Спектральный анализ: Виды спектрального анализа. Спектральные характеристики источников света, применяемых при фотосъемке

21.09.2019

Химический состав вещества – важнейшая характеристика используемых человечеством материалов. Без его точного знания невозможно со сколько-нибудь удовлетворительной точностью спланировать технологические процессы в промышленном производстве. В последнее время требования к определению химического состава вещества еще более ужесточились: многие сферы производственной и научной деятельности требуют материалы определенной «чистоты» - это требования точного, фиксированного состава, а также жесткого ограничения на наличие примесей инородных веществ. Всвязи с этими тенденциями разрабатываются все боле прогрессивные методики определения химического состава веществ. К ним относится и метод спектрального анализа, обеспечивающий точное и быстрое изучение химии материалов.

Фантастика света

Природа спектрального анализа

(спектроскопия ) изучает химический состав веществ на основе их способностей по испусканию и поглощению света. Известно, что каждый химический элемент испускает и поглощает характерный только для него световой спектр, при условии, что его можно привести к газообразному состоянию.

В соответствии с этим, возможно определение наличия этих веществ в том или ином материале по присущему только им спектру. Современные методы спектрального анализа позволяют установить наличие вещества массой до миллиардных долей грамма в пробе – за это ответственен показатель интенсивности излучения. Уникальность испускаемого спектра атомом характеризует его глубокую взаимосвязь с физической структурой.

Видимый свет представляет собой излучение с от 3,8 *10 -7 до 7,6*10 -7 м, ответственной за различные цвета. Вещества могут излучать свет только лишь в возбужденном состоянии (это состояние характеризуется повышенным уровнем внутренней ) при наличии постоянного источника энергии.

Получая избыточную энергию, атомы вещества излучают ее в виде света и возвращаются в свое обычное энергетическое состояние. Именно этот испускаемый атомами свет и используется для спектрального анализа. К самым распространенным видам излучения относят: тепловое излучение, электролюминесценция, катодолюминесценция, хемилюминесценция.

Спектральный анализ. Окрашивание пламени ионами металлов

Виды спектрального анализа

Различают эмиссионную и абсорбционную спектроскопию. Метод эмиссионной спектроскопии основан на свойствах элементов к излучению света. Для возбуждения атомов вещества используются высокотемпературный нагрев, равный нескольким сотням или даже тысячам градусов, – для этого пробу вещества помещают в пламя или в поле действия мощных электрических разрядов. Под воздействием высочайшей температуры молекулы вещества разделяются на атомы.

Атомы, получая избыточную энергию, излучают ее в виде квантов света различной длины волны, которые регистрируются спектральными аппаратами – приборами, визуально изображающими получившийся световой спектр. Спектральные аппараты служат также и разделительным элементом системы спектроскопии, потому как световой поток суммируется от всех присутствующих в пробе веществ, и в его задачи входит разделение общего массива света на спектры отдельных элементов и определение их интенсивности, которая позволит в будущем сделать выводы о величине присутствующего элемента в общей массе веществ.

  • В зависимости от методов наблюдения и регистрации спектров различают спектральные приборы: спектрографы и спектроскопы. Первые регистрируют спектр на фотопленке, а вторые делают доступным просмотр спектра для прямого наблюдения человеком через специальные зрительные трубы. Для определения размеров используются специализированные микроскопы, позволяющие с высокой точностью определить длину волны.
  • После регистрации светового спектра он подвергается тщательному анализу. Выявляются волны определенной длины и их положение в спектре. Далее выполняется соотношение их положения с принадлежностью к искомым веществам. Делается это с помощью сравнения данных положения волн с информацией, расположенной в методических таблицах, указывающих на типичные длины волн и спектры химических элементов.
  • Абсорбционная спектроскопия проводится подобно эмиссионной. В этом случае вещество помещают между источником света и спектральным аппаратом. Проходя через анализируемый материал, испущенный свет достигает спектрального аппарата с «провалами» (линии поглощения) по некоторым длинам волн – они и составляют поглощенный спектр исследуемого материала. Дальнейшая последовательность исследования аналогична для приведенного выше процесса эмиссионной спектроскопии.

Открытие спектрального анализа

Значение спектроскопии для науки

Спектральный анализ позволил человечеству открыть несколько элементов, которые невозможно было определить традиционными методами регистрации химических веществ. Это такие элементы, как рубидий, цезий, гелий (он был открыт с помощью спектроскопииСолнца – задолго до его обнаружения на Земле), индий, галлий и другие. Линии этих элементов были обнаружены в спектрах излучения газов, и на момент их исследования были неидентифицируемы.

Стало понятно, что это и есть новые, доселе неизвестные элементы. Серьезное влияние спектроскопия оказала на становление нынешнего вида металлургической и машиностроительной промышленности, атомной индустрии, сельское хозяйство, где стала одним из главных инструментов систематического анализа.

Огромное значение спектроскопия приобрела в астрофизике

Спровоцировав колоссальный скачок в понимании структуры Вселенной и утверждении того факта, что все сущее состоит из одних и тех же элементов, которыми, в том числе, изобилует и Земля. Сегодня метод спектрального анализа позволяет ученым определять химический состав находящихся за миллиарды километров от Земли звезд, туманностей, планет и галактик – эти объекты, естественно, не доступны методикам прямого анализа ввиду своего большого удаления.

С помощью метода абсорбционной спектроскопии возможно изучение далеких космических объектов, не обладающих собственным излучением. Это знание позволяет устанавливать важнейшие характеристики космических объектов: давление, температуру, особенности структуры строения и многое другое.

Свет - электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом, воспринимаемое человеческим глазом. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра. Одной из характеристик света является его цвет, который для монохроматического излучения определяется длиной волны, а для сложного излучения - его спектральным составом.

Осн. источник света - солнце. Излучаемый им свет принято считать белым. От солнца идет свет с разной длиной волны.

Свет имеет температуру, которая зависит от мощности светового излучения. В свою очередь мощность зависит от длины волны.

Свет от лампы накаливания кажется белым, но его спектр смещен в сторону красного.

Свет от люминесцентной лампы смещен в сторону фиолетовой части спектра, имеет голубоватую окраску и большую цветовую температуру

Свет солнечного света в высокогорной местности смещен в сторону фиолетовых волн. Это обусловлено разряженной атмосферой на большой высоте.

В песчаной пустыне спектр будет смещен в сторону красных волн, т.к. к солнечному свету добавляется излучение раскаленного песка.

При осуществлении съемки необходимо учитывать данные факты, знать спектр имеющегося светового излучения для того, чтобы получить качественный снимок с оттенками, имеющимися в оригинале.

Т.о. от разных источников света идут фотоны разной длины.

Цвет - ощущение, вызываемое в глазах и мозгу человека светом различных длин волн и интенсивности.

Излучение разной интенсивности объективно существует и вызывает ощущение определенного цвета. Но само по себе оно цвета не имеет. Цвет возникает в органах зрения человека. Он не существует независимо от них. Поэтому его нельзя считать объективной величиной.

Для описания цвета применяются субъективные качественные и количественные оценки его характеристик.

Причинами возникновения цветовых ощущений являются электромагнитное излучение, свет, объективные характеристики которого связаны с субъективными характеристиками цвета, его насыщенностью, тоном, яркостью.

Цветовой тон субъектив. обусловленный свойствами зрительного восприятия человека, света, опр.волны интенсивности.

Температура, при которой абсолютно черное тело излучает свет такого же спектрального состава, как рассматриваемый свет, называется цветовой температурой. Она указывает только на спектральное распределение энергии излучения, а не на температуру источника. Так, свет голубого неба соответствует цветовой температуре около 12 500-25 000 К, т е. гораздо выше температуры солнца. Цветовая температура выражается в Кельвинах (К).

Понятие цветовой температуры применимо только к тепловым (раскаленным) источникам света. Свет электрического разряда в газах и парах металлов (натриевые, ртутные, неоновые лампы) не может быть охарактеризован величиной цветовой температуры.

Вспомните: солнечный летний день — и вдруг на небе появилась тучка, пошел дождик, который будто «не замечает», что солнце продолжает светить. Такой дождь в народе называют слепым. Дождик еще не успел закончиться, а на небе уже засияла разноцветная радуга (рис. 13.1). Почему она появилась?

Раскладываем солнечный свет в спектр.

Еще в древности было замечено, что солнечный луч, пройдя сквозь стеклянную призму, становится разноцветным. Считалось, что причина этого явления — в свойстве призмы окрашивать свет. Так ли это на самом деле, выяснил в 1665 г. выдающийся английский ученый Исаак Ньютон (1643-1727), проведя серию опытов.

Рис. 13.1. Радугу можно наблюдать, например, в брызгах фонтана или водопада

Чтобы получить узкий пучок солнечного света, Ньютон сделал небольшое круглое отверстие в ставне. Когда перед отверстием он устанавливал стеклянную призму, на противоположной стене появлялась разноцветная полоска, которую ученый назвал спектром. На полоске (как и в радуге), Ньютон выделил семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый (рис. 13.2, а).

Затем ученый с помощью экрана с отверстием выделял из широкого разноцветного пучка лучей узкие одноцветные (монохроматические) пучки света и снова направлял их на призму. Такие пучки отклонялись призмой, но уже не раскладывались в спектр (рис. 13.2, б). При этом больше других отклонялся пучок фиолетового света, а меньше других — пучок красного света.

Результаты опытов позволили Ньютону сделать следующие выводы:

1) пучок белого (солнечного) света состоит из света разных цветов;

2) призма не «окрашивает» белый свет, а разделяет его (раскладывает в спектр) из-за разного преломления световых пучков разного цвета.

рис. 13.2. Схема опытов И. Ньютона по выяснению спектрального состава света

Сравните рис. 13.1 и 13.2: цвета радуги — это и есть цвета спектра. И это не удивительно, потому что на самом деле радуга — огромный спектр солнечного света. Одна из причин появления радуги состоит в том, что множество маленьких капелек воды преломляют белый солнечный свет.


Узнаём о дисперсии света

Опыты Ньютона продемонстрировали, в частности, что, преломляясь в стеклянной призме, пучки фиолетового света всегда отклоняются больше, чем пучки красного света. Это означает, что для световых пучков разного цвета показатель преломления стекла — разный. Именно поэтому пучок белого света раскладывается в спектр.

Явление разложения света в спектр, обусловленное зависимостью показателя преломления среды от цвета светового пучка, называют дисперсией света.

Для большинства прозрачных сред наибольший показатель преломления имеет фиолетовый свет, наименьший — красный.

Световой пучок какого цвета — фиолетового или красного — распространяется в стекле с большей скоростью? Подсказка:вспомните, как показатель преломления среды зависит от скорости распространения света в этой среде.

Характеризуем цвета

В спектре солнечного света традиционно выделяют семь цветов, можно выделить и больше. Но вы никогда не сможете выделить, например, коричневый или сиреневый цвет. Эти цвета являются составными— они образуются в результате наложения (смешения) спектральных (чистых) цветовв разных пропорциях. Некоторые спектральные цвета при наложении друг на друга образуют белый цвет. Такие пары спектральных цветов называют дополнительными(рис. 13.3).

Для зрения человека особое значение имеют три основных спектральных цвета — красный, зеленый и синий: при наложении эти цвета дают самые разнообразные цвета и оттенки.

На наложении трех основных спектральных цветов в разных пропорциях основано цветное изображение на экранах компьютера, телевизора, телефона (рис. 13.4).

Рис. 13.5. Разные тела по-разному отражают, преломляют и поглощают солнечный свет, и благодаря этому мы видим окружающий мир разноцветным

Выясняем, почему мир разноцветный

Зная, что белый свет является составным, можно объяснить, почему окружающий мир, освещенный только одним источником белого света — Солнцем, мы видим разноцветным (рис. 13.5).

Так, поверхность листа офисной бумаги одинаково хорошо отражает лучи всех цветов, поэтому лист, освещенный белым светом, кажется нам белым. Синий рюкзак, освещенный тем же белым светом, преимущественно отражает лучи синего цвета, а остальные поглощает.

Как вы думаете, какой цвет преимущественно отражают лепестки подсолнечников? листья растений?

Синий свет, направленный на красные лепестки розы, почти полностью будет поглощен ими, так как лепестки отражают преимущественно красные лучи, а остальные — поглощают. Поэтому роза, освещенная синим светом, будет казаться нам практически черной. Если же синим светом осветить белый снег, он будет казаться нам синим, ведь белый снег отражает лучи всех цветов (в том числе синие). А вот черная шерсть кота хорошо поглощает все лучи, поэтому кот будет казаться черным при освещении любым светом (рис. 13.6).

Обратите внимание! Поскольку цвет тела зависит от характеристики падающего света, в темноте понятие цвета не имеет смысла.

Рис. 13.6. Цвет тела зависит как от оптических свойств его поверхности, так и от характеристик падающего света


Подводим итоги

Пучок белого света состоит из света разных цветов. Выделяют семь спектральных цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Показатель преломления света, а значит, скорость распространения света в среде зависят от цвета светового пучка. if Зависимость показателя преломления среды от цвета светового пучка называют дисперсией света. Мы видим окружающий мир разноцветным благодаря тому, что разные тела по-разному отражают, преломляют и поглощают свет.

Контрольные вопросы

1. Опишите опыты И. Ньютона по выяснению спектрального состава света.

2. Назовите семь спектральных цветов. 3. Световой пучок какого цвета преломляется в веществе больше других? меньше других? if 4. Дайте определение дисперсии света. Какое природное явление связано с дисперсией? 5. Какие цвета называют дополнительными? 6. Назовите три основных цвета спектра. Почему их так называют? 7. Почему окружающий мир мы видим разноцветным?

Упражнение № 13

1. Какими будут казаться черные буквы на белой бумаге, если смотреть на них сквозь зеленое стекло? Каким при этом будет казаться цвет бумаги?

2. Свет каких цветов проходит сквозь синее стекло? поглощается им?

3. Через стекло какого цвета нельзя увидеть текст, написанный фиолетовыми чернилами на белой бумаге?

4. В воде распространяются световые пучки красного, оранжевого и голубого цветов. Скорость распространения какого пучка наибольшая?

5. Воспользуйтесь дополнительными источниками информации и узнайте, почему небо голубое; почему Солнце на закате часто бывает красным.

Экспериментальное задание

«Творцы радуги». Наполните неглубокий сосуд водой и поставьте его у светлой стены. На дне сосуда разместите под углом плоское зеркало (см. рисунок). Направьте на зеркало пучок света — на стене появится «солнечный зайчик». Рассмотрите его и объясните наблюдаемое явление.

Физика и техника в Украине

киевский национальный университет им. тараса Шевченко (КНУ) основан в ноябре 1833 г. как Императорский университет Святого Владимира. Первый ректор университета — выдающийся ученый-энциклопедист Михаил Александрович Максимович.

С КНУ связаны имена известных ученых — математиков, физиков, кибернетиков, астрономов: Д. А. Граве, М. Ф. Кравчука, Г. В. Пфейффера, Н. Н. Боголюбова, В. М. Глушкова, А. В. Скорохода, И. И. Гихмана, Б. В. Гнеденко, В. С. Михалевича, М. П. Авенариуса, Н. Н. Шиллера, И. И. Косоногова, А. Г. Ситенко, В. Е. Лашкарева, Р. Ф. Фогеля, М. Ф. Хан-дрикова, С. К. Всехсвятского.

В мире известны научные школы КНУ — алгебраическая, теории вероятностей и математической статистики, механики, физики полупроводников, физической электроники и физики поверхности, металлогеническая, оптики новых материалов и др. С 2008 г. ректор КНУ — академик НАНУ и НАПНУ, Герой Украины Леонид Васильевич Губерский.

Это материал учебника

Выполнил:Камалетдинов

План

Свет как экологический фактор

Спектральный состав света и понятие о ФАР

Распределение света по частям спектра и поглощение ее зеленым листом

Свет как экологический фактор

Различные местообитания на Земле имеют разную освещенность. От низких географических широт к высоким возрастает продолжительность дня в течение вегетационного периода. Значительные различия в условиях освещения наблюдаются между нижними и верхними поясами гор. Своеобразный световой климат создается в лесу, причем различно затенение, созданное кронами деревьев или густым высоким травостоем. Под пологом высоких растений свет не только ослабевает, но и меняет свой спектр. В лесу он

имеет два максимума - в красных и зеленых лучах.

В водной среде затененность зелено-голубая, и растения водные, как и лесные, являются теневыми растениями. Убывание силы света в воде с глубиной может идти в разном темпе, что зависит от степени

прозрачности воды. Изменение состава света отражается на распределении групп водорослей, имеющих различную окраску. Ближе к поверхности растут зеленые водоросли, глубже - бурые, на

больших глубинах - красные.

Свет малой интенсивности может проникать в почву,

Свет имеет важнейшее физиологическое значение в жизни зеленых растений, так как только на свету возможен процесс фотосинтеза.

Все наземные растения земного шара ежегодно образуют в процессе фотосинтеза около 450 млрд. т органического вещества, т. е. примерно по 180 т в расчете на каждого жителя Земли.

Разные растения неодинаково реагируют на изменение освещенности. У теневых растений фотосинтез активно протекает при малой интенсивности света, а дальнейшее повышение освещенности не усиливает его. У светолюбивых растений максимальный фотосинтез наблюдается при полной освещенности. Световые растения при недостатке света развивают слабую механическую ткань, поэтому стебли у них вытягиваются за счет увеличения длины междоузлий и полегают.

Освещенность влияет на анатомическое строение листьев. Световые листья толще и грубее теневых. Они имеют более толстую кутикулу, более толстостенную кожицу, хорошо развитые механические и проводящие ткани. Хлоропластов в клетках световых

Спектральный состав света и понятие о ФАР

Важнейшей особенностью процесса фотосинтеза является то, что он протекает с использованием энергии солнечного света.

Лучистая энергия - это энергия электромагнитных колебаний, которая характеризуется определенной длиной волны, частотой колебания и скоростью

распространения.

Характеристика отдельных участков спектра

Согласно первому закону фотохимии, только поглощенные лучи могут быть использованы в химических реакциях. В том случае, если реагирующие молекулы бесцветны и не поглощают свет, фотохимические реакции могут идти только в присутствии специальных веществ

Сенсибилизаторов. Сенсибилизаторы - вещества, поглощающие энергию света и передающие ее на ту или иную бесцветную молекулу

Фотохимические реакции возможны в пределах величины квантов от 147 до 587 кДж/моль. Таким образом, в квантах красного света (176 кДж/моль hv) заключено достаточное количество энергии для осуществления фотохимической реакции. Вместе с тем при поглощении квантов синего света (261 кДж/моль hv) реагирующие молекулы будут получать избыток энергии, который выделяется в виде тепла или света.

Молекулы будут вступать в реакцию под влиянием разного количества энергии. Использование энергии зависит от качества света. Это было подтверждено исследованиями О. Варбурга. В этих исследованиях впервые была установлена величина фотосинтетической работы, производимой за счет 1 Дж поглощенной лучистой энергии. Эта величина возрастает по мере увеличения длины волны.

Фотосъемка происходит как при естественном дневном свете, так и при источниках искусственного света: лампах накаливания, газоразрядных импульсных лампах, лампах-вспышках и др. Все эти источники сильно отличаются друг от друга по спектральному составу света, На выбор источника света влияют не только конкретные условия съемки, но и светотехнические характеристики источников. Если при съемке на черно-белой пленке прежде всего обращается внимание на интенсивность светового потока источника света и в меньшей степени на его спектральный состав, то при съемке на цветной пленке решающее значение имеет спектральный состав света. От спектрального состава зависит передача тональных цветов при съемке на черно-белой пленке и натуральных - при съемке цветной, выбор цвето-чувствительного материала и светофильтров.

При изменении цветности источника света изменяется и шкала тонов, которыми передаются цвета объекта. Спектральный состав света, его цветовая температура должны быть сбалансированы с цветочувствительностью негативного материала. Только в этом случае возможна правильная цветопередача.

Дневной свет относится к группе температурных ис точников света.

Земная поверхность и все, что на ней находится, освещаются либо смешанным, суммарным светом (суммарной радиацией) прямого солнечного и рассеянного излучения, идущего от небосвода и облаков, либо в пасмурную погоду, когда солнце закрыто облаками, рассеянным светом неба. Места, куда не проникает прямой солнечный свет, освещаются только рассеянным светом неба (рис. 6).

И з табл. 3 видно, как изменяется спектральный состав солнечного излучения в зависимости от высоты солнца.

Особенно быстро солнце поднимается в утренние и опускается в вечерние часы. Ориентировочные изменения цветовых температур на протяжении дня и в зависимости от состояния неба приведены в табл. 4.

Но закономерность колебаний спектрального состава и интенсивности излучений дневного света то и дело нарушается из-за происходящих в атмосфере изменений метеорологических условий (облачность, высота, степень и плотность которой весьма неустойчивы, влажность и запыленность воздуха, дымка, туман и др.). Эти случайные переменные факторы находятся в такой тесной связи и так взаимно переплетаются, что учесть влияние каждого из них весьма затруднительно.

Когда солнце поднимается над горизонтом или заходит, оно выглядит красным шаром с цветовой температурой около 1800 К. В это время на пути к земле солнечные лучи пронизывают, воздушную оболочку, окружающую нашу планету, и проходят самый длинный путь в атмосфере. Длина пути солнечных лучей в атмосфере имеет большое значение, особенно для коротковолновой части спектра. В потоке лучей солнца, прошедших самый длинный путь в толще воздуха, отсутствуют сине-фиолетовые лучи: они отфильтровываются слоем воздуха, который, изменяя спектральный состав солнечного света, действует как желтый фильтр переменной плотности. При частичной облачности, когда солнце просвечивает сквозь облака или находится в дымке, коротковолновая часть радиации также ослабевает.

Солнечная радиация в результате многократных отражений молекулами газов, входящих в состав воздуха, претерпевает молекулярное рассеивание. Видимый цвет воздушного слоя над землей, цвет неба и объясняются сильным молекулярным рассеиванием коротковолновой части солнечной радиации. Молекулярное рассеивание является причиной возникновения воздушной голубой дымки.

В результате рассеивания атмосферой части солнечного света само небо становится источником света (вторичным) с ясно выраженным цветом. В спектре голубого неба наблюдается значительное преобладание синих и фиолетовых цветов, содержатся и все остальные цвета, но в значительно меньшей степени (рис. 6, кривая 3).

Рассеянный свет неба также испытывает сильные колебания цветовой температуры в зависимости от того, исходит ли свет от синего безоблачного неба или от неба, затянутого дымкой или облаками.

В воздухе постоянно находятся во взвешенном состоянии в различных количествах механические примеси - мутящие частицы (воздух в толстых слоях можно рассматривать как мутную среду): пылинки, поднимаемые восходящими "потоками воздуха и ветром, мелкие капли воды, водяные пары, которые способствуют возникновению дымки. Количество их с высотой убывает - они не поднимаются выше 1000 м. Когда размеры мутящих частиц становятся соизмеримыми с длинноволновыми световыми волнами или даже начинают превышать их длину, возникает аэрозольное рассеивание, при котором отражаются лучи всего спектра. При этом, отраженный свет становится белым и, как следствие, небо приобретает белесоватый цвет. Разбеливанию неба способствует и повышенная влажность воздуха, которая является причиной образования дымки, белой с голубым оттенком.

При появлении облаков к свету неба примешивается еще и белый свет, отраженный от облаков. Крупные капли воды, из которых состоят облака, рассеивают лучи всего спектра.

Вблизи крупных городов из-за большой запыленности самых нижних слоев воздуха, появления в них испарений, дыма и пыли небо у горизонта окрашивается в серый или белый цвет разных оттенков.

По мере того как солнце поднимается все выше и путь лучей в атмосфере становится короче, радиация из красной, красноватой через желтую переходит в желтоватую. Одновременно изменяет свой цвет и небо. Голубоватое вначале, оно вблизи солнца при восходе и заходе окрашивается в красноватые тона и по мере подъема солнца переходит в голубое. Если воздух прозрачный, небо приобретает синий цвет.

Вскоре после восхода солнца и незадолго до его захода цветовая температура поднимается до 3000-3200К, что дает возможность съемки на цветной пленке типа ЛН. Примерно через час после восхода при высоте солнца цветовая температура его поднимается до 3500 К. Радиация в это время состоит из половины красных, одной четверти желтых лучей, а оставшаяся четверть приходится на зеленые, синие и фиолетовые. Тени, начиная от самых длинных, быстро уменьшаются, а при высоте солнца 15° становятся почти равными четырехкратной длине предмета. Во второй половине дня, когда солнце опускается ниже 13-15q, а также по мере дальнейшего движения к горизонту и ослабления сине-фиолетовых лучей радиация приобретает ясно выраженные оттенки от желтого к красному. Становятся длиннее и тени, Горизонтальные поверхности в это время освещаются главным образом небосводом и под влиянием увеличивающегося действия рассеянного света неба синеют, а вертикальные - в большей степени освещаются желтым светом солнца.

Путь, проходимый его лучами в атмосфере, сильно укорачивается и большая часть коротковолнового излучения достигает земной поверхности. Суммарный свет солнца и неба при безоблачном небе стабилизируется, становится белым и почти не изменяется с высотой солнца в это время суток.

Это наилучшее время для съемки, особенно на цветной пленке ДС, сбалансированной для цветовой температуры 5600-5800 К. Если даже некоторые изменения в цветовой температуре света в это время и происходят, то для черно-белой съемки они вообще не имеют значения, а для цветной не столь значительны, чтобы заметно ухудшить цветопередачу. Изменение цветовой температуры дневного света в течение дня показано на рис. 7.

Которого она упала

А знание высоты солнца над горизонтом позволяет определить цветовую температуру дневного света.

Для каждого времени года и дня можно найти длину тени с помощью несложного прибора - указателя (индикатора) тени. На картоне укрепляется стерженек или булавка определенной длины, например I см. Из точки крепления, как из центра, наносятся полуокружности (рис. 8) радиусами, равными 0,5-6-кратной высоте выступающего стержня. При горизонтальном положении картона тень от стержня и укажет высоту солнца.

(в Киеве до 63°). С приближением солнца к зениту свет приобретает заметный синеватый оттенок, цветовая температура поднимается до 6000-7000 К. Это время (для Киева 11.00- 13.00) не подходит для фотосъемок и по художественным соображениям.

Солнце является эффективным источником инфракрасного излучения. Освещенность, создаваемая инфракрасной частью излучения солнца, зависит от положения солнца на небе и степени прозрачности атмосферы. В табл. 6 приведено в процентах излучение ультрафиолетового и инфракрасного участков солнечного потока на протяжении дня для прозрачной атмосферы. Излучение солнечного потока в пределах от 3 до 70 принято за 100%.

Из таблицы видно, что с подъемом солнца интенсивность инфракрасного излучения заметно ослабевает.

Лампы накаливания также относятся к группе температурных источников света. Простота и удобство пользования обеспечили им наибольшее распространение при фото- и киносъемке. Существуют различные типы электрических ламп накаливания. Это и бытовые осветительные лампы накаливания разной мощности, фотолампы, зеркальные, у которых часть колбы параболоидной формы покрыта зеркальным слоем алюминия, прожекторные (ПЖ), кинопрожекторные (КПЖ), проекционные. В последние годы широко используются галогенные (йодно-кварцевые) лампы.

В бытовых лампах максимум излучения находится в инфракрасной области спектра, в видимой области преобладают желто-красные лучи. Как видно из спектральной характеристики (см. рис. 6), излучение лампы накаливания в красной области спектра превосходит излучение в сине-фиолетовой в 5-6 раз. Поэтому цветопередача на черно-белой пленке при свете ламп накаливания резко отличается от цветопередачи при дневном свете.

При номинальном напряжении ПО, 127 и 220В у маломощных ламп накаливания (50-200 Вт) цветовая температура света, излучаемого вольфрамовой нитью, равна 2600-2800 К, у более мощных (500 и 1000 Вт) - около 3000 К, У еще более мощных (свыше 1000 Вт) цветовая температура превышает 3000 К. Маломощные бытовые лампы, обладающие низкой цветовой температурой, не пригодны для цветной съемки.

У зеркальных ламп накаливания (ЗК) цветовая температура 2800-3000К, у предназначенных для цветной съемки - 3200-3300 К. Цветовая температура прожекторных ламп (ПЖ) колеблется от 3000 К у ламп мощностью 500 Вт до 3200 К У ламп мощностью 5000-10 000 Вт. Предназначенные для цветных съемок лампы КГЩ и ПЖК обладают одинаковой цветовой температурой для всех мощностей. С увеличением температуры накала вольфрамовой нити лампы повышается ее цветовая температура.

Фотолампы, предназначенные для фотосъемки, от обычных отличаются тем, что горят при повышенном напряжении, с большим перекалом. Благодаря этому значительно не только увеличивается сила света, но и повышается цветовая температура. По сравнению с фотолампами свет бытовых ламп заметно краснее.

Постоянство цветовой температуры ламп накаливания зависит от постоянства подводимого к лампе напряжения. Колебания напряжения изменяют температуру накала вольфрамовой нити и, следовательно, цветовую температуру излучения.

При съемке на черно-белой пленке постоянство цветовой температуры ламп накаливания не столь существенно, как на цветной. На обратимой цветной пленке отклонение от нормальной цветовой температуры на 50-100К уже заметно. Колебания цветовой температуры в зависимости от изменения напряжения приведены на рис. 9. Номинальное напряжение принято за 100%. Например, при снижении напряжения до 90% от номинального цветовая температура снижается до 96% от исходной. Такое снижение напряжения уменьшает цветовую температуру лампы с 3200 до 3072 К.

В процессе горения в результате распыления нити ее поверхность уменьшается и на внутренней стороне колбы образуется пленка. В излучении такой лампы всегда больше красных лучей, чем в новой такого же типа.



© dagexpo.ru, 2024
Стоматологический сайт