт от нормоцита. Как и нормоциты, по содержанию в цитоплазме гемоглобина мегалобласты делятся на базофильные, полихроматофильные и оксифильные.

Полихроматофильные мегалобласты характеризуются метахроматичностью окраски цитоплазмы, которая может приобретать серовато-зеленые оттенки.

Так как гемоглобинизация цитоплазмы опережает дифференциацию ядра, то клетка долго остается ядросодержащей и не может превратиться в мегалоцит. Уплотнение ядра наступает с запозданием (после нескольких митозов). При этом размеры ядра уменьшаются (параллельно с уменьшением размеров клетки до 12-15 мкм), но его хроматин никогда не приобретает колесовидную структуру, свойственную ядру нормоцита. В процессе инволюции ядро мегалобласта приобретает всевозможные формы. Это ведет к образованию мегалобластов с самыми различными, причудливыми формами ядер и их остатков, телец Жолли, колец Кебота, ядерных пылинок Вейденрейха.

Мегалоцит

Освободившись от ядра, мегалобласт превращается в мегалоцит, отличающийся от зрелого эритроцита размерами (10-14 мкм и более) и насыщенностью гемоглобином. Он преимущественно овальной формы, без просветления в центре.

Эритроциты

Эритроциты составляют основную массу клеточных элементов крови. В нормальных условиях в крови содержится от 4,5 до 5 Т (10 12) в 1 л эритроцитов. Представление об общем объеме эритроцитов дает гематокритное число - отношение объема клеток крови к объему плазмы.

Эритроцит имеет плазмолемму и строму. Плазмолемма избирательно проницаема для ряда веществ, главным образом для газов, кроме того, в ней находятся различные антигены. В строме также содержатся антигены крови, вследствие чего она в определенной степени обусловливает групповую принадлежность крови. Кроме того, в строме эритроцитов находится дыхательный пигмент гемоглобин, который обеспечивает фиксацию кислорода и доставку его тканям. Это осуществляется благодаря способности гемоглобина образовывать с кислородом непрочное соединение оксигемоглобин, от которого кислород легко отщепляется, диффундируя в ткань, а оксигемоглобин вновь превращается в восстановленный гемоглобин. Эритроциты активно участвуют в регуляции кислотно-основного состояния организма, адсорбции токсинов и антител, а также в ряде ферментативных процессов.

Свежие, нефиксированные эритроциты имеют вид двояковогнутых дисков, круглых или овальных, окрашивающихся по Романовскому в розовый цвет. Двояковогнутость поверхности эритроцитов способствует тому, что в обмене кислорода участвует большая поверхность, чем при шаровидной форме клеток. Вследствие вогнутости средней части эритроцита под микроскопом его периферический отдел кажется более темноокрашенным, чем центральный.

Ретикулоциты

При суправитальной окраске во вновь образованных и поступивших из костного мозга в кровяное русло эритроцитах выявляется гранулоретнкулофиламентозная субстанция (ретикулум). Эритроциты с такой субстанцией называют ретикулоцитами .

В нормальной крови содержится от 0,1 до 1% ретикулоцитов. В настоящее время считается, что все молодые эритроциты проходят стадию ретикулоцита. а трансформация ретикулоцита в зрелый эритроцит происходит за короткий промежуток времени (29 ч по Finch). За это время они окончательно теряют ретикулум и превращаются в эритроциты.

Значение периферического ретикулоцитоза как показателя функционального состояния костного мозга обусловлено тем, что повышенное поступление молодых эритроцитов в периферическую кровь (усиление физиологической регенерации эритроцитов) сочетается с повышенной кроветворной деятельностью костного мозга. Таким образом, по количеству ретикулоцитов можно судить об эффективности эритроцитопоэза.

В некоторых случаях повышенное содержание ретикулоцитов имеет диагностическое значение, указывая на источник раздражения костного мозга. Например, ретикулоцитарная реакция при желтухе свидетельствует о гемолитическом характере заболевания; выраженный ретикулоцитоз помогает обнаружить скрытое кровотечение.

По количеству ретикулоцитов можно судить и об эффективности лечения (при кровотечениях, гемолитической анемии и др.). В этом заключается практическое значение изучения ретикулоцитов.

Признаком нормальной регенерации костного мозга может служить также обнаружение в периферической крови полихроматофильных эритроцитов . Они представляют собой незрелые костномозговые ретикулоциты, которые по сравнению с ретикулоцитами периферической крови более богаты РНК. С помощью радиоактивного железа доказано, что некоторая часть ретикулоцитов образуется из полихроматофильных нормоцитов без деления клеток. Такие ретикулоциты, образовавшиеся в условиях нарушенного эритроцитопоэза, имеют по сравнению с нормальными ретикулоцитами большие размеры и укороченный срок жизни.

Костномозговые ретикулоциты задерживаются в строме костного мозга в течение 2-4 дней, а затем попадают в периферическую кровь. В случаях гипоксии (кровопотеря, гемолиз) костномозговые ретикулоциты появляются в периферической крови в более ранние сроки. При тяжелой форме анемии костномозговые ретикулоциты могут образовываться и из базофильных нормоцитов. В периферической крови они имеют вид базофильных эритроцитов.

Полихроматофилия эритроцитов (костномозговых ретикулоцитов) обусловлена смешиванием двух высокодисперсных коллоидных фаз, одна из которых (кислой реакции) представляет собой базофильное вещество, а другая (слабощелочной реакции) - гемоглобин. Благодаря смешиванию обеих коллоидных фаз незрелый эритроцит при окрашивании по Романовскому воспринимает и кислый, и щелочной красители, приобретая серовато-розоватый цвет (окрашивается полихроматофильно).

Базофильное вещество полихроматофилов при суправитальной окраске 1 % раствором бриллианткрезилового синего (во влажной камере) выявляется в виде более выраженного ретикулума.

Для определения степени регенерации эритроцитов предложено использовать толстую каплю, окрашенную по Романовскому без фиксации. При этом зрелые эритроциты выщелачиваются и не выявляются, а ретикулоциты остаются в виде базофильно (синевато-фиолетово) окрашенной сеточки - полихромазия . Увеличение ее до трех и четырех плюсов указывает на повышенную регенерацию клеток эритроидного ряда.

В отличие от нормоцитов, характеризующихся интенсивным синтезом ДНК, РНК и липидов, в ретикулоцитах продолжается лишь синтез липидов и присутствует РНК. Установлено также, что в ретикулоцитах продолжается синтез гемоглобина.

Средний диаметр нормоцита около 7,2 мкм, объем - 88 фл (мкм 3), толщина - 2 мкм, показатель сферичности - 3,6.

Эритроциты (erythrosytus) это форменные элементы крови.

Функция эритроцитов

Основные функции эритроцитов - регуляция в крови КОС, транспорт по организму О 2 и СО 2 . Эти функции реализуются с участием гемоглобина. Кроме того, эритроциты на своей клеточной мембране адсорбируют и транспортируют аминокислоты, антитела, токсины и ряд лекарственных веществ.

Строение и химический состав эритроцитов

Эритроциты у человека и млекопитающих в токе крови обычно (80%) имеют форму двояковогнутых дисков и называются дискоцитами . Такая формаэритроцитов создаёт наибольшую площадь поверхности по отношению к объёму, что обеспечивает максимальный газообмен, а такжеобеспечива­ет большую пластичность при прохождении эритроцитами мелких капилляров.

Диаметр эритроцитов у человека колеблется от 7,1 до 7,9 мкм, толщина эритроцитов в краевой зоне - 1,9 - 2,5 мкм, в центре - 1 мкм. В нормальной крови указанные размеры имеют 75% всех эритроцитов - нормоциты ; большие размеры (свыше 8,0 мкм) - 12,5 % -макроциты . У остальных эритроцитов диаметр может быть 6 мкм и меньше -микроциты .

Поверхность отдельного эритроцита у человека приблизительно равна 125 мкм 2 , а объём (MCV) – 75-96 мкм 3 .

Эритроциты человека и млекопитающих представляют собой безъядерные клетки, утратившие в процессе фило- и онтогенеза ядро и большинство органелл, они имеют только цитоплазму и плазмолемму (клеточную мембрану).

Плазмолемма эритроцитов

Плазмолемма эритроцитов имеет толщину около 20 нм. Она состоит из примерно равного количества липидов и белков, а также небольшого количества углеводов.

Липиды

Бислой плазмолеммы образован глицерофосфолипидами, сфингофосфолипидами, гликолипидами и холестерином. Внешний слой содержит гликолипиды (около 5% от общего количества липидов) и много холина (фосфатидилхолин, сфингомиелин), внутренний - много фосфатидилсерина и фосфатидилэтаноламина.

Белки

В плазмолемме эритроцита идентифицировано 15 главных белков с молекулярной массой 15-250 кДа.

Белки спектрин, гликофорин, белок полосы 3, белок полосы 4.1, актин, анкирин образуют с цитоплазматической стороны плазмалеммы цитоскелет, который придает эритроциту двояковогнутую форму и высокую механическую прочность. Более 60% всех мембранных белков приходится на спектрин ,гликофорин (есть только в мембране эритроцитов) ибелок полосы 3 .

Спектрин - основной белок цитоскелета эритроцитов (составляет 25% массы всех мембранных и примембранных белков), имеет вид фибриллы 100 нм, состоящей из двух антипаралельно перекрученых друг с другом цепей α-спектрина (240 кДа) и β-спектрина (220 кДа). Молекулы спектрина образуют сеть, которая фиксируется на цитоплазматической стороне плазмалеммы с помощью анкирина и белка полосы 3 или актина, белка полосы 4.1 и гликофорина.

Белок полосы 3 - трансмембранный гликопротеид (100 кДа), его полипептидная цепь которого много раз пересекает бислой липидов. Белок полосы 3 является компонентом цитоскелета и анионным каналом, который обеспечивает трансмембранный антипорт для ионов НСО 3 - и Сl - .

Гликофорин - трансмембранный гликопротеин (30 кДа), который пронизывает плазмолемму в виде одиночной спирали. С наружной поверхности эритроцита к нему присоединены 20 цепей олигосахаридов, которые несут отрицательные заряды. Гликофорины формируют цитоскелет и, через олигосахариды, выполняют рецепторные функции.

Na + ,K + -АТФ-аза мембранный фермент, обеспечивает поддержание градиента концентраций Na + и К + по обе стороны мембраны. При снижении активности Na + ,K + -АТФ-азы концентрация Na + в клетке повышается, что приводит к увеличению осмотического давления, увеличению поступления воды в эритроцит и к его гибели в результате гемолиза.

Са 2+ -АТФ-аза - мембранный фермент, осуществляющий выведение из эритроцитов ионов кальция и поддерживающий градиент концентрации этого иона по обе стороны мембраны.

Углеводы

Олигосахариды (сиаловая кислота и антигенные олигосахариды) гликолипидов и гликопротеидов, расположенные на наружной поверхности плазмолеммы, образуют гликокаликс . Олигосахариды гликофорина определяют антигенные свойства эритроцитов. Они являются агглютиногенами (А и В) и обеспечивают агглютинацию (склеивание) эритроцитов под влиянием соответствующих белков плазмы крови –- и-агглютининов, находящихся в составе фракции-глобулинов. Агглютиногены появляются на мембране на ранних стадиях развития эритроцита.

На поверхности эритроцитов имеется также агглютиноген - резус-фактор (Rh-фактор). Он присутствует у 86% людей, у 14% отсутствует. Переливание резус-положительной крови резус-отрицательному пациенту вызывает образование резус-антител и гемолиз эритроцитов.

Цитоплазма эритроцитов

В цитоплазме эритроцитах содержится около 60% воды и 40% сухого остатка. 95% сухого остатка составляет гемоглобин, он образует многочисленные гранулы размером 4-5 нм. Оставшиеся 5% сухого остатка приходятся на органические (глюкоза, промежуточные продукты ее катаболизма) и неорганические вещества. Из ферментов в цитоплазме эритроцитов присутствуют ферменты гликолиза, ПФШ, антиоксидантной защиты и метгемоглобинредуктазной системы, карбоангидраза.

Кровь человека – это жидкая субстанция, состоящая из плазмы и находящихся в ней во взвешенном состоянии форменных элементов, или клеток крови, которые составляют примерно 40-45 % от общего объема. Они имеют малые размеры, и рассмотреть их можно только под микроскопом.

Существует несколько видов кровяных клеток, выполняющих определенные функции. Одни из них функционируют только внутри кровеносной системы, другие выходят за ее пределы. Общим для них является то, что все они образуются в костном мозге из стволовых клеток, процесс их образования непрерывен, а срок жизни ограничен.

Все клетки крови делятся на красные и белые. Первые – это эритроциты, составляющие большую часть всех клеток, вторые – лейкоциты.

К клеткам крови принято причислять и тромбоциты. Эти небольшие кровяные пластинки на самом деле не являются полноценными клетками. Они представляют собой мелкие фрагменты, отделившиеся от крупных клеток – мегакариоцитов.

Эритроциты называются красными кровяными тельцами. Это самая многочисленная группа клеток. Они переносят кислород от органов дыхания к тканям и принимают участие в транспортировке углекислого газа от тканей к легким.

Место образование эритроцитов – красный костный мозг. Живут они 120 дней и разрушаются в селезенке и печени.

Образуются из клеток-предшественниц – эритробластов, которые перед превращением в эритроцит проходят разные стадии развития и несколько раз делятся. Таким образом, из эритробласта образуется до 64 красных кровяных клеток.

Эритроциты лишены ядра и по форме напоминают вогнутый с двух сторон диск, диаметр которого в среднем составляет около 7-7,5 мкм, а толщина по краям – 2,5 мкм. Такая форма способствует увеличению пластичности, необходимой для прохождения по мелким сосудам, и площади поверхности для диффузии газов. Старые эритроциты утрачивают пластичность, из-за чего задерживаются в мелких сосудах селезенки и там же разрушаются.

Большая часть эритроцитов (до 80 %) имеет двояковогнутую сферическую форму. Остальные 20 % могут иметь другую: овальную, чашеобразную, сферическую простую, серповидную и пр. Нарушение формы связано с различными заболеваниями (анемией, дефицитом витамина B 12 , фолиевой кислоты, железа и др.).

Большую часть цитоплазмы эритроцита занимает гемоглобин, состоящий из белка и гемового железа, которое придает крови красный цвет. Небелковая часть представляет собой четыре молекулы гема с атомом Fe в каждой. Именно благодаря гемоглобину эритроцит способен переносить кислород и выводить углекислый газ. В легких атом железа связывается с молекулой кислорода, гемоглобин превращается в оксигемоглобин, придающий крови алый цвет. В тканях гемоглобин отдает кислород и присоединяет углекислый газ, превращаясь в карбогемоглобин, в результате кровь становится темной. В легких углекислый газ отделяется от гемоглобина и выводится легкими наружу, а поступивший кислород вновь связывается с железом.

Кроме гемоглобина, в цитоплазме эритроцита содержатся различные ферменты (фосфатаза, холинэстеразы, карбоангидраза и др.).

Оболочка эритроцита имеет достаточно простое строение, по сравнению с оболочками других клеток. Она представляет собой эластичную тонкую сетку, что обеспечивает быстрый газообмен.

На поверхности красных кровяных клеток находятся антигены разных видов, которые определяют резус-фактор и группу крови. Резус-фактор может быть положительным или отрицательным в зависимости от присутствия или отсутствия антигена Rh. Группа крови зависит от того, какие антигены находятся на мембране: 0, A, B (первая группа – 00, вторая – 0A, третья – 0B, четвертая – AB).

В крови здорового человека в небольших количествах могут быть недозрелые эритроциты, которые называются ретикулоцитами. Их количество увеличивается при значительной кровопотере, когда требуется возмещение красных клеток и костный мозг не успевает их производить, поэтому выпускает недозрелые, которые тем не менее способны выполнять функции эритроцитов по транспортировке кислорода.

Лейкоциты – это белые клетки крови, основная задача которых – защищать организм от внутренних и внешних врагов.

Их принято делить на гранулоциты и агранулоциты. Первая группа – это зернистые клетки: нейтрофилы, базофилы, эозинофилы. Вторая группа не имеет гранул в цитоплазме, к ней относятся лимфоциты и моноциты.

Это самая многочисленная группа лейкоцитов – до 70 % от общего числа белых клеток. Свое название нейтрофилы получили в связи с тем, что их гранулы окрашиваются красителями с нейтральной реакцией. Зернистость у него мелкая, гранулы имеют фиолетово-коричневатый оттенок.

Основная задача нейтрофилов – это фагоцитоз, который заключается в захвате болезнетворных микробов и продуктов распада тканей и уничтожении их внутри клетки с помощью лизосомных ферментов, находящихся в гранулах. Эти гранулоциты борются в основном с бактериями и грибами и в меньшей степени с вирусами. Из нейтрофилов и их остатков состоит гной. Лизосомные ферменты во время распада нейтрофилов высвобождаются и размягчают близлежащие ткани, формируя таким образом гнойный очаг.

Нейтрофил – это ядерная клетка округлой формы, достигающая в диаметре 10 мкм. Ядро может иметь вид палочки или состоять из нескольких сегментов (от трех до пяти), соединенных тяжами. Увеличение количества сегментов (до 8-12 и более) говорит о патологии. Таким образом, нейтрофилы могут быть палочкоядерными или сегментоядерными. Первые – это молодые клетки, вторые – зрелые. Клетки с сегментированным ядром составляют до 65 % от всех лейкоцитов, палочкоядерных в крови здорового человека – не более 5 %.

В цитоплазме находится порядка 250 разновидностей гранул, содержащих вещества, благодаря которым нейтрофил выполняет свои функции. Это молекулы белка, влияющие на обменные процессы (ферменты), регуляторные молекулы, контролирующие работу нейтрофилов, вещества, разрушающие бактерии и другие вредные агенты.

Образуются эти гранулоциты в костном мозге из нейтрофильных миелобластов. Зрелая клетка находится в мозге 5 дней, затем поступает в кровь и живет здесь до 10 часов. Из сосудистого русла нейтрофилы попадают в ткани, где находятся двое-трое суток, далее они попадают в печень и селезенку, где разрушаются.

Этих клеток в крови очень мало – не более 1 % от всего количества лейкоцитов. Они имеют округлую форму и сегментированное или палочкообразное ядро. Их диаметр достигает 7-11 мкм. Внутри цитоплазмы темно-фиолетовые гранулы разной величины. Название получили в связи с тем, что их гранулы окрашиваются красителями со щелочной, или основной (basic), реакцией. Гранулы базофила содержат ферменты и другие вещества, принимающие участие в развитии воспаления.

Их основная функция – выделение гистамина и гепарина и участие в формировании воспалительных и аллергических реакций, в том числе немедленного типа (анафилактический шок). Кроме этого, они способны уменьшить свертываемость крови.

Образуются в костном мозге из базофильных миелобластов. После созревания они попадают в кровь, где находятся около двух суток, затем уходят в ткани. Что происходит дальше до сих пор неизвестно.

Эти гранулоциты составляют примерно 2-5 % от общего числа белых клеток. Их гранулы окрашиваются кислым красителем – эозином.

У них округлая форма и слабо окрашенное ядро, состоящее из сегментов одинаковой величины (обычно двух, реже – трех). В диаметре эозинофилы достигают 10-11 мкм. Их цитоплазма окрашивается в бледно-голубой цвет и почти незаметна среди большого количества крупных круглых гранул желто-красного цвета.

Образуются эти клетки в костном мозге, их предшественники – эозинофильные миелобласты. В их гранулах содержатся ферменты, белки и фосфолипиды. Созревший эозинофил живет в костном мозге несколько дней, после попадания в кровь находится в ней до 8 часов, затем перемещается в ткани, имеющие контакт с внешней средой (слизистые оболочки).

Это круглые клетки с большим ядром, занимающим большую часть цитоплазмы. Их диаметр составляет 7 до 10 мкм. Ядро бывает круглым, овальным или бобовидным, имеет грубую структуру. Состоит их комков оксихроматина и базироматина, напоминающих глыбы. Ядро может быть темно-фиолетовым или светло-фиолетовым, иногда в нем присутствуют светлые вкрапления в виде ядрышек. Цитоплазма окрашена в светло-синий цвет, вокруг ядра она более светлая. В некоторых лимфоцитах цитоплазма имеет азурофильную зернистость, которая при окрашивании становится красной.

В крови циркулируют два вида зрелых лимфоцитов:

  • Узкоплазменные. У них грубое темно-фиолетовое ядро и цитоплазма в виде узкого ободка синего цвета.
  • Широкоплазменные. В этом случае ядро имеет более бледную окраску и бобовидную форму. Ободок цитоплазмы достаточно широкий, серо-синего цвета, с редкими аузурофильными гранулами.

Из атипичных лимфоцитов в крови можно обнаружить:

  • Мелкие клетки с едва просматривающейся цитоплазмой и пикнотическим ядром.
  • Клетки с вакуолями в цитоплазме или ядре.
  • Клетки с дольчатыми, почкообразными, имеющими зазубрины ядрами.
  • Голые ядра.

Образуются лимфоциты в костном мозге из лимфобластов и в процессе созревания проходят несколько этапов деления. Полное его созревание происходит в тимусе, лимфатических узлах и селезенке. Лимфоциты – это иммунные клетки, обеспечивающие иммунные реакции. Различают T-лимфоциты (80 % от общего числа) и B-лимфоциты (20 %). Первые прошли созревание в тимусе, вторые – в селезенке и лимфатических узлах. B-лимфоциты крупнее по размерам, чем T-лимфоциты. Продолжительность жизни этих лейкоцитов до 90 дней. Кровь для них – транспортная среда, посредством которой они попадают в ткани, где требуется их помощь.

Действия T-лимфоцитов и B-лимфоцитов различные, хотя и те, и другие принимают участие в формировании иммунных реакций.

Первые занимаются уничтожением вредных агентов, как правило, вирусов, путем фагоцитоза. Иммунные реакции, в которых они участвуют, являются неспецифической резистентностью, поскольку действия T-лимфоцитов одинаковы для всех вредных агентов.

По выполняемым действиям T-лимфоциты делятся на три вида:

  • T-хелперы. Их главная задача – помогать B-лимфоцитам, но в некоторых случаях они могут выполнять роль киллеров.
  • T-киллеры. Уничтожают вредных агентов: чужеродные, раковые и мутированные клетки, возбудителей инфекций.
  • T-супрессоры. Угнетают или блокируют слишком активные реакции B-лимфоцитов.

B-лимфоциты действуют иначе: против болезнетворных микроорганизмов они вырабатывают антитела – иммуноглобулины. Происходит это следующим образом: в ответ на действия вредных агентов они вступают во взаимодействие с моноцитами и T-лимфоцитами и превращаются в плазматические клетки, продуцирующие антитела, которые распознают соответствующие антигены и связывают их. Для каждого вида микробов эти белки специфические и способны уничтожить только определенный вид, поэтому резистентность, которую формируют эти лимфоциты, специфическая, и направлена она преимущественно против бактерий.

Эти клетки обеспечивают устойчивость организма к тем или иным вредным микроорганизмам, что принято называть иммунитетом. То есть, встретившись с вредоносным агентом, B-лимфоциты создают клетки памяти, которые эту устойчивость и формируют. Того же самого – формирования клеток памяти – добиваются прививками против инфекционных болезней. В этом случае вводится слабый микроб, чтобы человек легко перенес заболевание, и в результате образуются клетки памяти. Они могут остаться на всю жизнь или на какой-то определенный период, по истечении которого требуется прививку повторить.

Моноциты – самые крупные из лейкоцитов. Их количество составляет от 2 до 9 % от всех белых кровяных клеток. Их диаметр доходит до 20 мкм. Ядро моноцита крупное, занимает почти всю цитоплазму, может быть круглым, бобовидным, иметь форму гриба, бабочки. При окрашивании становится красно-фиолетовым. Цитоплазма дымчатая, синевато-дымчатая, реже синяя. Обычно она имеет азурофильную мелкую зернистость. В ней могут находиться вакуоли (пустоты), пигментные зерна, фагоцитированные клетки.

Моноциты производятся в костном мозге из монобластов. После созревания сразу оказываются в крови и находятся там до 4 суток. Часть этих лейкоцитов погибает, часть перемещается в ткани, где дозревают и превращаются в макрофагов. Это самые крупные клетки с большим круглым или овальным ядром, голубой цитоплазмой и большим числом вакуолей, из-за чего кажутся пенистыми. Продолжительность жизни макрофагов – несколько месяцев. Они могут постоянно находиться в одном месте (резидентные клетки) или перемещаться (блуждающие).

Моноциты образуют регуляторные молекулы и ферменты. Они способны формировать воспалительную реакцию, но также могут и тормозить ее. Кроме этого, они участвуют в процессе заживления ран, помогая ускорить его, способствуют восстановлению нервных волокон и костной ткани. Главная их функция – фагоцитоз. Моноциты уничтожают вредные бактерии и сдерживают размножение вирусов. Они способны выполнять команды, но не могут различать специфические антигены.

Эти клетки крови представляют собой маленькие безъядерные пластинки и могут иметь круглую или овальную форму. Во время активации, когда они находятся у поврежденной стенки сосуда, у них образуются выросты, поэтому они выглядят как звезды. В тромбоцитах есть микротрубочки, митохондрии, рибосомы, специфические гранулы, содержащие вещества, необходимые для свертывания крови. Эти клетки снабжены трехслойной мембраной.

Производятся тромбоциты в костном мозге, но совершенно другим путем, чем остальные клетки. Кровяные пластинки образуются из самых крупных клеток мозга – мегакариоцитов, которые, в свою очередь, образовались из мегакариобластов. У мегакариоцитов очень большая цитоплазма. В ней после созревания клетки появляются мембраны, разделяющие ее на фрагменты, которые начинают отделяться, и таким образом появляются тромбоциты. Они выходят из костного мозга в кровь, находятся в ней 8-10 дней, затем погибают в селезенке, легких, печени.

Кровяные пластинки могут иметь разные размеры:

  • самые мелкие – микроформы, их диаметр не превышает 1,5 мкм;
  • нормоформы достигают 2-4 мкм;
  • макроформы – 5 мкм;
  • мегалоформы – 6-10 мкм.

Тромбоциты выполняют очень важную функцию – они участвуют в формировании кровяного сгустка, который закрывает повреждение в сосуде, тем самым не давая крови вытекать. Кроме этого, они поддерживают целостность стенки сосуда, способствуют быстрейшему ее восстановлению после повреждения. Когда начинается кровотечение, тромбоциты прилипают к краю повреждения, пока отверстие не будет полностью закрыто. Налипшие пластинки начинают разрушаться и выделять ферменты, которые воздействуют на плазму крови . В результате образуются нерастворимые нити фибрина, плотно закрывающие место повреждения.

Заключение

Клетки крови имеют сложное строение, и каждый вид выполняет определенную работу: от транспортировки газов и веществ до выработки антител против чужеродных микроорганизмов. Их свойства и функции на сегодняшний день изучены не до конца. Для нормальной жизнедеятельности человека необходимо определенное количество каждого вида клеток. По их количественным и качественным изменениям медики имеют возможность заподозрить развитие патологий. Состав крови – это первое, что изучает врач при обращении пациента.



© dagexpo.ru, 2024
Стоматологический сайт