Случайные процессы и их характеристики. Понятие о случайной функции

21.09.2019

Лекция 13 Случайные процессы Основные понятия. Закон распределения и . Стационарные, эргодичес

Лекция 13
Случайные процессы
Основные понятия. Закон распределения и основные характеристики
случайных процессов. Стационарные, эргодические, элементарные случайные
процессы
(Ахметов С.К.)

Определения

Случайным процессом X(t) называется процесс, значение которого при
любом фиксированном t = ti является СВ X(ti)
Реализацией случайного процесса X(t) называется неслучайная функция
х(t), в которую превращается случайный процесс X(t) в результате опыта
Сечение случайного процесса (случайной функции) – это случайная
величина X(ti) при t = ti.

Случайный процесс X(t) называется процессом с дискретным
временем, если система, в которой он протекает, может менять
свои состояния только в моменты t1, t2, t3….. tn, число которых
конечно или счетно

временем, если переходы системы из состояния в состояние могут
происходить в любой момент времени t наблюдаемого периода
Случайный процесс X(t) называется процессом с непрерывным
состоянием, если его сечение в любой момент t представляет
собой не дискретную, а непрерывную величину
Случайный процесс X(t) называется процессом с дискретным
состоянием, если в любой момент времени t множество его
состояний конечно или счетно, то есть, если его сечение в любой
момент t характеризуется дискретной случайной величиной

Классификация случайных процессов

Таким образом, все СП можно разделить на 4 класса:
Процессы
временем;
Процессы
временем;
Процессы
временем;
Процессы
временем.
с дискретным состоянием и дискретным
с дискретным состоянием и непрерывным
с непрерывным состоянием и дискретным
с непрерывным состоянием и непрерывным
Большинство гидрологических процессов являются
процессами с непрерывным состоянием и непрерывным
временем. Но при вводе шага дискретности по времени они
превращаются из процесса с непрерывным временем в
процесс с дискретным временем. При этом процесс остается
непрерывным по состоянию

Основные характеристики случайных процессов

Сечение случайного процесса х(t) при любом фиксированном значении
аргумента t представляет собой СВ, которая имеет закон распределения
F (t, x) = P{X(t) < x}
Это одномерный закон распределения случайного процесса X(t)
Но, он не является исчерпывающей характеристикой СП, так как
характеризует свойства любого, но отдельно взятого сечения и не дает
представления о совместном распределении двух или более сечений.
Это видно на рисунке, где показаны два СП с разными вероятностными
структурами, но примерное одинаковыми распределениями СВ в каждом
сечении

Основные характеристики случайных процессов

Поэтому более полной характеристикой СП является двумерный закон
распределения
F(t1,t2,x1,x2) = P {X(t1) < x1, X(t2) < x2}
В общем случае исчерпывающей характеристикой СП является n мерный закон распределения
На практике вместо многомерных законов распределения используют
основные характеристики СП, такие как МО, дисперсия, начальные и
центральные моменты, но только для СП эти характеристики будут не
числами, а функциями
Математическое ожидание СП X(t) - неслучайная функция mx(t),
которая при любом значении аргумента t равна математическому
ожиданию соответствующего сечения СП:
где f1(x,t) – одномерная плотность распределения СП X(t)

Основные характеристики случайных процессов

МО СП представляет собой некоторую «среднею» функцию, вокруг
которой происходит разброс СП
Если из СП X(t) вычесть его МО, то получим центрированный СП:
X0(t) = X(t) – mx(t)
Дисперсией СП X(t) называется неслучайная функция СП X(t), которая
при любом значении аргумента t равна дисперсии соот – го сечения СП X(t)
СП X(t) = D = M{2}
Среднеквадратическим отклонением СП X(t) называется неслучайная
функция σx(t), которая равна корню квадратному из дисперсии СП:
σx(t) = σ = √Dx(t)

Основные характеристики случайных процессов

Для полной характеристики СП необходимо учитывать взаимосвязь
между различными сечениями. Поэтому, к комплексу перечисленных
характеристик нужно добавить также корреляционную функцию СП:
Корреляционной (или ковариационной) функцией СП X(t) называется
неслучайная функция Kx(t,t’), которая при каждой паре значений
аргументов t и t’ равна корреляции соответствующих сечений X(t) и X(t’)
Kx(t,t’) = M{ x }
или
Kx(t,t’) = M = M - mx(t) mx(t’)
Свойства корреляционной функции:
- при равенстве t = t’ корреляционная функция равна дисперсии СП, т. е.
Kx(t,t’) = Dx(t)
- корреляционная функция Kx(t,t’) симметрична относительно своих
аргументов, то есть
Kx(t,t’) = Kx(t’,t)

Основные характеристики случайных процессов

Нормированной корреляционной функцией rx(t,t’) СП X(t) называется
функция, полученная делением корреляционной функции на произведение
среднеквадратических отклонений σx(t) σx(t’)
rx(t,t’) = /(σx(t)σx(t’)) = /(√(Dx(t)Dx(t’))
Свойства нормированной корреляционной функции:
- при равенстве аргументов t и t’ нормированная корреляционная функция
равна единице rx(t,t’) = 1
-нормированная корреляционная функция симметрична относительно
своих аргументов, то есть rx(t,t’) = rx(t’,t)
- нормированная корреляционная функция по модулю не превышает
единицу rx(t,t’) ≤ 1

Основные характеристики случайных процессов

Скалярный СП – это когда речь идет об одном СП, как было до сих
пор.
Векторный СП – это когда рассматриваются 2 и более СП.
Допустим заданы расходы воды в нескольких створах во времени
В этом случае для характеристики СП нужно знать для каждого
скалярного процесса:
-МО
-корреляционную функцию
-взаимную корреляционную функцию
Взаимной корреляционной функцией Ri,j(t,t’) двух случайных
процессов X(t) и X(t’) называется неслучайная функция двух
аргументов t и t’, которая при каждой паре значений t и t’ равна
ковариации (линейной связи) двух сечений СП X(t) и X(t’)
Ri,j(t,t’) = M

Стационарные случайные процессы

Стационарные СП – это СП, у которых все вероятностные
характеристики не зависят от времени, то есть:
- mx = const
- Dx = const
Отличие стационарных и нестационарных СП показано на рисунке
а) стационарный СП
б) нестационарный СП по МО
с) нестационарный СП по дисперсии

Свойства корреляционной функции стационарного СП

Четность функции от своего аргумента, то есть kx(τ) = kx(-τ)
τ – сдвиг всех временных аргументов СП на одинаковую величину Θ
k – корреляционная функция СП при Kx(t1,t2) = kx(τ)
Значение корреляционной функции стационарного СП при нулевом
сдвиге τ равно дисперсии СП
Dx = Kx(t1,t2) = kx(t - t) = kx(0)
|kx(τ)| ≤ kx(0)
Помимо корреляционной функции используется нормированная
корреляционная функция стационарного СП, которую называют
автокорреляционной функцией
rx(τ) = kx(τ)/Dx = kx(τ)/kx(0)

Эргодические случайные процессы

Эргодическое свойство СП – это когда по одной достаточно
продолжительной реализации СП можно судить о СП в целом
Достаточным условием эргодичности СП является условие
lim kx(τ) = 0
при τ → ∞, т.е. при увеличении сдвига между сечениями
корреляционная функция затухает
На рисунке показаны а) неэргодический и б) эргодический СП
На практике (чаще всего) мы вынуждены принимать гипотезу о
стационарности и эргодичности гидрологических процессов, чтобы по
имеющемуся раду судить о всей генеральной совокупности

Элементарные случайные процессы

Элементарный СП (э.с.п) – это такая функция аргумента t, для
которой зависимость от t представлена обычной неслучайной функцией,
в которую в качестве аргумента входит одна или несколько обычных СВ
То есть каждая СВ порождает свою реализацию СП
К примеру, если в каком – то створе ветвь спада половодья является
устойчивой и описывается уравнением
Q(t) = Qнe-at
a - районный параметр (a>0)
Qн - расход воды в начальный момент времени t = t0
то процесс спада половодья можно считать э.с.п., где a - неслучайная
величина, Qн -случайная величина

1. ПОНЯТИЕ СЛУЧАЙНОЙ ФУНКЦИИ

До определенных пор теория вероятностей ограничивалась понятием случайных величин. Их использование позволяет выполнять статические расчеты, учитывающие случайные факторы. Однако механические системы подвергаются также разнообразным динамическим, то есть изменяющимся во времени воздействиям случайного характера. К ним относятся, в частности, вибрационные и ударные воздействия при движении транспортных средств, аэродинамические силы, вызванные атмосферной турбулентностью, сейсмические силы, нагрузки, обусловленные случайными отклонениями от номинальных режимов работы машин.

Случайные динамические явления изучаются при анализе тенденций в экономике (например, изменения курса акций или валюты). Работа в условиях случайных возмущений характерна для систем управления разнообразными динамическими объектами.

Для анализа подобных явлений используется понятие случайной функции . Случайной функцией X (t ) называется такая функция аргумента t , значение которой при любом t является случайной величиной. Если аргумент принимает дискретные значения t 1 , t 2 , …, t k то говорят о случайной последовательности X 1 , X 2 ,…, X k , где X i = X (t i ).

Во многих практических задачах неслучайный аргумент t имеет смысл времени, при этом случайную функцию называют случайным процессом , а случайную последовательность – временным рядом . Вместе с тем, аргумент случайной функции может иметь и иной смысл. Например, речь может идти о рельефе местности Z (x , y ), где аргументами являются координаты местности x и y , а роль случайной функции играет высота над уровнем моря z. В дальнейшем, для определенности, имея в виду приложения случайных функций к исследованию динамических систем, будем говорить о случайных процессах.

Предположим, что при исследовании случайного процесса X (t ) произведено n независимых опытов, и получены реализации

представляющие собой n детерминированных функций. Соответствующее семейство кривых в определенной мере характеризует свойства случайного процесса. Так, на рис.1.1а представлены реализации случайного процесса с постоянными средним уровнем и разбросом значений возле среднего, на рис. 1.1б – реализации случайного процесса с постоянным средним и изменяющимся разбросом, на рис. 1.1в – реализации случайного процесса с изменяющимися во времени средним и разбросом.



Рис.1.1. Типичные реализации случайных процессов

На рис. 1.2 показаны реализации двух случайных процессов, имеющих одинаковый средний уровень и разброс, но различающихся плавностью. Реализации случайного процесса на рис. 1.2а имеют высокочастотный характер, а на рис. 1.2б – низкочастотный.

Рис. 1.2. Высокочастотный и низкочастотный случайные процессы

Таким образом, X (t ) можно рассматривать и как совокупность всевозможных реализаций, которая подчиняется определенным вероятностным закономерностям. Как и для случайных величин, исчерпывающую характеристику этих закономерностей дают функции или плотности распределения. Случайный процесс считается заданным, если заданы все многомерные законы распределения случайных величин X (t i ), X (t 2 ), …, X (t n ) для любых значений t 1 , t 2 , …, t n из области изменения аргумента t . Речь идет, в частности, об одномерной плотности распределения , двумерной плотности распределения и т.д. .

Для упрощения анализа в большинстве случаев ограничиваются моментными характеристиками, причем чаще всего используют моменты первого и второго порядков. Для характеристики среднего уровня случайного процесса служит математическое ожидание

. (1.1)

Для характеристики амплитуды отклонений случайного процесса от среднего уровня служит дисперсия

Для характеристики изменчивости (плавности) случайного процесса служит корреляционная (автокорреляционная) функция

(1.3)

Как следует из (1.3), корреляционная функция представляет собой ковариацию случайных величин X (t 1) и X (t 2). Ковариация же, как известно из курса теории вероятностей, характеризует взаимозависимость между X (t 1) и X (t 2).

В рамках корреляционной теории случайных функций, которая оперирует лишь моментами первого и второго порядков, могут быть решены многие технические задачи. В частности, могут быть определены априорная, а также условная вероятности выхода случайного процесса за пределы заданных границ. Вместе с тем, некоторые важные в практическом плане задачи не решаются средствами корреляционной теории и требуют использования многомерных плотностей распределения. К таким задачам относится, например, расчет среднего времени нахождения случайного процесса выше или ниже заданной границы.

2. ТИПЫ СЛУЧАЙНЫХ ПРОЦЕССОВ

2.1. Квазидетерминированные случайные процессы

Во всех предыдущих параграфах этой главы предполагалось, что управляющие и возмущающие воздействия являются определенными функциями времени. Однако для систем автоматического управления, работающих в реальных условиях, характерно, что эти воздействия носят случайный характер и принципиально непредсказуемы.

Рассмотрим, например, работу следящей системы, управляющей антенной радиолокатора. Для этой системы управляющим воздействием является положение цели, а возмущающими воздействиями можно считать ветровые нагрузки на антенну, отклонения луча от направления на цель из-за рефракции в атмосфере, собственные шумы в усилительном тракте системы, помехи от источников питания и т. п. Все эти процессы обусловлены множеством взаимодействующих причин и носят настолько сложный характер, что их нельзя представить какой-либо заданной функцией времени. То же самое можно сказать и относительно управляющего воздействия. На практике его нельзя считать типовым, например ступенчатым, линейно-растущим, синусоидальным или каким-либо регулярным сигналом. Реально цель маневрирует, поэтому ее положение в любой последующий момент не может быть точно предсказано. На этом маневрирование накладывается постоянное блуждание отражающей точки по корпусу цели.

Таким образом, сигналы управления и возмущения в реальных условиях являются случайными процессами. Случайным, или стохастическим процессом

называют такую функцию времени которая при каждом значении аргумента является случайной величиной. Если вместо времени употребляют другую независимую переменную, то используют термин случайная функция. При многократном воспроизведении условий протекания случайного процесса последний принимает каждый раз различные конкретные значения. Эти значения как функции времени называют реализациями случайного процесса. Типичный вид нескольких реализаций стохастического процесса ошибки угловой координаты цели, отслеживаемой радиолокационной станцией, представлен на рис. XIII. 14.

Математическое описание случайного процесса. При фиксированном значении аргумента случайный процесс является случайной величиной, полное описание которой дает функция распределения

т. е. вероятность того, что в данный момент случайная величина примет значение, меньшее Как известно из теории вероятностей, вместо функции распределения часто удобнее пользоваться плотностью вероятности, являющейся ее производной (в обобщенном смысле):

Если зафиксировать два момента времени то значения случайного процесса образуют систему двух случайных величин или двумерный случайный вектор. Для его полного описания требуется знать двумерную функцию распределения

Рис. ХIII.14. Стохастический процесс ошибки измерения угловой координаты цели, отслеживаемой радиолокационной станцией

или двумерную плотность

которые зависят от как от параметров.

Для более подробного описания случайного процесса в произвольные моменты времени аналогично вводятся функции распределения и плотности более высоких порядков. Таким образом, полное статистическое описание случайной функции (процесса) даетесконечная последовательность ее функций распределения:

или последовательность их производных

Каждый из членов этих последовательностей имеет обычные свойства функций распределения или соответственно плотностей. Кроме того, каждый следующий член последовательности определяет все предыдущие. Например, если положить то

аналогичные формулы имеем и для любых других моментов времени.

Это условие называют условием согласованности семейства функций распределения. Справедливо также условие симметрии:

В общем случае плотности или функции распределения более высокого порядка не определяются плотностями или функциями более низких порядков.

Однако часто полезно рассматривать так называемый абсолютно случайный процесс, значения которого независимы в совокупности для любых Для такого процесса плотность распределения любого порядка определяется через одномерную:

Такой процесс является математическим упрощением, поскольку при достаточно близких значениях значения любого реального процесса близки, и, следовательно, зависимы. Другим крайним случаем является вырожденный, или сингулярный процесс, определяемый одной или несколькими случайными величинами; например,

где - случайная величина; - известные константы. Такой процесс становится полностью известным, если можно измерить его в какой-либо момент времени. В более общем случае сингулярный случайный процесс характеризуется совокупностью случайных величин например,

где - обычные (детерминированные функции времени).

Рис. XIII.15. Возможные реализации двух случайных функций: а - с высокочастотными составляющими; б - с низкочастотными составляющими

Моментные функции. В практических задачах обычно пользуются более простыми характеристиками случайных процессов - моментными функциями. Моментом первого порядка или математическим ожиданием процесса называют выражение

Если эту функцию рассматривать в зависимости от то около среднего значения функции будут группироваться все реализации случайного процесса (рис. XIII.15).

Математические ожидания более высоких степеней носятназвания начальных моментов порядка

Случайная функция имеет нулевое среднее значение и называется центрированной. Центральным моментом -порядка процесса называется математическое ожидание степени центрированного процесса

Меру рассеяния значений случайного процесса относительно математического ожидания его определяет момент второго порядка, называемый чаще дисперсией:

Однако характеристики случайного процесса, основанные на первой плотности не отражают изменения реализаций во времени. Например, два процесса с одной и той же первой плотностью (рис. XIII. 15, а и б) различаются по скорости изменения реализаций, т. е. по степени взаимосвязи между двумя значениями, принимаемыми в одной реализации в различные моменты времени. Для описания временной внутренней структуры случайных процессов используют корреляционную функцию

Эту функцию часто называют также автокорреляционной, или ковариацией, она играет основную роль в теории случайных процессов.

Легко показать, что корреляционная функция симметрична относительно своих аргументов а при ее значение равно дисперсии случайного процесса . В самом деле,

Для характеристики точности систем автоматического регулирования удобно использовать нецентрированную корреляционную функцию:

называемую также вторым начальным моментом процесса.

Связь между устанавливается следующими преобразованиями:

При средний квадрат процесса будет

В системах автоматического регулирования часто действует несколько случайных возмущающих или управляющих сигналов, независимых или взаимосвязанных. Мерой взаимосвязи двух случайных процессов служит взаимная корреляционная функция

где - совместная плотность вероятности для независимых процессов

Для взаимной корреляционной функции справедливо равенство

Теория случайных процессов, в которой используются лишь моменты первого и второго порядков называется корреляционной теорией. Она была создана основополагающими работами А. Н. Колмогорова , Д. Я. Хинчина , Н. Вииера. Большой вклад в ее развитие внесли советские ученые В. С. Пугачев , В. В. Солодовников и др.

Стационарные случайные процессы. При рассмотрении различных случайных процессов выделяют группу процессов, статистические свойства которых не изменяются при сдвиге во времени. Такие процессы называются стационарными. Рассматривая множество реализаций случайного процесса, приведенного на рис. XIII. 14, можно предположить, что в данном случае начало отсчета времени может быть выбрано произвольно, т. е. налицо стационарный процесс. Напротив, на рис. XIII. 15, очевидно, имеем примеры нестационарных процессов.

Исследование систем, случайные процессы в которых стационарны, значительно проще, чем исследование систем с нестационарными процессами. Однако процессы во многих системах регулирования можно приближенно рассматривать как стационарные. Это имеет большое прикладное значение в теории стационарных случайных процессов.

По определению стационарного случайного процесса его математическое ожидание должно быть постоянно при сдвиге аргумента на любой тервал Т:

а корреляционная функция удовлетворяет соотношению

Полагая находим, что корреляционная функция стационарного процесса зависит только от разности отсчетов

Эргодические свойства случайных процессов. Если мы имеем совокупность, или, как говорят, ансамбль реализаций, то математическое ожидание и корреляционная функция получаются усреднением по ансамблю реализаций случайного процесса, т. е. «поперек» процесса в одном или соответственно двух его сечениях. Интересно рассмотреть также результаты усреднения реализаций стационарного процесса по времени вдоль оси на интервале , определив эту операцию естественным образом:

Эта величина различна для разных реализаций случайного процесса и сама является случайной. Можно показать, что ее математическое ожидание для стационарного процесса равно . В то же время дисперсия этой величины, как показывают непосредственные расчеты,

Рис. XIII.16. Структурная схема коррелятора

Условия эргодичности процесса по , сформулированные В. С. Пугачевым , содержат более высокие моменты случайного процесса и здесь не приводятся.

Свойства эргодичности случайных процессов позволяют заменить усреднение по множеству реализаций, практически редко осуществимое, усреднением по времени, взятым по одной реализации, когда Т велико..

Не все стационарные процессы имеют эргодические свойства. Например, процесс, все реализации которого есть случайные величины, не изменяющиеся во времени, как легко убедиться, неэргодичен. Отсюда следует, что физический смысл эргодичности заключается в «хорошей перемешиваемости» реализаций случайного процесса. Поскольку это имеет место практически во всех приложениях, в дальнейшем будем предполагать рассматриваемые процессы эргодическими.

Для таких процессов можно экспериментально определить среднее значение и корреляционную функцию процесса с помощью специальных приборов - корреляторов. Принцип действия корреляторов ясен из рис. XIII.16.

Подавая на вход коррелятора единичный сигнал, на его выходе при достаточно большом времени интегрирования Т будем иметь среднее значение процесса х, приблизительно совпадающее с его математическим ожиданием Если же то в результате будем иметь второй начальный момент по которому легко определить и корреляционную функцию.

Комплексной слуюйной функцией называютфункцию

Z (t )=X (t )+Y (t )i ,

где Х (t ) и Y (t )-действительные случайные функции действительного аргумента t .

Обобщим определения математического ожидания и дисперсии на комплексные случайные функции так, чтобы, в частности, при Y=0 эти характеристики совпали с ранее введенными характеристиками для действительных случайных функций, т. е. чтобы выполнялись требования:

m z (t )=m x (t )(*)

D z (t )=D x (t )(**)

Математическим , ожиданием , комплексной случайной функции Z (t )=Х (t )+Y (t )i называют комплексную функцию (неслучайную)

m z (t )=m x (t )+m y (t )i .

В частности, при Y=0 получим т z (t )=т x (t ),т.е. требование (*) выполняется.

Дисперсией комплексной случайной функции Z (t ) называют математическое ожидание квадрата модуля центрированной функции Z (t ):

D z (t )=M [| (t )| 2 ].

В частности, при Y==0 получим D z (t )= M [| (t )|] 2 =D x (t ), т. е. требование (**) выполняется.

Учитывая, что математическое ожидание суммы равно сумме математических ожиданий слагаемых, имеем

D z (t )=M [| (t )| 2 ]= M {[ (t )] 2 + [ (t ) 2 ]}= M [ (t )] 2 +M [ (t ) 2 ]= D x (t )+D y (t ).

Итак,дисперсия комплексной случайной функции равна сумме дисперсий ее действительной и мнимой частей:

D z (t )=D x (t )+D y (t ).

Известно, что корреляционная функция действительной случайной функции Х (t ) при разных значениях аргументов равна дисперсии D x (t ). Обобщим определение корреляционной функции на комплексные случайные функции Z (t ) так, чтобы при равных значениях аргументов t 1 =t 2 =t корреляционная функция K z (t , t ) была равна дисперсии D z (t ), т. е. чтобы выполнялось требование

K z (t , t )=D z (t ). (***)

Корреляционной функцией комплексной случайной функции Z (t ) называют корреляционный момент сечений (t 1)и (t 2)

K z (t 1 , t 2)= M .

В частности, при равных значениях аргументов

K z (t , t )= M =M [| | 2 ]= D z (t ).

т. е. требование (***) выполняется.

Если действительные случайные функции Х (t ) и Y (t )коррелированы, то

K z (t 1 , t 2)= K x (t 1 , t 2)+K y (t 1 , t 2)+ [R xy (t 2 ,t 1)]+ [ R xy (t 1 ,t 1)].

если Х (t ) и Y (t ) не коррелированы, то

K z (t 1 , t 2)= K x (t 1 , t 2)+K y (t 1 , t 2).

Обобщим определение взаимной корреляционной функции на комплексные случайные функции Z 1 (t )=Х 1 (t )+ Y 1 (t )i и Z 2 (t )=Х 2 (t )+ Y 2 (t )i так, чтобы, в частности, при Y 1 =Y 2 = 0 выполнялось требование

Взаимной корреляционной функцией двух комплексных случайных функций называют функцию (неслучайную)

В частности, при Y 1 =Y 2 =0 получим

т. е. требование (****) выполняется.

Взаимная корреляционная функция двух комплексных случайных функций выражается через взаимные корреляционные функции их действительных и мнимых частей следующей формулой:

Задачи

1. Найти математическое ожидание случайных функций:

a) X (t )=Ut 2 , где U- случайная величина, причем M (U )=5 ,

б ) Х (t )=U cos2t+Vt , где U и V- случайные величины, причем M (U )=3 , M (V )=4 .

Отв. а) m x (t)=5t 2 ; б) т x (t)=3 cos2t+4t.

2. К х (t 1 ,t 2) случайной функции X (t ). Найти корреляционные функции случайных функций:

a) Y (t )=X (t )+t; б) Y (t )=(t +1)X (t ); в) Y (t )=4X (t ).

Отв. a) К y (t 1 ,t 2)= К х (t 1 ,t 2); б) К y (t 1 ,t 2)=(t 1 +1)(t 2 +1) К х (t 1 ,t 2); в) К y (t 1 ,t 2)=16 К x (t 1 ,t 2)=.

3. Задана дисперсия D x (t ) случайной функции Х (t ). Найти дисперсию случайных функций: a) Y (t )(t )+e t б ) Y (t )=tX (t ).

Отв . a) D y (t )=D x (t ); б) D y (t )=t 2 D x (t ).

4. Найти: а) математическое ожидание; б) корреляционную функцию; в) дисперсию случайной функции Х (t )=Usin 2t , где U- случайная величина, причем M (U )=3 , D (U )=6 .

Отв . а)m x (t ) =3sin 2t; б) К х (t 1 ,t 2)= 6sin 2t 1 sin 2t 2 ; в) D x (t )=6sin 2 2t .

5. Найти нормированную корреляционную функцию случайной функции X (t ), зная ее корреляционную функцию К х (t 1 ,t 2)=3cos (t 2 -t 1).

Отв. ρ x (t 1 ,t 2)=cos(t 2 -t 1).

6. Найти: а) взаимную корреляционную функцию; б) нормированную взаимную корреляционную функцию двух случайных функций X (t )=(t +1)U , и Y(t )= (t 2 + 1)U , где U- случайная величина, причем D (U )=7.

Отв . a) R xy (t 1 ,t 2)=7(t 1 +l)(t 2 2 +l); б) ρ xy (t 1 ,t 2)=1.

7. Заданы случайные функции Х (t )= (t- 1)U и Y (t )=t 2 U , где U и V - некоррелированные случайные величины, причем M (U )=2, M (V )= 3, D (U )=4 , D (V )=5 . Найти: а) математическое ожидание; б) корреляционную функцию; в) дисперсию суммы Z (t )=X (t )+Y (t ).

Указание. Убедиться, что взаимная корреляционная функция заданных случайных функций равна нулю и, следовательно, Х (t ) и Y (t ) не коррелированы.

Отв . а) m z (t )=2(t - 1)+3t 2 ; б) К z (t 1 ,t 2)=4(t 1 - l)(t 2 - 1)+6t 1 2 t 2 2 ; в) D z (t )=4(t - 1) 2 +6t 4 .

8. Задано математическое ожидание m x (t )=t 2 +1 случайной функции Х (t ). Найти математическое ожидание ее производной.

9. Задано математическое ожидание m x (t )=t 2 +3 случайной функции Х (t ). Найти математическое ожидание случайной функции Y (t )=tХ" (t )+t 3 .

Отв. m y (t)=t 2 (t+2).

10. Задана корреляционная функция К х (t 1 ,t 2)= случайной функции X (t ). Найти корреляционную функцию ее производной.

11. Задана корреляционная функция К х (t 1 ,t 2)= случайной функции Х (t ). Найти взаимные корреляционные функции.

Пусть над случайной функцией X(t) проведено п независимых опытов (наблюдений) и в результате получено п реализаций случайной функции (рис. 15.4.1).

Рис. 15.4.1

Требуется найти оценки для характеристик случайной функции: ее математического ожидания m x (t), дисперсии D x (t) и корреляционной функции K x (t,t).

Для этого рассмотрим ряд сечений случайной функции для моментов времени

и зарегистрируем значения, принятые функцией X(t) в эти моменты времени. Каждому из моментов /, t 2 , ..., t m будет соответствовать п значений случайной функции.

Значения /, I, t m обычно задаются равноотстоящими; величина интервала между соседними значениями выбирается в зависимости от вида экспериментальных кривых так, чтобы по выбранным точкам можно было восстановить основной ход кривых. Часто бывает так, что интервал между соседними значениями t задается независимо от задач обработки частотой работы регистрирующего прибора (например, темпом киноаппарата).

Зарегистрированные значения X(t) заносятся в таблицу, каждая строка которой соответствует определенной реализации, а число столбцов равно числу опорных значений аргумента (табл. 15.4.1).

Таблица 15.4.1

X 2 (?2)

x 2 U k )

X 2 {ti)

x 2 (J m)

%i (tm)

X„{t 2)

X„(tk)

X„ (?,)

В таблице 15.4.1 в /-Й строке помещены значения случайной функции, наблюденной в /-й реализации (/-м опыте) при значениях аргумента, / 2 , ..., t m . Символом Xj( 4) обозначено значение, соответствующее /-й реализации в момент t k .

Полученный материал представляет собой не что иное, как результаты п опытов над системой т случайных величин

и обрабатывается совершенно аналогично (см. подраздел 14.3). Прежде всего находятся оценки для математических ожиданий по формуле

затем - для дисперсий

и, наконец, для корреляционных моментов

В ряде случаев бывает удобно при вычислении оценок для дисперсий и корреляционных моментов воспользоваться связью между начальными и центральными моментами и вычислять их по формулам:

При пользовании последними вариантами формул, чтобы избежать разности близких чисел, рекомендуется заранее перенести начало отсчета по оси ординат поближе к математическому ожиданию.

После того, как эти характеристики вычислены, можно, пользуясь рядом значений m x (t {),m x (t 2), m x (t m), построить зависимость m x (t) (рис. 15.4.1). Аналогично строится зависимость О х (/). Функция двух аргументов K x (t,t") воспроизводится по ее значениям в прямоугольной сетке точек. В случае надобности все эти функции аппроксимируются какими-либо аналитическими выражениями.

15.5. Методы определения характеристик преобразованных случайных функций по характеристикам исходных случайных функций

В предыдущем подразделе мы познакомились с методом непосредственного определения характеристик случайной функции из опыта. Такой метод применяется далеко не всегда. Во-первых, постановка специальных опытов, предназначенных для исследования интересующих нас случайных функций, может оказаться весьма сложной и дорогостоящей.

Во-вторых, часто нам требуется исследовать случайные функции, характеризующие ошибки приборов, прицельных приспособлений, систем управления и т.д., еще не существующих, а только проектируемых или разрабатываемых. При этом обычно исследование этих ошибок и предпринимается именно для того, чтобы рационально выбрать конструктивные параметры системы так, чтобы они приводили к минимальным ошибкам.

Ясно, что при этом непосредственное исследование случайных функций, характеризующих работу системы, нецелесообразно, а в ряде случаев вообще невозможно. В таких случаях в качестве основных рабочих методов применяются не прямые, а косвенные методы исследования случайных функций. Подобными косвенными методами мы уже пользовались при исследовании случайных величин: ряд глав нашего курса -10,11,12 - был посвящен нахождению законов распределения и числовых характеристик случайных величин косвенно, по законам распределения и числовым характеристикам других случайных величин, с ними связанных. Пользуясь совершенно аналогичными методами, можно определять характеристики случайных функций косвенно, по характеристикам других случайных функций, с ними связанных. Развитие таких косвенных методов и составляет главное содержание прикладной теории случайных функций.

Задача косвенного исследования случайных функций на практике обычно возникает в следующей форме.


Рис. 15.5.1

Имеется некоторая динамическая система А; под «динамической системой» мы понимаем любой прибор, прицел, счетно-решающий механизм, систему автоматического управления и т.п. Эта система может быть механической, электрической или содержать любые другие элементы. Работу системы будем представлять себе следующим образом: на вход системы непрерывно поступают какие-то входные данные; система перерабатывает их и непрерывно выдает некоторый результат. Условимся называть поступающие на вход системы данные «воздействием», а выдаваемый результат «реакцией» системы на это воздействие. В качестве воздействий могут фигурировать изменяющиеся напряжения, угловые и линейные координаты каких-либо объектов, сигналы или команды, подаваемые на систему управления, и т.п. Равным образом и реакция системы может вырабатываться в той или иной форме: в виде напряжений, угловых перемещений и т.д. Например, для прицела воздушной стрельбы воздействием является угловая координата движущейся цели, непрерывно измеряемая в процессе слежения, реакцией - угол упреждения. Рассмотрим самый простой случай: когда на вход системы А подается только одно воздействие, представляющее собой функцию времени х(/); реакция системы на это воздействие есть другая функция времени у (/). Схема работы системы А условно изображена на рис. 15.5.1. Будем говорить, что система А осуществляет над входным воздействием некоторое преобразование, в результате которого функция x(f) преобразуется в другую функцию у (/). Запишем это преобразование символически в виде:

Преобразование А может быть любого вида и любой сложности. В наиболее простых случаях это, например, умножение на заданный множитель (усилители, множительные механизмы), дифференцирование или интегрирование (дифференцирующие или интегрирующие устройства). Однако на практике системы, осуществляющие в чистом виде такие простейшие преобразования, почти не встречаются; как правило, работа системы описывается дифференциальными уравнениями, и преобразование А сводится к решению дифференциального уравнения, связывающего воздействие х (/) с реакцией у (I).

При исследовании динамической системы в первую очередь решается основная задача: по заданному воздействию x(t) определить реакцию системы y(t). Однако для полного исследования системы и оценки ее технических качеств такой элементарный подход является недостаточным. В действительности воздействие х(/) никогда не поступает на вход системы в чистом виде; оно всегда искажено некоторыми случайными ошибками (возмущениями), в результате которых на систему фактически воздействует не заданная функция x(t), а случайная функция X(t) соответственно этому система вырабатывает в качестве реакции случайную функцию Y(t), также отличающуюся от теоретической реакции у (/) (рис. 15.5.2).


Рис. 15.5.2

Естественно возникает вопрос: насколько велики будут случайные искажения реакции системы при наличии случайных возмущений на ее входе? И далее: как следует выбрать параметры системы для того, чтобы эти искажения были минимальными?

Решение подобных задач не может быть получено методами классической теории вероятностей; единственным подходящим математическим аппаратом для этой цели является аппарат теории случайных функций.

Из двух поставленных выше задач, естественно, более простой является первая - прямая - задача. Сформулируем ее следующим образом.

На вход динамической системы А поступает случайная функция Х(1 ); система подвергает ее известному преобразованию, в результате чего на выходе системы появляется случайная функция:

Известны характеристики случайной функции X(t): математическое ожидание и корреляционная функция. Требуется найти аналогичные характеристики случайной функции Y(t). Короче, по заданным характеристикам случайной функции на входе динамической системы найти характеристики случайной функции на выходе.

Поставленная задача может быть решена совершенно точно в одном частном, но весьма важном для практики случае: когда преобразование А принадлежит к классу так называемых линейных преобразований и соответственно система А принадлежит к классу линейных систем.



© dagexpo.ru, 2024
Стоматологический сайт