Солнечная радиация: географический словарь. Суммарная солнечная радиация. Солнечная радиация: виды

12.10.2019

Земля получает от Солнца 1,36*10в24 кал тепла в год. По сравнению с этим количеством энергии остальной приход лучистой энергии на поверхность Земли ничтожно мал. Так, лучистая энергия звезд составляет одну стомиллионную долю солнечной энергии, космическое излучение - две миллиардные доли, внутреннее тепло Земли у ее поверхности равно одной пятитысячной доли солнечного тепла.
Излучение Солнца - солнечная радиация - является основным источником энергии почти всех процессов, происходящих в атмосфере, гидросфере и в верхних слоях литосферы.
За единицу измерения интенсивности солнечной радиации принимают количество калорий тепла, поглощенное 1 см2 абсолютно черной поверхности, перпендикулярной направлению солнечных лучей, за 1 минуту (кал/см2*мин).

Поток лучистой энергии Солнца, достигающий земной атмосферы, отличается большим постоянством. Его интенсивность называют солнечной постоянной (Io) и принимают в среднем равной 1,88 ккал/см2 мин.
Величина солнечной постоянной колеблется в зависимости от расстояния Земли от Солнца и от солнечной активности. Колебания ее в течение года составляют 3,4-3,5%.
Если бы солнечные лучи всюду падали на земную поверхность отвесно, то при отсутствии атмосферы и при солнечной постоянной 1,88 кал/см2*мин каждый квадратный сантиметр ее получал бы в год 1000 ккал. Благодаря тому что Земля шарообразна, это количество уменьшается в 4 раза, и 1 кв. см получает в среднем 250 ккал в год.
Количество солнечной радиации, получаемое поверхностью, зависит от угла падения лучей.
Максимальное количество радиации получает поверхность, перпендикулярная направлению солнечных лучей, потому что в этом случае вся энергия распределяется на площадку с сечением, равным сечению пучка лучей - а. При наклонном падении того же пучка лучей энергия распределяется на большую площадь (сечение в) и единица поверхности получает меньшее ее количество. Чем меньше угол падения лучей, тем меньше интенсивность солнечной радиации.
Зависимость интенсивности солнечной радиации от угла падения лучей выражается формулой:

I1 = I0 * sin h,


где I0 - интенсивность солнечной радиации при отвесном падении лучей. За пределами атмосферы - солнечная постоянная;
I1 - интенсивность солнечной радиации при падении солнечных лучей под углом h.
I1 во столько раз меньше I0, во сколько раз сечение а меньше сечения в.
На рисунке 27 видно, что a/b = sin А.
Угол падения солнечных лучей (высота Солнца) бывает равен 90° только на широтах от 23°27" с. до 23°27" ю. (т. е. между тропиками). На остальных широтах он всегда меньше 90° (табл. 8). Соответственно уменьшению угла падения лучей должна уменьшаться и интенсивность солнечной радиации, поступающей на поверхность на разных широтах. Так как в течение года и в течение суток высота Солнца не остается постоянной, количество солнечного тепла, получаемого поверхностью, непрерывно изменяется.

Количество солнечной радиации, полученное поверхностью, находится в прямой зависимости от продолжительности освещения ее солнечными лучами.

В экваториальной зоне вне атмосферы количество солнечного тепла в течение года не испытывает больших колебаний, тогда как в высоких широтах эти колебания очень велики (см. табл. 9). В зимний период различия в приходе солнечного тепла между высокими и низкими широтами особенно значительны. В летний период, в условиях непрерывного освещения, полярные районы получают максимальное на Земле количество солнечного тепла за сутки. В день летнего солнцестояния в северном полушарии оно на 36% превышает суточные суммы тепла на экваторе. Ho так как продолжительность дня на экваторе не 24 часа (как в это время на полюсе), а 12 часов, количество солнечной радиации на единицу времени на экваторе остается наибольшим. Летний максимум суточной суммы солнечного тепла, наблюдаемый около 40-50° широты, связан со сравнительно большой продолжительностью дня (большей, чем в это время на 10-20° широты) при значительной высоте Солнца. Различия в количестве тепла, получаемого экваториальными и полярными районами, летом меньше, чем зимой.
Южное полушарие летом получает больше тепла, чем северное, зимой - наоборот (влияет изменение расстояния Земли от Солнца). И если бы поверхность обоих полушарий была совершенно однородной, годовые амплитуды колебания температуры в южном полушарии были бы больше, чем в северном.
Солнечная радиация в атмосфере претерпевает количественные и качественные изменения.
Даже идеальная, сухая и чистая, атмосфера поглощает и рассеивает лучи, уменьшая интенсивность солнечной радиации. Ослабляющее влияние реальной атмосферы, содержащей водяные пары и твердые примеси, на солнечную радиацию значительно больше, чем идеальной. Атмосфера (кислород, озон, углекислый газ, пыль и водяной пар) поглощает главным образом ультрафиолетовые и инфракрасные лучи. Поглощенная атмосферой лучистая энергия Солнца переходит в другие виды энергии: тепловую, химическую и др. В общем поглощение ослабляет солнечную радиацию на 17-25%.
Молекулами газов атмосферы рассеиваются лучи с относительно короткими волнами - фиолетовые, синие. Именно этим объясняется голубой цвет неба. Примесями одинаково рассеиваются лучи с волнами различной длины. Поэтому при значительном их содержании небо приобретает белесоватый оттенок.
Благодаря рассеянию и отражению солнечных лучей атмосферой наблюдается дневное освещение в пасмурные дни, видны предметы в тени, возникает явление сумерек.
Чем длиннее путь луча в атмосфере, тем большую толщу ее он должен пройти и тем значительнее ослабляется солнечная радиация. Поэтому с поднятием влияние атмосферы на радиацию уменьшается. Длина пути солнечных лучей в атмосфере зависит от высоты Солнца. Если принять за единицу длину пути солнечного луча в атмосфере при высоте Солнца 90° (m), соотношение между высотой Солнца и длиной пути луча в атмосфере будет таким, как показано в табл. 10.

Общее ослабление радиации в атмосфере при любой высоте Солнца можно выразить формулой Буге: Im= I0*pm, где Im - измененная в атмосфере интенсивность солнечной радиации у земной поверхности; I0 - солнечная постоянная; m - путь луча в атмосфере; при высоте Солнца 90° он равен 1 (масса атмосферы), р - коэффициент прозрачности (дробное число, показывающее, какая доля радиации достигает поверхности при m=1).
При высоте Солнца 90°, при m=1, интенсивность солнечной радиации у земной поверхности I1 в р раз меньше, чем Io, т. е. I1=Io*p.
Если высота Солнца меньше 90°, то т всегда больше 1. Путь солнечного луча может состоять из кескольких отрезков, каждый из которых равен 1. Интенсивность солнечной радиации на границе между первым (aa1) и вторым (а1a2) отрезками I1 равна, очевидно, Io*р, интенсивность радиации после прохождения второго отрезка I2=I1*p=I0 р*р=I0 р2; I3=I0p3 к т. д.


Прозрачность атмосферы непостоянна и неодинакова в различных условиях. Отношение прозрачности реальной атмосферы к прозрачности идеальной атмосферы - фактор мутности - всегда больше единицы. Он зависит от содержания в воздухе водяного пара и пыли. С увеличением географической широты фактор мутности уменьшайся: на широтах от 0 до 20° с. ш. он равен в среднем 4,6, на широтах от 40 до 50° с. ш. - 3,5, на широтах от 50 до 60° с. ш. - 2,8 и на широтах от 60 до 80° с. ш. - 2,0. В умеренных широтах фактор мутности зимой меньше, чем летом, утром меньше, чем днем. С высотой он убывает. Чем больше фактор мутности, тем больше ослабление солнечной радиации.
Различают солнечную радиацию прямую, рассеянную и суммарную.
Часть солнечной радиации, которая проникает через атмосферу к земной поверхности, представляет собой прямую радиацию. Часть радиации, рассеивающаяся атмосферой, превращается в рассеянную радиацию. Вся солнечная радиация, поступающая на земную поверхность, прямая и рассеянная, называется суммарной радиацией.
Соотношение между прямой и рассеянной радиацией изменяется в значительных пределах в зависимости от облачности, запыленности атмосферы, а также от высоты Солнца. При ясном небе доля рассеянной радиации не превышает 0,1%, при облачном небе рассеянная радиация может быть больше прямой.
При малой высоте Солнца суммарная радиация почти полностью состоит из рассеянной. При высоте Солнца 50° и ясном небе доля рассеянной радиации не превышает 10-20%.
Карты средних годовых и месячных величин суммарной радиации позволяют заметить основные закономерности в ее географическом распределении. Годовые величины суммарной радиации распределяются в основном зонально. Наибольшее на Земле годовое количество суммарной радиации получает поверхность в тропических внутриконтинентальных пустынях (Восточная Сахара и центральная часть Аравии). Заметное снижение суммарной радиации на экваторе вызывается высокой влажностью воздуха и большой облачностью. В Арктике суммарная радиация составляет 60-70 ккал/см2 в год; в Антарктике вследствие частой повторяемости ясных дней и большей прозрачности атмосферы она несколько больше.

В июне наибольшие суммы радиации получает северное полушарие, и особенно внутриконтинентальные тропические и субтропические области. Суммы солнечной радиации, получаемые поверхностью в умеренных и полярных широтах северного полушария, отличаются мало вследствие главным образом большой продолжительности дня в полярных районах. Зональность в распределении суммарной радиации над. континентами в северном полушарии и в тропических широтах южного полушария почти не выражена. Лучше проявляется она в северном полушарии над Океаном и ясно выражена во внетропических широтах южного полушария. У южного полярного круга величина суммарной солнечной радиации приближается к 0.
В декабре наибольшие суммы радиации поступают в южное полушарие. Высоко лежащая ледяная поверхность Антарктиды при большой прозрачности воздуха получает значительно больше суммарной радиации, чем поверхность Арктики в июне. Много тепла в пустынях (Калахари, Большая Австралийская), но вследствие большей океаничности южного полушария (влияние высокой влажности воздуха и облачности) суммы его здесь несколько меньше, чем в июне в тех же широтах северного полушария. В экваториальных и тропических широтах северного полушария суммарная радиация изменяется сравнительно мало, и зональность в ее распределении выражена четко только к северу от северного тропика. С увеличением широты суммарная радиация довольно быстро уменьшается, ее нулевая изолиния проходит несколько севернее северного полярного круга.
Суммарная солнечная радиация, попадая на поверхность Земли, частично отражается обратно в атмосферу. Отношение количества радиации, отраженной от поверхности, к количеству радиации, падающей на эту поверхность, называется альбедо . Альбедо характеризует отражательную способность поверхности.
Альбедо земной поверхности зависит от ее состояния и свойств: цвета, влажности, шероховатости и пр. Наибольшей отражательной способностью обладает свежевыпавший снег (85-95%). Спокойная водная поверхность при отвесном падении на нее солнечных лучей отражает всего 2-5%, а при низком стоянии Солнца - почти все падающие на нее лучи (90%). Альбедо сухого чернозема - 14%, влажного - 8, леса - 10-20, луговой растительности - 18-30, поверхности песчаной пустыни - 29-35, поверхности морского льда - 30-40%.
Большое альбедо поверхности льда, особенно покрытого свежевыпавшим снегом (до 95%), - причина низких температур в полярных районах в летний период, когда приход солнечной радиации там значителен.
Излучение земной поверхности и атмосферы. Всякое тело, обладающее температурой выше абсолютного нуля (больше минус 273°), испускает лучистую энергию. Полная лучеиспускательная способность абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры (T):
Е = σ*Т4 ккал/см2 в мин (закон Стефана - Больцмана), где σ - постоянный коэффициент.
Чем выше температура излучающего тела, тем короче длина волн испускаемых нм лучей. Раскаленное Солнце посылает в пространство коротковолновую радиацию . Земная поверхность, поглощая коротковолновую солнечную радиацию, нагревается и также становится источником излучения (земной радиации). Ho так как температура земной поверхности не превышает нескольких десятков градусов, ее излучение длинноволновое, невидимое.
Земная радиация в значительной степени задерживается атмосферой (водяным паром, углекислым газом, озоном), но лучи с длиной волны 9-12 мк свободно уходят за пределы атмосферы, и поэтому Земля теряет часть тепла.
Атмосфера, поглощая часть проходящей через нее солнечной радиации и больше половины земной, сама излучает энергию и в мировое пространство, и к земной поверхности. Атмосферное излучение, направленное к земной поверхности навстречу земному, называется встречным излучением. Это излучение, как и земное, длинноволновое, невидимое.
В атмосфере встречаются два потока длинноволновой радиации - излучение поверхности Земли и излучение атмосферы. Разность между ними, определяющая фактическую потерю тепла земной поверхностью, называется эффективным излучением. Эффективное излучение тем больше, чем выше температура излучающей поверхности. Влажность воздуха уменьшает эффективное излучение, сильно снижают его облака.
Наибольшее значение годовых сумм эффективного излучения наблюдается в тропических пустынях - 80 ккал/см2 в год - благодаря высокой температуре поверхности, сухости воздуха и ясности неба. На экваторе, при большой влажности воздуха, эффективное излучение составляет всего около 30 ккал/см2 в год, причем величина его для суши и для Океана очень мало отличается. Наименьшее эффективное излучение в полярных районах. В умеренных широтах земная поверхность теряет примерно половину того количества тепла, которое она получает от поглощения суммарной радиации.
Способность атмосферы пропускать коротковолновое излучение Солнца (прямую и рассеянную радиацию) и задерживать длинноволновое излучение Земли называют оранжерейным (парниковым) эффектом. Благодаря оранжерейному эффекту средняя температура земной поверхности составляет +16°, при отсутствии атмосферы она была бы -22° (на 38° ниже).
Радиационный баланс (остаточная радиация). Земная поверхность одновременно получает радиацию и отдает ее. Приход радиации составляют суммарная солнечная радиация и встречное излучение атмосферы. Расход - отражение солнечных лучей от поверхности (альбедо) и собственное излучение земной поверхности. Разность между приходом и расходом радиации - радиационный баланс, или остаточная радиация. Величина радиационного баланса определяется уравнением

R = Q*(1-α) - I,


где Q - суммарная солнечная радиация, поступающая на единицу поверхности; α - альбедо (дробь); I - эффективное излучение.
Если приход больше расхода, радиационный баланс положительный, если приход меньше расхода, баланс отрицательный. Ночью на всех широтах радиационный баланс отрицательный, днем до полудня - положительный везде, кроме высоких широт зимой; после полудня - снова отрицательный. В среднем за сутки радиационный баланс может быть как положительным, так и отрицательным (табл. 11).


На карте годовых сумм радиационного баланса земной поверхности видно резкое изменение положения изолиний при переходе их с суши на Океан. Как правило, радиационный баланс поверхности Океана превышает радиационный баланс суши (влияние альбедо и эффективного излучения). Распределение радиационного баланса в общем зонально. На Океане в тропических широтах годовые величины радиационного баланса достигают 140 ккал/см2 (Аравийское море) и не превышают 30 ккал/см2 у границы плавучих льдов. Отклонения от зонального распределения радиационного баланса на Океане незначительны и вызываются распределением облачности.
На суше в экваториальных и тропических широтах годовые значения радиационного баланса изменяются от 60 до 90 ккал/см2 в зависимости от условий увлажнения. Наибольшие годовые суммы радиационного баланса отмечаются в тех районах, где альбедо и эффективное излучение сравнительно невелики (влажные тропические леса, саванны). Наименьшим их значение оказывается в очень влажных (большая облачность) и в очень сухих (большое эффективное излучение) районах. В умеренных и высоких широтах годовая величина радиационного баланса уменьшается с увеличением широты (влияние уменьшения суммарной радиации).
Годовые суммы радиационного баланса над центральными районами Антарктиды отрицательны (несколько калорий на 1 см2). В Арктике значения этих величин близки к нулю.
В июле радиационный баланс земной поверхности в значительной части южного полушария отрицательный. Линия нулевого баланса проходит между 40 и 50° ю. ш. Наивысшее значение величины радиационного баланса достигают на поверхности Океана в тропических широтах северного полушария и на поверхности некоторых внутренних морей, например Черного (14-16 ккал/см2 в мес.).
В январе линия нулевого баланса расположена между 40 и 50° с. ш. (над океанами она несколько поднимается к северу, над материками - спускается к югу). Значительная часть северного полушария имеет отрицательный радиационный баланс. Наибольшие величины радиационного баланса приурочены к тропическим широтам южного полушария.
В среднем за год радиационный баланс земной поверхности положителен. При этом температура поверхности не повышается, а остается приблизительно постоянной, что можно объяснить только непрерывным расходованием излишков тепла.
Радиационный баланс атмосферы складывается из поглощенной ею солнечной и земной радиации, с одной стороны, и атмосферного излучения - с другой. Он всегда отрицателен, так как атмосфера поглощает лишь незначительную часть солнечной радиации, а излучает почти столько же, сколько и поверхность.
Радиационный баланс поверхности и атмосферы вместе, как целого, для всей Земли за год равен в среднем нулю, но по широтам он может быть и положительным и отрицательным.
Следствием такого распределения радиационного баланса должен быть перенос тепла в направлении от экватора к полюсам.
Тепловой баланс. Радиационный баланс - важнейшая составляющая теплового баланса. Уравнение теплового баланса поверхности показывает, как преобразуется на земной поверхности поступающая энергия солнечной радиации:

где R - радиационный баланс; LE - затраты тепла на испарение (L - скрытая теплота парообразования, E - испарение);
P - турбулентный теплообмен между поверхностью и атмосферой;
А - теплообмен между поверхностью и нижележащими слоями почвогрунта или воды.
Радиационный баланс поверхности считается положительным, если радиация, поглощенная поверхностью, превышает потери тепла, и отрицательным, если она не восполняет их. Все остальные члены теплового баланса считаются положительными, если за их счет происходит потеря тепла поверхностью (если они соответствуют расходу тепла). Так как. все члены уравнения могут изменяться, тепловой баланс все время нарушается и снова восстанавливается.
Рассмотренное выше уравнение теплового баланса поверхности приближенное, так как в нем не учтены некоторые второстепенные, но в конкретных условиях приобретающие важное значение факторы, например выделение тепла при замерзании, его расход на таяние и др.
Тепловой баланс атмосферы складывается из радиационного баланса атмосферы Ra, тепла, поступающего от поверхности, Pа, тепла, выделяющегося в атмосфере при конденсации, LE, и горизонтального переноса тепла (адвекции) Aа. Радиационный баланс атмосферы всегда отрицателен. Приток тепла в результате конденсации влаги и величины турбулентного теплообмена - положительны. Адвекция тепла приводит в среднем за год к переносу его из низких широт в высокие: таким образом, она означает расход тепла в низких широтах и приход в высоких. В многолетнем выводе тепловой баланс атмосферы можно выразить уравнением Ra=Pa+LE.
Тепловой баланс поверхности и атмосферы вместе, как целого, в многолетнем среднем равен 0 (рис. 35).

За 100% принята величина солнечной радиации, поступающей к атмосфере за год (250 ккал/см2). Солнечная радиация, проникая в атмосферу, частично отражается от облаков и уходит обратно за пределы атмосферы - 38%, частично поглощается атмосферой - 14% и частично в виде прямой солнечной радиации достигает земной поверхности - 48%. Из 48%, дошедших до поверхности, 44% ею поглощаются, а 4% отражаются. Таким образом, альбедо Земли составляет 42% (38+4).
Поглощенная земной поверхностью радиация расходуется следующим образом: 20% теряются через эффективное излучение, 18% затрачиваются на испарение с поверхности, 6% - на нагревание воздуха при турбулентном теплообмене (итого 24%). Расход тепла поверхностью уравновешивает его приход. Тепло, полученное атмосферой (14% непосредственно от Солнца, 24% от земной поверхности), вместе с эффективным излучением Земли направляется в мировое пространство. Альбедо Земли (42%) и излучение (58%) уравновешивают поступление солнечной радиации к атмосфере.

Говоря о влиянии солнца на человеческий организм, невозможно точно определить вред или пользу оно приносит. Солнечные лучи – это как килокалории, получаемые из пищи . Их недостаток приводит к истощению, а в избыточном количестве они вызывают ожирение. Так и в данной ситуации. В умеренном количестве солнечное излучение благоприятно воздействует на организм, в то время как избыток ультрафиолета провоцирует появление ожогов и развитие многочисленных заболеваний. Давайте разберемся подробнее.

Солнечное излучение: общее воздействие на организм

Солнечное излучение – это совокупность ультрафиолетовых и инфракрасных волн . Каждая из этих составных частей по-своему воздействует на организм.

Влияние инфракрасного излучения:

  1. Главная особенность инфракрасных лучей – создаваемый ими тепловой эффект. Прогревание тела способствует расширению кровеносных сосудов и нормализации кровообращения.
  2. Прогревание оказывает расслабляющее действие на мышцы, оказывая легкий противовоспалительный и болеутоляющий эффект.
  3. Под воздействием тепла повышается метаболизм, нормализуются процессы усвоения биологически активных компонентов.
  4. Инфракрасное излучение солнца стимулирует работу головного мозга и зрительного аппарата.
  5. Благодаря солнечной радиации происходит синхронизация биологических ритмов организма, запускаются режимы сна и бодрствования .
  6. Лечение солнечным теплом улучшает состояние кожи, избавляя от угревых высыпаний.
  7. Теплый свет поднимает настроение и улучшает эмоциональный фон человека.
  8. А по последним исследованиям еще и улучшает качество спермы у мужчин.

Несмотря на все прения по поводу негативного влияния ультрафиолетового излучения на организм, его нехватка может привести к серьезным проблемам со здоровьем. Это один из жизненно важных факторов существования. И в условиях дефицита ультрафиолета в организме начинают происходить такие изменения:

  1. В первую очередь ослабевает иммунитет. Это вызвано нарушением усвояемости витаминов и минералов, сбоем в обмене веществ на клеточном уровне.
  2. Появляется склонность к развитию новых или обострению хронических заболеваний, чаще всего протекающих с осложнениями.
  3. Отмечается вялость, синдром хронической усталости, снижается уровень работоспособности.
  4. Нехватка ультрафиолет для детей мешает выработке витамина D и провоцирует снижение темпов роста.

Однако нужно понимать, что чрезмерная солнечная активность не пойдет на благо организму!

Противопоказания к солнечным ваннам

Несмотря на всю пользу солнечного света для организма, не все могу себе позволить наслаждаться теплыми лучами. К противопоказаниям относятся:

  • острые воспалительные процессы;
  • опухоли, независимо от места их локализации ;
  • прогрессирующий туберкулез;
  • стенокардия, ишемическая болезнь;
  • эндокринные патологии;
  • поражение нервной системы;
  • нарушение функций щитовидки и надпочечников;
  • сахарный диабет;
  • мастопатия;
  • миома матки;
  • беременность;
  • восстановительный период после оперативного вмешательства.

Во всех случаях активное излучение будет усугублять течение болезни, провоцируя развитие новых осложнений .

Не стоит увлекаться солнцем и пожилым людям, грудным деткам. Для этих категорий населения показано лечение солнечным светом в тени. Необходимой дозы безопасного тепла там будет достаточно.

Истории наших читателей

Владимир
61 год

Чищу сосуды стабильно каждый год. Начал этим заниматься когда мне стукнуло 30, т. к. давление было ни к черту. Врачи руками только разводили. Пришлось самому браться за свое здоровье. Разные способы испробовал, но один мне помогает особенно хорошо...
Подбронее >>>

Негативное влияние солнца

Время воздействия инфракрасных и ультрафиолетовых волн должно быть строго ограничено. В избыточном количестве солнечное излучение:

  • может спровоцировать ухудшение общего состояния организма (так называемый тепловой удар вследствие перегревания);
  • отрицательно влияет на кожу, становясь причиной развития стойких изменений ;
  • ухудшает зрение;
  • провоцирует гормональные сбои в организме;
  • могут спровоцировать развитие аллергических реакций.

Так что часовые лежания на пляже в периоды максимальной солнечной активности наносят огромный урон организму .

Для получения необходимой порции света достаточно двадцатиминутной прогулки в солнечный день.

Влияние солнца на кожу

Избыточное количество солнечной радиации приводит к серьезным проблемам с кожей. В краткосрочной перспективе вы рискуете заработать ожог или дерматит. Это самая малая проблема, с которой вы можете столкнуться, увлекшись загаром в жаркий день. Если подобная ситуация повторяется с завидной регулярностью, излучение солнца станет толчком к формированию злокачественных образований на коже, меланом .

Помимо этого, воздействие ультрафиолета иссушает кожу, делая ее более тонкой и чувствительной. А постоянное пребывание под прямыми лучами ускоряет процесс старения, провоцируя появление ранних морщин.

Дабы обезопасить себя от негативного влияния солнечной радиации, достаточно соблюдать простые меры безопасности:

  1. В летнее время года обязательно используйте солнцезащитный крем ? Нанося его на все открытые участки тела, включая лицо, руки, ноги и зону декольте. Значок SPF на упаковке – это и есть та самая защита от ультрафиолета. И степень ее будет зависеть от цифры, указанной возле аббревиатуры. Для похода в магазин подойдет косметика с уровнем SPF 15 или SPF 20. Если планируете провести время на пляже, используйте специальные средства с более высокими показателями. Для детской кожи подходит крем с максимальной защитой SPF 50.
  2. При необходимости длительного пребывания на улице при максимальной интенсивности солнечного излучения надевайте одежду из легких тканей с длинным рукавом. Обязательно носите шляпу с широкими полями, чтобы скрыть нежную кожу лица.
  3. Контролируйте продолжительность солнечных ванн. Рекомендуемое время – 15-20 минут. В случае более продолжительного пребывания на улице, постарайтесь укрыться от прямых солнечных лучей в тени деревьев.

И помните, что в летнее время года солнечное излучение воздействует на кожу в любое время суток, за исключением ночных часов. Вы можете не ощущать явного тепла от инфракрасных волн, но вот ультрафиолет сохраняет высокий уровень активности, как утром, так и после полудня.

Негативное влияние на зрение

Влияние солнечного света на зрительный аппарат огромно. Ведь благодаря световым лучам мы получаем информацию об окружающем нас мире. Искусственное освещение в какой-то мере может стать альтернативой естественному свету, но в условиях чтения и письма при лампе увеличивается нагрузка на глаза.

Говоря о негативном влиянии на человека и зрение солнечного света, подразумевается повреждение глаз при длительном пребывании на солнце без солнцезащитных очков.

Из неприятных ощущений, с которыми вы можете столкнуться, можно выделить режущие боли в глазах, их покраснение, светобоязнь. Наиболее серьезное поражение – ожог сетчатки . Также возможна сухость кожи век, формирование мелких морщинок.

  1. Носите солнцезащитные очки . Во время покупки в первую очередь обращайте внимание на степень защиты. Имиджевые модели зачастую слегка затеняют свет, но не препятствуют проникновению ультрафиолета. Поэтому рекомендуется отложить яркую оправу и сделать выбор в пользу качественных линз.
  2. Следите, чтобы на лицо не попадало прямых лучей. Находитесь в тени, носите шляпу, кепку или другой головной убор с козырьком.
  3. Не смотрите на солнце. Если вы не испытываете дискомфорта, это не говорит о безопасности данной затеи. Даже у зимнего солнца достаточно активности, чтобы обеспечить проблемы со зрением.

Существует ли безопасное время года

Использование солнечной радиации в качестве оздоровительной процедуры – распространенная практика. Что ультрафиолет, что тепло относится к разряду сильных раздражителей . И злоупотребление этими благами можно заработать серьезные проблемы.

Загар – это выработка меланина. А если быть точнее, то защитная реакция кожи на раздражитель.

А так ли опасно излучение солнца в любое время года? На этот вопрос сложно дать однозначный ответ. Все будет зависеть не столько от поры года, сколько от географического положения. Так, в средних широтах активность солнечной радиации повышается на 25-35% именно в летнее время. Поэтому и рекомендации относительно пребывания на улице в ясный день касаются только жаркой поры. Зимой жителям этих регионов ультрафиолет не угрожает.

А вот жители экватора с прямыми солнечными лучами сталкиваются круглый год. Поэтому вероятность негативного воздействия на организм присутствует как летом, так и зимой. Обитателям северных широт в этом плане повезло больше. Ведь при удаленности от экватора меняется угол падения солнечных лучей на землю, а вместе с ним и активность излучения . Длина тепловой волны увеличивается, и одновременно с этим уменьшается количество тепла (энергетические потери). Отсюда и зима круглый год, так как поверхности земли не хватает тепла для прогревания.

Солнечное излучение – друг нашего организма. Но не стоит злоупотреблять этой дружбой. Иначе последствия могут быть самыми серьезными. Просто наслаждайтесь теплом, не забывая о мерах предосторожности.

Солнце - источник света и тепла, в котором нуждается все живое на Земле. Но помимо фотонов света, оно излучает жесткую ионизирующую радиацию, состоящую из ядер и протонов гелия. Почему так происходит?

Причины возникновения солнечного излучения

Солнечная радиация образуется в дневные часы во время хромосферных вспышек - гигантских взрывов, происходящих в атмосфере Солнца. Часть солнечного вещества выбрасывается в космическое пространство, образуя космические лучи, главным образом состоящие из протонов и небольшого количеств ядер гелия. Эти заряженные частицы спустя 15-20 минут после того, как солнечная вспышка становится видимой, достигают поверхности земли.

Воздух отсекает первичное космическое излучение, порождая каскадный ядерный ливень, который затухает с понижением высоты. При этом рождаются новые частицы - пионы, которые распадаются и превращаются в мюоны. Они проникают в нижние слои атмосферы и попадают на землю, зарываясь вглубь до 1500 метров. Именно мюоны отвечают за образование вторичного космического излучения и естественной радиации, воздействующей на человека.

Спектр солнечного излучения

Спектр солнечного излучения включает как коротковолновые, так длинноволновые области:

  • гамма-лучи;
  • рентгеновское излучение;
  • УФ-радиацию;
  • видимый свет;
  • инфракрасную радиацию.

Свыше 95% излучения Солнца приходится на область «оптического окна» - видимого участка спектра с прилегающими областями ультрафиолетовых и инфракрасных волн. По мере прохождения через слои атмосферы действие солнечных лучей ослабляется - вся ионизирующая радиация, рентгеновские лучи и почти 98% ультрафиолета задерживаются земной атмосферой. Практически без потерь до земли доходит видимый свет и инфракрасное излучение, хотя и они частично поглощаются молекулами газов и частицами пыли, находящимися в воздухе.

В связи с этим, солнечное излучение не приводит к заметному повышению радиоактивного излучения на поверхности Земли. Вклад Солнца вместе с космическими лучами в формирование общей годовой дозы облучения составляет всего 0,3 мЗв/год. Но это усредненное значение, на самом деле уровень падающего на землю излучения различен и зависит от географического положения местности.

Где солнечное ионизирующее облучение сильнее?

Наибольшая мощность космических лучей фиксируется на полюсах, а меньше всего - на экваторе. Связано это с тем, что магнитное поле Земли отклоняет к полюсам заряженные частицы, падающие из космоса. Кроме этого, излучение усиливается с высотой - на высоте 10 километров над уровнем моря его показатель возрастает в 20-25 раз. Активному воздействию более высоких доз солнечной радиации подвергаются жители высокогорий, поскольку атмосфера в горах тоньше и легче простреливается идущими от солнца потоками гамма-квантов и элементарных частиц.

Важно. Серьезного воздействия радиационный уровень до 0,3 мЗв/ч не оказывает, но при дозе 1,2 мкЗ/ч рекомендуется покинуть район, а случае крайней необходимости находится на его территории не более полугода. При превышении показаний вдвое следует ограничить пребывание в этой местности до трех месяцев.

Если над уровнем моря годовая доза космического облучения составляет 0,3 мЗв/год, то при повышении высоты через каждые сто метров этот показатель увеличивается на 0,03 мЗв/год. После проведения небольших расчетов можно сделать вывод, что недельный отпуск в горах на высоте 2000 метров даст облучение 1мЗв/год и обеспечит почти половину общей годовой нормы (2,4 мЗв/год).

Получается, что жители гор получают годовую дозу радиации, в разы превышающую норму, и должны чаще болеть лейкозом и раком, чем люди, живущие на равнинах. На самом деле, это не так. Наоборот, в горных районах фиксируется более низкая смертность от этих заболеваний, а часть населения - долгожители. Это подтверждает тот факт, что длительное нахождение в местах высокой радиационной активности не оказывает негативного влияния на организм человека.

Солнечные вспышки - высокая радиационная опасность

Вспышки на Солнце - большая опасность для человека и всего живого на Земле, поскольку плотность потока солнечного излучения может превышать обычный уровень космического излучения в тысячу раз. Так, выдающийся советский ученый А. Л. Чижевский связал периоды образования солнечных пятен с эпидемиями тифа (1883-1917 г) и холеры (1823-1923 г) в России. На основании сделанных графиков он еще в 1930 году предсказал возникновение обширной пандемии холеры в 1960-1962 годах, которая и началась в Индонезии в 1961 году, затем быстро распространилась на другие страны Азии, Африки и Европы.

Сегодня получено множество данных, свидетельствующих о связи одиннадцатилетних циклов солнечной активности со вспышками заболеваний, а также с массовыми миграциями и сезонами бурного размножения насекомых, млекопитающих и вирусов. Гематологи установили увеличение количество инфарктов и инсультов в периоды максимальной солнечной активности. Такая статистика связана с тем, что в это время у людей повышается свертываемость крови, а так как у больных с заболеваниями сердца компенсаторная деятельность угнетена, возникают сбои в его работе вплоть до некрозов сердечной ткани и кровоизлияний в мозг.

Большие солнечные вспышки происходят не так часто - раз в 4 года. В это время увеличивается количество и размер пятен, в солнечной короне образуются мощные коронарные лучи, состоящие из протонов и небольшого количества альфа-частиц. Самый мощный их поток астрологи зарегистрировали в 1956 году, когда плотность космического излучения на поверхности земли увеличилась в 4 раза. Еще одним последствием подобной солнечной активности стало полярное сияние, зафиксированное в Москве и Подмосковье в 2000 году.

Как себя обезопасить?

Конечно, повышенный радиационный фон в горах - не повод отказываться от поездок в горы. Правда, стоит подумать о мерах безопасности и отправиться в путешествие вместе с портативным радиометром, который поможет контролировать уровень радиации и при необходимости ограничить время пребывания в опасных районах. В местности, где показании счетчика показывают величину ионизирующего облучения в 7 мкЗв/ч, не стоит находиться больше одного месяца.

Солнечная радиация - излучение, свойственное светилу нашей планетной системы. Солнце - главная звезда, вокруг которой обращается Земля, а также соседние планеты. Фактически это огромный раскаленный газовый шар, постоянно испускающий в пространство вокруг себя потоки энергии. Именно их и называют радиацией. Смертельная, одновременно именно эта энергия - один из основных факторов, делающих возможной жизнь на нашей планете. Как и все в этом мире, польза и вред солнечной радиации для органической жизни тесно взаимосвязаны.

Общее представление

Чтобы понять, что представляет собой солнечная радиация, необходимо сперва разобраться, что же такое Солнце. Основной источник тепла, обеспечивающий условия для органического существования на нашей планете, во вселенских просторах представляет собой лишь небольшую звездочку на галактических окраинах Млечного Пути. А вот для землян Солнце - это центр мини-вселенной. Ведь именно вокруг этого газового сгустка обращается наша планета. Солнце дает нам тепло и освещение, то есть поставляет формы энергии, без которых наше существование было бы невозможно.

В древности источник солнечной радиации - Солнце - было божеством, объектом, достойным поклонения. Солнечная траектория по небу людям казалась очевидным доказательством божьей воли. Попытки вникнуть в суть явления, объяснить, что представляет собой это светило, предпринимались с давних пор, и особенно значимый вклад в них внес Коперник, сформировав идею гелиоцентризма, разительно отличавшуюся от общепринятого в ту эпоху геоцентризма. Впрочем, доподлинно известно, что и в древности ученые не раз задумывались над тем, что же такое Солнце, почему оно столь важно для любых форм жизни на нашей планете, почему передвижение этого светила именно таково, каким мы его видим.

Прогресс технологий позволил глубже понять, что представляет собой Солнце, какие процессы происходят внутри звезды, на ее поверхности. Ученые познали, что представляет собой солнечная радиация, каким образом газовый объект воздействует на планеты в своей зоне влияния, в частности, на земной климат. Сейчас человечество располагает достаточно объемной базой знаний, чтобы с уверенностью говорить: удалось выяснить, что такое по своей сути радиация, излучаемая Солнцем, как измерить этот энергетической поток и как сформулировать особенности его воздействия на разные формы органической жизни на Земле.

О терминах

Наиболее важный шаг в освоении сути понятия был сделан в прошлом столетии. Именно тогда именитый астроном А. Эддингтон сформулировал предположение: в солнечных глубинах происходит термоядерный синтез, что позволяет выделяться огромному количеству энергии, излучаемому в пространство вокруг звезды. Пытаясь оценить величину солнечной радиации, были предприняты усилия для определения фактических параметров среды на светиле. Так, температура ядра, по расчетам ученых, достигает 15 миллионов градусов. Этого достаточного, чтобы справиться со взаимным отталкивающим влиянием протонов. Столкновение единиц приводит к формированию гелиевых ядер.

Новые сведения привлекли внимание многих видных ученых, включая А. Эйнштейна. В попытках оценить величину солнечной радиации научные деятели выяснили, что гелиевые ядра по своей массе уступают суммарной величине 4 протонов, необходимых для формирования новой структуры. Так была выявлена особенность реакций, получившая название «дефект масс». Но ведь в природе ничто не может пропасть бесследно! В попытке отыскать «сбежавшие» величины ученые сравнили энергетическое излечение и специфику изменения массы. Именно тогда удалось выявить, что разность излучается гамма-квантами.

Излучаемые объекты пробиваются от ядра нашей звезды к ее поверхности сквозь многочисленные газовые атмосферные слои, что приводит к дроблению элементов и формированию на их основе электромагнитного излучения. Среди прочих видов солнечной радиации - свет, воспринимаемый человеческим глазом. Приблизительные оценки позволили предположить, что процесс прохождения гамма-квантов занимает около 10 миллионов лет. Еще восемь минут - и излученная энергия достигает поверхности нашей планеты.

Как и что?

Солнечной радиацией называют суммарный комплекс электромагнитного излучения, которому свойственен довольно обширный диапазон. Сюда входит так называемый солнечный ветер, то есть энергетический поток, сформированный электронами, легкими частицами. На пограничном слое атмосферы нашей планеты постоянно наблюдается одинаковая интенсивности излучения Солнца. Энергия звезды дискретна, ее перенос осуществляется через кванты, при этом корпускулярный нюанс настолько малозначим, что можно рассматривать лучи в качестве электромагнитных волн. А их распространение, как выяснили физики, происходит равномерно и по прямой линии. Таким образом, чтобы описать солнечную радиацию, необходимо определить свойственную ей длину волны. На основании этого параметра принято выделять несколько типов излучения:

  • тепло;
  • радиоволна;
  • белый свет;
  • ультрафиолет;
  • гамма;
  • рентген.

Соотношение инфракрасных, видимых, ультрафиолетовых лучшей оценивается следующим образом: 52%, 43%, 5%.

Для количественной радиационной оценки необходимо рассчитать плотность потока энергии, то есть количество энергии, которое в заданный временной промежуток достигает ограниченного участка поверхности.

Как показали исследования, солнечная радиация преимущественно поглощается планетарной атмосферой. Благодаря этому происходит нагрев до температуры, комфортной для органической жизни, свойственной Земле. Имеющаяся оболочка из озона позволяет пройти лишь одной сотой ультрафиолетового излучения. При этом полностью блокируются волны короткой длины, опасные для живых существ. Атмосферные слои способны рассеять почти треть лучей Солнца, еще 20% поглощаются. Следовательно, поверхности планеты достигает не более половины всей энергии. Именно этот «остаток» в науке назвали прямой солнечной радиацией.

А если поподробнее?

Известно несколько аспектов, от которых зависит, насколько интенсивным будет прямое излучение. Наиболее значимыми считаются угол падения, зависящий от широты (географическая характеристика местности на земном шаре), время года, определяющее, как велико расстояние до конкретной точки от источника излучения. Многое зависит от особенностей атмосферы - насколько она загрязнена, как много в заданный момент облаков. Наконец, играет роль характер поверхности, на которую падает луч, а именно, ее способности отражать поступившие волны.

Суммарной солнечной радиацией называют величину, объединяющую рассеянные объемы и прямое излучение. Параметр, используемый для оценки интенсивности, оценивается в калориях в расчете на единицу территории. При этом помнят, что в разное время суток значения, свойственные излучению, отличаются. Кроме того, энергия не может распределяться по поверхности планеты равномерно. Чем ближе к полюсу, тем интенсивность выше, при этом снежные покровы обладают высокой отражающей способностью, а значит, воздух не получает возможности прогреться. Следовательно, чем дальше от экватора, тем суммарные показатели солнечного волнового излучения будут меньше.

Как удалось выявить ученым, энергия солнечной радиации оказывает серьезное воздействие на планетарный климат, подчиняет себе жизнедеятельность разнообразных организмов, существующих на Земле. В нашей стране, а также на территории ближайших соседей, как и в прочих странах, расположенных в северном полушарии, зимой преимущественная доля принадлежит рассеянному излучению, а вот летом доминирует прямое.

Инфракрасные волны

Из общего количества суммарной солнечной радиации внушительный процент принадлежит именно инфракрасному спектру, не воспринимаемому глазом человека. За счет таких волн нагревается поверхность планеты, постепенно передающая тепловую энергию воздушным массам. Это помогает сохранять комфортный климат, поддерживать условия для существования органической жизни. Если не происходит каких-то серьезных сбоев, климат остается условно неизменным, а значит, все существа могут обитать в привычных им условиях.

Наше светило - не единственный источник волн инфракрасного спектра. Аналогичное излучение свойственно любому нагретому объекту, включая обычную батарею в человеческом доме. Именно на принципе восприятия инфракрасного излучения работают многочисленные приборы, дающие возможность видеть в темноте, иных некомфортных для глаз условиях нагретые тела. Кстати говоря, по аналогичному принципу работают ставшие столь популярными в последнее время компактные приборы для оценки, через какие участки здания происходят наибольшие теплопотери. Эти механизмы особенно широко распространены в среде строителей, а также владельцев частных домов, поскольку помогают выявить, через какие участки тепло теряется, организовать их защиту и предупредить лишний расход энергии.

Не стоит недооценивать влияние солнечной радиации инфракрасного спектра на человеческий организм только по причине того, что наши глаза не могут воспринимать такие волны. В частности, излучение активно используется в медицине, поскольку позволяет повысить концентрацию лейкоцитов в кровеносной системе, а также привести в норму кровоток за счет увеличения просветов кровеносных сосудов. Приборы, основанные на ИК-спектре, применяются в качестве профилактических против кожных патологий, терапевтических при воспалительных процессах в острой и хронической форме. Наиболее современные препараты помогают справиться с коллоидными рубцами и трофическими ранами.

Это любопытно

На основе изучения факторов солнечной радиации удалось создать поистине уникальные приборы, называемые термографами. Они дают возможность своевременно обнаружить различные болезни, не доступные для выявления иными способами. Именно так можно найти рак или тромб. ИК в некоторой степени защищает от ультрафиолета, опасного для органической жизни, что позволило использовать волны такого спектра для восстановления здоровья продолжительное время находившихся в космосе астронавтов.

Природа вокруг нас и по сей день загадочна, касается это и излучения различных длин волн. В частности, инфракрасный свет все еще исследован не досконально. Ученые знают, что его неправильное применение может стать причиной вреда здоровью. Так, недопустимо использовать оборудование, формирующее такой свет, для терапии гнойных воспаленных участков, кровотечений и злокачественных новообразований. Инфракрасный спектр противопоказан людям, страдающим нарушениями функционирования сердца, сосудов, включая расположенные в мозге.

Видимый свет

Один из элементов суммарной солнечной радиации - видимый человеческому глазу свет. Волновые пучки распространяются по прямым линиям, поэтому не происходит наложения друг на друга. В свое время это стало темой немалого количества научных работ: ученые задались целью понять, по какой причине вокруг нас так много оттенков. Оказалось, что свою роль играют ключевые параметры света:

  • преломление;
  • отражение;
  • поглощение.

Как выяснили ученые, объекты не способны сами по себе быть источниками видимого света, но могут поглощать излучение и отражать его. Варьируются углы отражения, частота волн. На протяжении многих веков способность человека видеть постепенно совершенствовалась, но определенные ограничения обусловлены биологическим строением глаза: сетчатка такова, что может воспринять лишь определенные лучи отраженных световых волн. Это излучение - небольшой промежуток между ультрафиолетом и инфракрасными волнами.

Многочисленные любопытные и загадочные световые особенности не только стали темой множества работ, но и были основанием для зарождения новой физической дисциплины. Одновременно появились ненаучные практики, теории, приверженцы которых считают, что цвет способен повлиять на физическое состояние человека, психику. На основании таких предположений люди окружают себя предметами, наиболее приятными для их глаза, делая бытовую повседневность комфортнее.

Ультрафиолет

Не менее важный аспект суммарной солнечной радиации - ультрафиолетовое изучение, сформированное волнами большой, средней и малой длины. Они отличны друг от друга как по физическим параметрам, так и по особенностям влияния на формы органической жизни. Длинные ультрафиолетовые волны, к примеру, в атмосферных слоях в основном рассеиваются, а до земной поверхности добирается лишь незначительный процент. Чем короче длина волны, тем глубже такое излучение может проникнуть в человеческую (и не только) кожу.

С одной стороны, ультрафиолет опасен, но без него невозможно существование многообразной органической жизни. Такое излучение отвечает за формирование кальциферола в организме, а этот элемент необходим для строительства костной ткани. УФ-спектр - это мощная профилактика рахита, остеохондроза, что особенно важно в детском возрасте. Кроме того, такое излучение:

  • приводит в норму метаболизм;
  • активизирует производство незаменимых ферментов;
  • усиливает регенеративные процессы;
  • стимулирует кровоток;
  • расширяет кровеносные сосуды;
  • стимулирует иммунную систему;
  • приводит к формированию эндорфина, а значит, уменьшается нервное перевозбуждение.

Обратная сторона медали

Выше было указано, что суммарной солнечной радиацией называют количество излучения, достигшего поверхности планеты и рассеянного в атмосфере. Соответственно, элементом этого объема является ультрафиолет всех длин. Нужно помнить, что этот фактор имеет как положительные, так и отрицательные стороны влияния на органическую жизнь. Солнечные ванны, зачастую полезные, могут быть источником опасности для здоровья. Слишком продолжительное нахождение под прямым солнечным светом, особенно в условиях повышенной активности светила, вредно и опасно. Продолжительное влияние на организм, а также слишком высокая активность облучения становятся причиной:

  • ожогов, покраснений;
  • отеков;
  • гиперемии;
  • жара;
  • тошноты;
  • рвоты.

Продолжительное ультрафиолетовое облучение провоцирует нарушение аппетита, функционирования ЦНС, иммунной системы. Кроме того, начинает болеть голова. Описанные признаки - классические проявления солнечного удара. Сам человек не всегда может осознать, что происходит - состояние ухудшается постепенно. Если заметно, что кому-то поблизости стало плохо, следует оказать первую помощь. Схема следующая:

  • помочь перейти из-под прямого света в прохладное затененное место;
  • положить больного на спину так, чтобы ноги были выше головы (это поможет привести в норму кровоток);
  • охладить водой шею, лицо, а на лоб положить холодный компресс;
  • расстегнуть галстук, ремень, снять тесную одежду;
  • через полчаса после приступа дать выпить прохладной воды (небольшое количество).

Если пострадавший потерял сознание, важно сразу обратиться за помощью к доктору. Бригада скорой помощи переместит человека в безопасное место и сделает инъекцию глюкозы или витамина С. Лекарство вводят в вену.

Как загорать правильно?

Чтобы не узнать на своем опыте, каким неприятным может быть излишнее количество солнечной радиации, получаемое при загаре, важно соблюдать правила безопасного времяпрепровождения на солнце. Ультрафиолет инициирует выработку меланина - гормона, помогающего кожным покровам защититься от негативного влияния волн. Под воздействием этого вещества кожа становится темнее, а оттенок переходит в бронзовый. И по сей день не стихают споры о том, насколько это полезно и вредно для человека.

С одной стороны, загар - попытка организма защититься от излишнего воздействия излучения. При этом повышается вероятность формирования злокачественных новообразований. С другой стороны, загар считается модным и красивым. Чтобы минимизировать для себя риски, разумно перед началом пляжных процедур разобрать, чем опасно количество солнечной радиации, получаемое во время солнечных ванн, как минимизировать риски для себя. Чтобы впечатления были максимально приятными, любители загорать должны:

  • пить много воды;
  • пользоваться защищающими кожу средствами;
  • загорать вечером или утром;
  • проводить под прямыми лучами солнышка не больше часа;
  • не употреблять спиртное;
  • включить в меню богатые селеном, токоферолом, тирозином продукты. Не стоит забывать и о бета-каротине.

Значение солнечной радиации для человеческого организма исключительно велико, не стоит упускать из внимания и положительные, и отрицательные аспекты. Следует осознавать, что у разных людей биохимические реакции происходят с индивидуальными особенностями, поэтому для кого-то и получасовые солнечные ванны могут быть опасны. Разумно перед пляжным сезоном проконсультироваться с доктором, оценить тип, состояние кожных покровов. Это поможет предупредить вред здоровью.

По возможности следует избегать загара в преклонном возрасте, в период вынашивания малыша. Не сочетаются с солнечными ваннами раковые заболевания, нарушения психики, кожные патологии и недостаточность функционирования сердца.

Суммарная радиация: где недостача?

Довольно интересным для рассмотрения является процесс распределения солнечной радиации. Как выше было упомянуто, лишь около половины всех волн могут достигнуть поверхности планеты. Куда же пропадают остальные? Свою роль играют разные слои атмосферы и микроскопические частицы, из которых они сформированы. Внушительная часть, как было указано, поглощается озоновым слоем - это все волны, длина которых менее 0,36 мкм. Дополнительно озон способен поглотить некоторые типы волн из видимого человеческому глазу спектра, то есть промежутка 0,44-1,18 мкм.

Ультрафиолет в некоторой степени поглощается кислородным слоем. Это свойственно излучению с длиной волны 0,13-0,24 мкм. Углекислый газ, пар воды могут поглотить небольшой процент инфракрасного спектра. Аэрозоль атмосферы поглощает некоторую часть (ИК-спектр) от общего количества солнечной радиации.

Волны из категории коротких рассеиваются в атмосфере из-за наличия здесь микроскопических неоднородных частиц, аэрозоля, облаков. Неоднородные элементы, частицы, чьи габариты уступают длине волны, провоцируют молекулярное рассеивание, а для более крупных свойственно явление, описываемое индикатрисой, то есть аэрозольное.

Прочее количество солнечной радиации достигает земной поверхности. Оно сочетает прямое излучение, рассеянное.

Суммарная радиация: важные аспекты

Суммарная величина - это количество солнечной радиации, получаемое территорией, а также поглощенное в атмосфере. Если на небе нет облаков, суммарная величина излучения зависит от широты местности, высоты положения небесного тела, типа поверхности земли на этом участке, а также уровня прозрачности воздуха. Чем больше в атмосфере рассеяно аэрозольных частиц, тем ниже прямое излучение, зато возрастает доля рассеянного. В норме при отсутствии облачности в суммарной радиации рассеянная - это одна четвертая часть.

Наша страна принадлежит к числу северных, поэтому большую часть года в южных регионах излучение существенно больше, чем в северных. Это обусловлено положением светила на небе. А вот короткий временной промежуток май-июль - это уникальный период, когда даже на севере суммарная радиация довольно внушительная, поскольку солнце находится высоко в небе, а продолжительность светового дня больше, чем в прочие месяцы года. При этом в среднем на азиатской половине страны при отсутствии облачности суммарная радиация существеннее, нежели на западе. Максимальная сила волнового излучения наблюдается в полдень, а годовой максимум приходится на июнь, когда солнце выше всего в небе.

Суммарной солнечной радиацией называют количество солнечной энергии, достигающей нашей планеты. При этом нужно помнить, что разные атмосферные факторы приводят к тому, что годовой приход суммарной радиации меньше, нежели мог бы быть. Самая большая разница между реально наблюдаемым и максимально возможным характерна для дальневосточных регионов в летний период. Муссоны провоцируют исключительно плотную облачность, поэтому суммарная радиация уменьшается приблизительно вполовину.

Любопытно знать

Наибольший процент от максимально возможного облучения солнечной энергией в реальности наблюдается (в расчете на 12 месяцев) на юге страны. Показатель достигает 80%.

Облачность не всегда приводит к одинаковому показателю рассеивания солнечного излучения. Играет роль форма облаков, особенности солнечного диска в конкретный момент времени. Если таковой открыт, тогда облачность становится причиной уменьшения прямого излучения, одновременно рассеянное резко возрастает.

Возможны и такие дни, когда прямое излучение по своей силе приблизительно такое же, как рассеянное. Суточная суммарная величина может быть даже больше, нежели излучение, свойственное совсем безоблачному дню.

В расчете на 12 месяцев особенное внимание необходимо уделять астрономическим явлениям как определяющим общие численные показатели. При этом облачность приводит к тому, что реально радиационный максимум может наблюдаться не в июне, а месяцем раньше или позже.

Радиация в космосе

С границы магнитосферы нашей планеты и дальше в космические пространства солнечная радиация становится фактором, сопряженным со смертельной опасностью для человека. Еще в 1964 был выпущен важный научно-популярный труд, посвященный методам защиты. Его авторами выступили советские ученые Каманин, Бубнов. Известно, что для человека доза облучения в расчете на неделю должна быть не более 0,3 рентгена, при этом за год - в пределах 15 Р. При кратковременном облучении пределом для человека обозначено 600 Р. Полеты в космос, особенно в условиях непредсказуемой солнечной активности, могут сопровождаться значительным облучением астронавтов, что обязывает принимать дополнительные меры защиты от волн разной длины.

После миссий "Аполлон", в ходе которых тестировались способы защиты, исследовались факторы, влияющие на человеческое здоровье, прошло не одно десятилетие, но и по сей день ученые не могут найти результативные, надежные методы прогнозирования геомагнитных бурь. Можно составить прогноз в расчете на часы, иногда - на несколько дней, но даже для недельного предположения шансы реализации - не более 5%. Солнечный ветер - еще более непредсказуемое явление. С вероятностью один к трем космонавты, отправляясь в новую миссию, могут попасть в мощные потоки излучений. Это делает еще более важным вопрос как исследования и прогнозирования радиационных особенностей, так и разработки методов защиты от него.

Солнечной радиацией называется поток лучистой энергии солнца, идущей к поверхности земного шара. Лучистая энергия солнца является первичным источником других видов энергии. Поглощаясь поверхностью земли и водой, она превращается в тепловую энергию, а в зеленых растениях - в химическую энергию органических соединений. Солнечная радиация - важнейший фактор климата и основная причина изменений погоды, так как различные явления, совершающиеся в атмосфере, связаны с тепловой энергией, получаемой от солнца.

Солнечная радиация, или лучистая энергия, по своей природе представляет собой поток электромагнитных колебаний, распространяющихся прямолинейно со скоростью 300000 км/сек с длиной волны от 280 нм до 30000 нм. Лучистая энергия испускается в виде отдельных частиц, называемых квантами, или фотонами. Для измерения длины световых волн пользуются нанометрами (нм), или микронами, миллимикронами (0,001 микрона) и анстремами (0,1 миллимикрона). Различают инфракрасные невидимые тепловые лучи с длиной волны от 760 до 2300 нм; световые видимые лучи (красные, оранжевые, желтые, зеленые, голубые, синие и фиолетовые) с длиной волны от 400 (фиолетовые) до 759 нм (красные); ультрафиолетовые, или химические невидимые, лучи с длиной волны от 280 до 390 нм. Лучи с длиной волны меньше 280 миллимикрон до поверхности земли не доходят, вследствие поглощения их озоном в высоких слоях атмосферы.

На грани атмосферы спектральный состав солнечных лучей в процентах такой: инфракрасные лучи 43%, световые 52 и ультрафиолетовые 5%. У земной поверхности при высоте стояния солнца 40° солнечная радиация имеет (по Н. П. Калитину) следующий состав: инфракрасные лучи 59%, световые 40 и ультрафиолетовые 1% всей энергии. Напряжение солнечной радиации увеличивается с высотой над уровнем моря, а также тогда, когда солнечные лучи падают вертикально, так как лучам приходится проходить меньшую толщу атмосферы. В других случаях поверхность будет получать солнечных лучей тем меньше, чем ниже солнце, или в зависимости от угла падения лучей. Напряжение солнечной радиации понижается вследствие облачности, загрязнения атмосферного воздуха пылью, дымом и пр.

Причем в первую очередь происходит потеря (поглощение) коротковолновых лучей, а затем тепловых и световых. Лучистая энергия солнца - источник жизни на земле растительных и животных организмов и важнейший фактор окружающей воздушной среды. Она оказывает разнообразное влияние на организм, которое при оптимальном дозировании бывает весьма положительным, а при чрезмерном (передозировке) может быть отрицательным. Все лучи обладают как тепловым, так и химическим действием. Причем у лучей с большой длиной волн на первый план выступает тепловое действие, а с меньшей длиной - химическое.

Биологическое действие лучей на организм животного зависит от длины волны и их амплитуды: чем короче волны, тем чаще их колебания, тем больше энергия квант и тем сильнее реакция организма на такое облучение. Коротковолновые, ультрафиолетовые лучи при воздействии на ткани вызывают в них явления фотоэлектрического эффекта с появлением в атомах отщепленных электронов и положительных ионов. Глубина проникновения разных лучей в тело неодинакова: инфракрасные и красные лучи проникают на несколько сантиметров, видимые (световые) - на несколько миллиметров, а ультрафиолетовые - только на 0,7-0,9 мм; лучи короче 300 миллимикрон проникают в ткани животных на глубину до 2 миллимикрон. При такой незначительной глубине проникновения лучей последние оказывают многообразное и значительное влияние на весь организм.

Солнечная радиация - весьма биологически активный и постоянно действующий фактор, имеющий огромное значение в формировании целого ряда функций организма. Так, например, через посредство глаза видимые световые лучи оказывают влияние на весь организм животных, вызывая безусловные и условно-рефлекторные реакции. Инфракрасные тепловые лучи оказывают свое влияние на организм как непосредственно, так и через окружающие животных предметы. Тело животных непрерывно поглощает и само излучает инфракрасные лучи (радиационный обмен), и этот процесс может значительно изменяться в зависимости от температуры кожи животных и окружающих предметов. Ультрафиолетовые химические лучи, кванты которых имеют значительно большую энергию, чем кванты видимых и инфракрасных лучей, отличаются наибольшей биологической активностью, действуют на организм животных гуморальным и нервнорефлекторным путями. Уф-лучи прежде всего действуют на экстерорецепторы кожи, а затем рефлекторно влияют на внутренние органы, в частности на эндокринные железы.

Продолжительное воздействие оптимальных доз лучистой энергии приводит к адаптации кожи, к меньшей реактивности ее. Под влиянием солнечных лучей усиливаются рост волос, функция потовых и сальных желез, утолщается роговой слой и уплотняется эпидермис, что ведет к повышению сопротивляемости кожи организма. В коже происходит образование биологически активных веществ (гистамина и гистамино-подобных веществ), которые поступают в кровь. Эти же лучи ускоряют регенерацию клеток при заживлении ран и язв на коже. Под действием лучистой энергии, особенно ультрафиолетовых лучей, в базальном слое кожи образуется пигмент меланин, понижающий чувствительность кожи к ультрафиолетовым лучам. Пигмент (загар) представляет собой как бы биологический экран, способствующий отражению и рассеиванию лучей.

Положительное действие солнечных лучей сказывается на крови. Систематическое умеренное воздействие их значительно усиливает кроветворение с одновременным увеличением в периферической крови количества эритроцитов и содержания гемоглобина. У животных после кровопотерь или переболевших тяжелыми болезнями, особенно инфекционными, умеренные облучения солнечными лучами стимулируют регенерацию крови и повышают ее свертываемость. От умеренного воздействия солнечных лучей у животных увеличивается газообмен. Возрастает глубина и уменьшается частота дыхания, увеличивается количество вводимого кислорода, больше выделяется углекислоты и водяных паров, в связи с чем улучшается кислородное питание тканей и повышаются окислительные процессы.

Увеличение белкового обмена выражается повышенным отложением азота в тканях, в результате чего прирост у молодых животных идет быстрее. Чрезмерное солнечное облучение может вызвать отрицательный белковый баланс, особенно у животных, страдающих острыми инфекционными болезнями, а также другими заболеваниями, сопровождающимися повышенной температурой тела. Облучение ведет к повышенному отложению сахара в печени и мышцах в виде гликогена. В крови резко снижается количество недоокисленных продуктов (ацетоновых тел, молочной кислоты и др.), повышается образование ацетилхолина и нормализуется обмен веществ, что имеет особо важное значение для высокопродуктивных животных.

У истощенных животных замедляется интенсивность жирового обмена и повышается отложение жира. Интенсивное освещение у ожиревших животных, наоборот, повышает жировой обмен и вызывает усиленное сгорание жира. Поэтому — полусальный и сальный откорм животных целесообразно проводить в условиях меньшего солнечного облучения.

Под влиянием ультрафиолетовых лучей солнечной радиации находящиеся в кормовых растениях эргостерин и в коже животных дегидрохолестерин превращаются в активные витамины D 2 и D 3 , которые усиливают фосфорно-кальциевый обмен; отрицательный баланс кальция и фосфора переходит в положительный, что способствует отложению этих солей в костях. Солнечный свет и искусственное облучение ультрафиолетовыми лучами - один из действенных современных методов профилактики и лечения рахита и других заболеваний животных, связанных с нарушением обмена кальция и фосфора.

Солнечная радиация, особенно световые и ультрафиолетовые лучи, является основным фактором, вызывающим у животных сезонную половую периодичность, так как свет стимулирует гонадотропную функцию гипофиза и других органов. Весной, в период увеличения напряженности солнечной радиации и световой экспозиции, секреция половых желез, как правило, у большинства видов животных усиливается. Увеличение половой активности у верблюдов, овец и коз наблюдается с укорочением продолжительности светового дня. Если овец в апреле-июне содержать в затемненных помещениях, то течка у них наступит не осенью (как обычно), а в мае. Недостаток света у растущих животных (в период роста и полового созревания), по данным К. В. Свечина, приводит к глубоким, часто необратимым качественным изменениям в половых железах, а у взрослых животных снижает половую активность и оплодотворяемость или вызывает временное бесплодие.

Видимый свет или степень освещенности оказывает значительное влияние на развитие яйцеклеток, течку, продолжительность случного сезона и беременности. В северном полушарии случной сезон бывает обычно коротким, а в южном наиболее продолжительным. Под влиянием искусственного освещения животных сокращается у них продолжительность беременности от нескольких дней до двух недель. Влияние видимых световых лучей на половые железы может быть широко использовано в практике. Опытами, проведенными в лаборатории зоогигиены ВИЭВ, доказано, что освещенность помещений по геометрическому коэффициенту 1: 10 (по КЕО, 1,2-2%) по сравнению с освещенностью 1: 15-1: 20 и ниже (по КЕО, 0,2-0,5%) положительно отражается на клинико-физиологическом состоянии супоросных свиноматок и поросят до 4-месячного возраста, обеспечивает получение крепкого и жизнеспособного потомства. Повышаются привесы поросят на 6% и сохранность их на 10-23,9%.

Солнечные лучи, особенно ультрафиолетовые, фиолетовые и синие, убивают или ослабляют жизнеспособность многих патогенных микроорганизмов, задерживают их размножение. Таким образом, солнечная радиация является мощным естественным дезинфектором внешней среды. Под воздействием солнечных лучей повышается общий тонус организма и сопротивляемость его к инфекционным заболеваниям, а также возрастают специфические иммунные реакции (П. Д. Комаров, А. П. Онегов и др.). Доказано, что умеренное облучение животных при вакцинации способствует повышению титра и других иммунных тел, росту фагоцитарного показателя, и, наоборот, интенсивное облучение понижает иммунные свойства крови.

Из всего сказанного следует, что недостаток солнечной радиации необходимо рассматривать как весьма неблагоприятное внешнее условие для животных, при котором они лишаются важнейшего активатора физиологических процессов. Учитывая это, животных нужно размещать в достаточно светлых помещениях, регулярно предоставлять им моцион, а летом содержать на пастбище.

Нормирование естественного освещения в помещениях производится по геометрическому или светотехническому методам. В практике строительства животноводческих и птицеводческих помещений в основном применяют геометрический метод, по которому нормы естественного освещения определяют отношением площади окон (стекла без рам) к площади пола. Однако, несмотря на простоту геометрического метода, нормы освещенности при помощи его устанавливаются не точно, так как в данном случае не принимают во внимание свето-климатические особенности разных географических зон. Для более точного определения освещенности в помещениях пользуются светотехническим методом, или определением коэффициента естественной освещенности (КЕО). Коэффициентом естественной освещенности называется отношение освещенности помещения (измеряемой точки) к наружной освещенности в горизонтальной плоскости. КЕО выводится по формуле:

K = E:E н ⋅100%

Где К - коэффициент естественного освещения; Е - освещенность в помещении (в люксах); Е н - освещенность вне помещения (в люксах).

Необходимо иметь в виду, что неумеренное пользование солнечной радиацией, особенно в дни с высокой инсоляцией, может причинить животным значительный вред, в частности вызвать ожог, заболевание глаз, солнечный удар и пр. Чувствительность к воздействию солнечных лучей значительно повышается от введения в организм так называемых сенсибилизаторов (гематопорфирина, желчных пигментов, хлорофилла, эозина, метиленовой синьки и др.). Считают, что эти вещества аккумулируют коротковолновые лучи и превращают их в длинноволновые с поглощением части освобожденной тканями энергии, вследствие чего увеличивается реактивность тканей.

Солнечный ожог у животных чаще наблюдают на участках тела с нежной, мало покрытой волосами, непигментированной кожей в результате воздействия тепловых (солнечная эритема) и ультрафиолетовых лучей (фотохимическое воспаление кожи). У лошадей солнечные ожоги отмечают на непигментированных местах кожи головы, губ, ноздрей, шеи, паха и конечностей, а у крупного рогатого скота на коже сосков вымени и промежности. В южных районах возможны солнечные ожоги у свиней белой масти.

Сильный солнечный свет может вызвать раздражение сетчатки, роговой и сосудистых оболочек глаза и повреждение хрусталика. При продолжительной и интенсивной радиации возникают кератиты, помутнение хрусталика и нарушение аккомодации зрения. Нарушение аккомодации чаще наблюдают у лошадей, если их содержат в конюшнях с низкими окнами, обращенными на южную сторону, против которых привязывают лошадей.

Солнечный удар возникает в результате сильного и продолжительного перегревания головного мозга преимущественно тепловыми инфракрасными лучами. Последние проникают через кожу головы и черепную коробку, достигают мозга и вызывают гиперемию и повышение температуры его. Вследствие этого у животного сначала появляется угнетение, а затем возбуждение, нарушаются дыхательный и сосудодвигательный центры. Отмечают слабость, некоординированные движения, одышку, учащенный пульс, гиперемию и цианоз слизистых оболочек, дрожь и судороги. Животное не держится на ногах, падает на землю; тяжелые случаи нередко заканчиваются смертью животного при явлениях паралича сердца или дыхательного центра. Солнечный удар особенно тяжело протекает, если он сочетается с тепловым ударом.

Для защиты животных от действия прямых солнечных лучей необходимо держать их в наиболее жаркие часы дня в тени. Чтобы предупредить солнечный удар, в частности у рабочих лошадей, им надевают белые парусиновые налобники.



© dagexpo.ru, 2024
Стоматологический сайт