Старт в науке

21.09.2019

Урок № 45 «Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли»

Цель урока:

Образовательная: организовать работу учащихся по осмыслению понятия постоянного магнита, магнитного поля постоянного магнита, магнитного поля Земли посредством самостоятельной работы учащихся.

Воспитательная: содействовать воспитанию у учащихся навыков самостоятельной работы.

План урока:

1.Оргмомент;

2. Мотивация

3. Изучение нового материала;

4. Закрепление изученного материала;

5. Самостоятельная работа;

6. Итог урока;

7. Домашнее задание.

Ход урока:

1. Оргмомент

2. Мотивация

Историческая справка

Трудно сказать, когда люди обнаружили магнитные явления и стали их использовать. Во всяком случае, еще более 4000 лет назад они были известны китайцам.

Откуда же произошло слово “магнит”? История магнита насчитывает свыше двух с половиной тысяч лет.

Старинная легенда рассказывает о пастухе имени Магнус. Он однажды обнаружил, что железный наконечник его палки и гвозди сапог притягиваются к черному камню. Этот камень стали называть камнем “Магнуса” или просто “магнитом”. Но известно и другое предание о том, что слово “магнит” произошло от названия местности, где добывали железную руду (холмы Магнези в Малой Азии). Таким образом, за много веков до н. э. было известно, что некоторые каменные породы обладают свойством притягивать куски железа. Об этом упоминал в VI в до н. э. греческий физик и философ Фалес. В те времена свойства магнитов казались волшебными. В той же древней Греции их странное действие связывали напрямую с деятельностью богов; иначе магнит называли “камнем Геркулеса”.

Вот как описывал свойство этого камня древнегреческий мудрец Сократ: “Этот камень не только притягивает железное кольцо – он одаряет своей силой и кольцо, так что в свою очередь может притягивать др. кольцо, и таким образом может висеть друг на друге множество колец или кусков железа; это происходит благодаря силе магнитного камня.

Магнит был хорошо известен и в древней Индии, и в древнем Китае – именно там впервые догадались, что намагниченной иглой можно пользоваться как указателем севера, так и юга.

Через арабских купцов с принципом действия компаса познакомилась Европа. В течение XII в. этот прибор широко распространился. Со временем компас стали ставить на корабли, брать с собой в путешествия, использовать при составлении географических карт. В сочетании с ориентированием по звездам компас превратился в незаменимое навигационное средство.

Как устроен магнит? Что это такое? На сегодняшнем уроке мы с вами узнаем это.

3. Изучение нового материала

1. Беседа с учащимися о постоянных магнитах.

Что же такое постоянный магнит и вокруг любого ли магнита существует магнитное поле?

В природе и технике существуют тела, которые длительное время сохраняют намагниченность.

Даём определение : постоянные магниты (магниты)- это тела, длительное время сохраняющие намагниченность.

Работа с учебником: как объясняет намагниченность железа французский учёный Ампер? Его гипотеза.

(слушаем объяснения ребят, уточняем)

Магниты можно разделить на 2 типа: полосовой и подковообразный.

Всякий магнит состоит из множества крошечных магнитиков, и у каждого магнитика есть оба полюса - и северный, и южный.

Ученым удалось доказать, что магнит устроен именно так. Но, оказывается, крошечные магнитики - их называют доменами - есть даже в ненамагниченном железе. А почему же оно не проявляет своих магнитных свойств, хотя прямо-таки набито магнитиками-доменами? Дело в том, что пока кусок железа не намагнитили, его домены ориентированы беспорядочно: «кто в лес, кто по дрова». А вот когда этот кусок намагнитят, все домены поворачиваются, словно миниатюрные магнитные стрелочки: северными полюсами в одну сторону, а южными - в другую.

Ребята приводят примеры из жизни, где наблюдали действие постоянных магнитов.

Рассматриваем постоянные магниты: дугообразные и полосовые.

Проведем опыт: положим магнит и на бумагу сверху насыпаем железные опилки. Где больше всего скопилось опилок? (по краям)

Эти точки называются полюсами.

Полюс- это место магнита, где наиболее сильно проявляются магнитные свойства.

Находим полюса: северный и южный.

Учащиеся проводят опыты: тела из каких металлов хорошо притягиваются магнитом, а какие плохо, какие вообще не притягиваются?

Вывод : Хорошо притягиваются: чугун, сталь, железо, некоторые сплавы, слабее никель, кобальт.

А где в природе встречаются естественные магниты – железная руда (магнитный железняк)

Каковы же свойства магнитов и чем определяются свойства магнитов? Для этого проведем практическую работу

Оборудование: магниты, магнитные стрелки, металлические мелкие детали

Поднесите магниты к металлическим предметам. Что вы наблюдаете? Обязательно ли близко надо поднести магнит, чтобы они притянулись?

Поднесите магниты друг к другу. Как взаимодействуют магниты?

Практическим путём ребята выясняют взаимодействие полюсов постоянных магнитов (разноимённые отталкиваются, одноимённые притягиваются)

Вывод делают учащиеся - свойства магнитов перечислить.

Модельный ответ :

если магнитную стрелку приблизить к другой такой же стрелке, то они повернутся и установятся друг против друга противоположными полюсами;

разноименные магнитные полюсы притягиваются, одноименные отталкиваются.

Почему куски, железные опилки притягиваются к магниту? Подобно тому, как заряженная стеклянная палочка притягивает к себе куски бумаги, подобно этому магнит притягивает к себе железные опилки, металлические предметы. Вокруг любого магнита существует магнитное поле, им и объясняется взаимодействие магнитов. Магнитное поле одного магнита действует на другой магнит и наоборот.

А что же представляет из себя магнитное поле?

Свойства магнитного поля

Магнитное поле порождается только движущимися зарядами, в частности электрическим током.

В отличие от электрического поля магнитное поле обнаруживается по его действию на движущиеся заряды (движущиеся заря­женные тела).

Магнитное поле, как и электрическое поле, материально, т.к. оно действует на тела, и следовательно, обладает энергией.

Магнитное поле обнаруживается по действию на магнитную стрелку.

2. Задание : выяснить опытным путём какова картина магнитного поля постоянного магнита?

Ребята проводят опыты с различными видами магнитов:

Берут два полосовых магнита и укладывают на лист с опилками навстречу одноимёнными полюсами.

Берут два полосовых магнита и укладывают на лист с железными опилками навстречу разноимёнными полюсами.

Проделывают такие же опыты, беря полосовые и дугообразные магниты.

По каждому опыту делают зарисовку в тетради.

Делают вывод: магнитные линии- замкнутые линии, вне магнита магнитные линии выходят из северного полюса магнита и входят в южный.

С давних времён известно, что Земля представляет собой естественный постоянный магнит. Значит вокруг Земли существует магнитное поле. Что является источником магнитного поля на нашей планете? Происхождение магнетизма Земли до сих пор является научной проблемой, полностью не решённой. Предполагается, что земной магнетизм связан с жидким ядром, в котором возможна циркуляция электрических токов.

Ребятам предлагается самостоятельная работа:

Найти материалы о магнитном поле Земли и ответить на вопросы:

1. Как расположены магнитные линии магнитного поля Земли?

2. Где расположены магнитные полюса Земли и совпадают ли они с географическими полюсами?

3. Что такое магнитные бури?

4. Какие области называют магнитными аномалиями и где они расположены?

5. Какова роль магнитного поля для планеты Земля?

Ребята делают вывод о магнитном поле Земли:

Земля обладает значительным магнитным полем.

Магнитное поле Земли состоит из двух составляющих: основная (постоянная) составляющая, которая не меняется со временем, вторая составляющая- переменная, зависящая от процессов в основном от процессов на Солнце.

Существуют ещё местные магнитные поля, возникающие за счёт наличия в земной коре залежей магнитного железняка.

Магнитное поле Земли имеет два полюса: северный и южный.

магнитные полюса Земли не совпадают с географическими полюсами.

Магнитное поле Земли защищает поверхность Земли от космического излучения.

4. Закрепление изученного материала

Работа с учебником

Заполните таблицу, используя материал из учебника. Постоянные магниты. Магнитное поле постоянных магнитов.

Постоянный магнит – это

Как объяснял намагниченность железа и стали французский ученый Ампер?

Как в наше время объясняется намагниченность железа и стали?

Что такое северный и южный полюс магнита?

Что такое естественные магниты?

5. Самостоятельная работа

1. Когда к магнитной стрелке поднесли один из полюсов постоянного магнита, то южный полюс стрелки оттолкнулся. Какой полюс поднесли?

2. На рисунке изображен полосовой магнит АВ и его магнитное поле. Какой из полюсов северный и какой южный?

3. Северный магнитный полюс земли расположен у … географического полюса, а южный у …

4. Одноименными или разноименными полюсами образован магнитный спектр, изображенный на рисунке?

Модельный ответ :

1 вопрос: южный.

2 вопрос: В – северный, А – южный.

3 вопрос: южного, северного.

4 вопрос: разноименными.

6. Итоги урока

1. Вокруг постоянного магнита, а также вокруг проводника с током существует магнитное поле, действующее на любой магнит, который в нем находится.

2. Линии магнитного поля замкнуты. Там, где они выходят из магнита, - его северный полюс, там, где они входят в магнит, - южный.

3. Устройство, состоящее из железного сердечника, обмотанного изолированным проводом, по которому течет ток, называют электромагнитом.

7. Домашнее задание §. найти материал о магнитном поле Земли.

Прежде чем углублять наши знания о магнитных явлениях, напомним некоторые известные факты.

1. В природе встречаются некоторые железные руды, обладающие способностью притягивать к себе находящиеся поблизости небольшие железные предметы, например железные опилки или гвозди (рис. 192,а). Если кусок такой руды подвесить на нити, он установится по длине в направлении с севера на юг (рис. 192,б). Куски такой руды называются естественными магнитами.

Рис. 192. Естественный магнит: а) магнитная руда притягивает к себе железные опилки; б) магнитная руда, подвешенная на нити, устанавливается определенным образом – с севера на юг ()

2. Кусок железа или стали, находящийся вблизи магнита, сам намагничивается, т. е. приобретает способность притягивать к себе другие железные предметы (рис. 193). Магнитные свойства этого куска железа или стали проявляются тем сильнее, чем ближе он находится к магниту. Особенно сильно намагничивание в том случае, когда железо притянуто к магниту вплотную.

Рис. 193. Железный гвоздь, поднесенный к магниту, сам намагничивается и притягивает к себе железные опилки

3. После удаления магнита намагнитившийся под его действием кусок железа или стали теряет значительную часть своих магнитных свойств, но все же остается в большей или меньшей мере намагниченным. Он превращается, таким образом, в искусственный магнит, обладающий всеми теми же свойствами, что и магнит естественный. В этом можно убедиться при помощи такого простого опыта. На рис. 194,а стальной брусок 1, притянутый к концу магнита, сам намагнитился настолько сильно, что удерживает груз, состоящий из нескольких таких же брусков 2-5. В свою очередь каждый из этих брусков удерживает силами магнитного притяжения все бруски, расположенные ниже его. Таким образом, вся цепочка висит, удерживаясь силами магнитного притяжения, которые уравновешивают силы тяжести, действующие на бруски. Если мы немного отодвинем магнит, придерживая пальцами верхний брусок, то цепочка рассыплется: бруски размагничиваются настолько, что каждый из них уже не в состоянии удержать нижние бруски (рис. 194,б). Однако каждый из брусков сохранил известную долю намагничивания. Достаточно внести какой-нибудь из этих брусков в железные опилки, и мы увидим, что они пристанут к его концам.

Рис. 194. Намагничивание железных предметов возрастает по мере приближения их к магниту: а) брусок 1, притянутый к магниту вплотную, намагничивается настолько сильно, что удерживает всю цепочку 2-5; б) магнит отодвинут от бруска 1, намагничивание ослабло и цепочка распалась

То намагничивание, которое имело место, когда кусок железа находился вблизи магнита, называют временным намагничиванием, в отличие от постоянного, или остаточного, намагничивания, которое сохраняется и после удаления магнита.

Опыты такого рода показывают, что остаточное намагничивание, вообще говоря, значительно меньше временного; у мягкого железа оно составляет лишь небольшую долю его.

4. Как временное, так и остаточное намагничивание различны для разных сортов железа и стали. Временное намагничивание мягкого, отожженного железа значительно сильнее, чем неотожженного железа или стали. Напротив, остаточное намагничивание стали, особенно некоторых специальных сортов ее, например содержащих примесь кобальта, значительно больше, чем остаточное намагничивание мягкого железа. Таким образом, если мы возьмем два одинаковых бруска – один из мягкого железа, другой из стали – и поместим их вблизи одного и того же магнита, то железный брусок намагничивается значительно сильнее, чем стальной. Но когда мы магнит уберем, то железный брусок размагнитится почти полностью, а стальной сохранит заметную долю своего намагничивания. В результате стальной брусок превратится в значительно более сильный постоянный магнит, чем железный. Поэтому постоянные искусственные магниты всегда изготавливают из специальных сортов стали, а не из железа.

5. Искусственные магниты, получаемые путем простого размещения куска стали вблизи магнита или прикосновением его к магниту, довольно слабы. Более сильные магниты получаются, если натирать стальную полосу магнитом в одном направлении. Однако и в этом случае мы всегда получаем магнит более слабый, чем тот, при помощи которого производилось намагничивание. Всякого рода удары и встряхивание во время намагничивания благоприятствуют ему. Напротив, сотрясения готового постоянного магнита, а также резкие изменения его температуры способствуют размагничиванию.

Остаточное намагничивание зависит не только от материала, но и от формы намагничиваемого тела. Сравнительно короткие и толстые бруски из мягкого железа, как мы говорили, размагничиваются после удаления магнита почти полностью. Но если из того же железа мы приготовим проволоку, длина которой в 300-500 раз больше ее диаметра, то эта проволока, не свернутая в бухту или клубок, в значительно большей степени сохраняет свое намагничивание.

112.1. Вертикальный магнит притягивает к себе железный шарик, помещенный на таком расстоянии от магнита, что это притяжение уравновешивает силу тяжести, действующую на шарик, так что он может висеть в воздухе без опоры. Устойчивым будет это равновесие или неустойчивым? Куда будет двигаться шарик, если мы чуть-чуть поднимем или опустим его из положения равновесия?

112.2. Железный кубик, лежащий на гладком стекле, притягивается к магниту, тоже лежащему на этом стекле. Кубик скользит по стеклу. Как он движется: равномерно, равноускоренно или со все возрастающим ускорением?

1226. На столе перемешались железные и деревянные опилки. Можно ли их отделить друг от друга?
Можно, при помощи магнита.

1227. В мастерской рассыпались вперемежку железные и латунные мелкие стружки. Как отделить их друг от друга?
Можно, при помощи магнита. Латунь притягивать не будет.

1228. Если к компасу поднести кусок железа, изменится ли при этом направление стрелки?
Изменятся. Стрелка будет примагничиваться к железу.

1229. В некоторых местностях стрелка компаса отклоняется от направления на север. Одно из таких мест в нашей стране находится вблизи города Курска (Курская магнитная аномалия). Чем вызвано такое поведение стрелки?
Стрелка компаса будет взаимодействовать с большими залежами железной руды расположенными на небольшой глубине.1230. К северному полюсу магнитной стрелки поднесли железный предмет, и стрелка отклонилась от железа. Почему?
Стрелка займет такое положение, при котором большая часть силовых линий будет проходить через кусок железа.

1231. Почему корпус компаса никогда не делают из железа?
Чтобы стрелка взаимодействовала только с магнитным полем Земли, а не с корпусом.

1232. Намагнитьте стальную спицу (или лезвие безопасной бритвы). Испытайте вашим компасом, намагнитилась ли спица. Потом сильно накалите ее в пламени в течение 2-3 минут. Дайте остыть и вновь испытайте компасом. О результатах опыта напишите краткий отчет.
При поднесении намагниченной спицы, стрелка компаса будет отклоняться на одном конце и притягиваться на другом. При нагревании спица размагнитится.

1233. Почему при ударе магнит размагничивается?
При ударе может нарушиться положение доменов которые в магните расположены сонаправленно.

1234. Направление силовой линии магнита указано стрелкой (рис. 135). Определите полюса магнита.

Силовая линия выходит из северного полюса магнита и заходит в южный.

1235. Одна из двух совершенно одинаковых по внешнему виду стальных палочек намагничена. Как узнать, какая из этих палочек намагничена, не имея под рукой никаких других предметов, кроме этих палочек?
Нужно одним концом палочки прикоснуться к середине другой. Намагниченная палочка будет притягивать ненамагниченную.

1236. К северному полюсу магнитной стрелки поднесли кусок железа, вследствие чего стрелка отклонилась от куска железа. Как объяснить данное явление?
См. 1221

1237. Можно ли при помощи магнитной стрелки выяснить, намагничен ли стальной стерженек?
Можно. Одноименные полюса (стрелки и стерженька) должны отталкиваться, разноименные – притягиваться.

1238. Можно ли намагнитить стальную полоску так, чтобы оба ее конца имли одинаковые полюса?
Нет. Любой магнит должен иметь два разных полюса.

1239. Существуют ли магниты с одним полюсом?
Нет, не существуют.

1240. Железные опилки, притянувшись к полюсу магнита, образуют гроздья, отталкивающиеся друг от друга. Объясните это явление.
Попадая в магнитное поле, опилки намагничиваются и одноименными полюсами отталкиваются друг от друга.

1241. Тонкие железные пластинки, висящие на нитях рядом, отталкиваются друг от друга, если к ним поднести магнит (рис. 136). Почему?

Попадая в магнитное поле пластинки намагничиваются и одноименными полюсами отталкиваются друг от друга.

1242. В шляпке железного винта, не касаясь его, приблизили южный полюс магнита. Какой полюс появился у заостренного конца винта?
Южный полюс.

1243. Деталь покрыта слоем краски. Можно ли при помощи магнитной стрелки определить, железная она или нет?
Если стрелка будет отклоняться, значит деталь железная.

1244. Намагниченный прут разломали на несколько частей. Какие из полученных кусков окажутся намагниченными сильнее – находившиеся ближе к середине прута или к концам?
Все части прута будут намагничены одинаково.

1245. Большое количество стальных гвоздиков можно намагнитить одним и тем же магнитом. За счет какой энергии происходит намагничиваение этих гвоздиков?
За счет энергии магнитного поля.

1246. Как определить, где север и где юг, пользуясь магнитом?
Если магнит – тоненькая неметаллическая полоска – можно использовать ее как компас.

1247. Какой магнитный полюс находится в Южном полушарии Земли?
Северный.

1248. Почему рельсы, долгое время лежащие в штабелях, оказываются намагниченными?
Рельсы намагничиваются под действием магнитного поля Земли.

1249. Существует ли место на Земле, где стрелка компаса концами показывает на юг?
Северный полюс.

1250. Если на магните не указаны названия полюсов, можно ли определить, какой из полюсов магнита южный, а какой северный? Если да, то как это сделать?
Можно с помощью компаса или магнита с известной полярностью. Одноименные полюса будут отталкиваться, разноименные – притягиваться.

1251. Как расположиться магнитная стрелка в магнитном поле магнита?
Вдоль силовых линий магнитного поля. Своим южным к северному полюсу магнита и наоборот северным к южному.

1252*. Между полюсами магнита поместили железное кольцо (рис. 137). Нарисуйте, как будут направлены силовые магнитные линии.

1253. Оказавшись вблизи сильного магнита, механические часы начинают идти неправильно и иногда только через несколько дней они вновь восстанавливают правильный ход. Как можно объяснить это явление?

1254. Магнитная стрелка расположена под проводом с током. Ток идет с севера на юг. В каком направлении отклонится северный полюс стрелки?

Северный полюс стрелки отклонится в северо-западном направлении.

1255. Провод с током расположен над магнитной стрелкой (рис. 138). В какую сторону отклонится северный конец в момент замыкания ключа в цепи?

Северный конец повернется против часовой стрелки на 90°

1256. Магнитная стрелка расположена под проводом с током (рис. 139). После замыкания ключа в цепи магнитная стрелка отклонилась от начального положения (изображенного на рисунке пунктиром) так, как показано на рисунке. Определите полюсы источника тока.

1257. Провод АВ образует петлю, внутри которой помещена магнитная стрелка (рис. 140). Ток идет так, как показано на рисунке. Будет ли двигаться магнитная стрелка, если да, то куда отклонится северный конец стрелки?


1258. На рисунке 141 по проводу А ток идет от нас, перпендикулярно плоскости рисунка, по проводу В - к нам, перпендикулярно плоскости рисунка. Нарисуйте расположение силовых магнитных линий около проводов А и В.

1259.На рисунке 142 маленькие кружки изображают сечение проводов, а большие круги со стрелками - направление магнитных силовых линий. Определите направление тока в проводниках.

1260. На рисунке 143 изображен проволочный прямоугольник, по которому идет ток в направлении стрелок.
Начертите вокруг каждой из четырех сторон прямоугольника по одной магнитной силовой линии и определите их направление. Если этот проволочный прямоугольник площадью, обращенной к нам, поднести сбоку к северному полюсу стрелки, то как отклонится стрелка?

1261. На рисунке 144 изображены круговые токи. Стрелки показывают направление тока. Определите направление магнитных силовых линий для случаев а и б.

1262. Замкнутый контур с током проявляет свойства постоянного магнита. Какому полюсу соответствует контур с током, изображенный на рисунке 144, а? на рисунке 144, б?

1263. На тонких подводящих проводах подвешен кольцевой проводник с током (рис. 145). Когда к нему поднесли южный магнитный полюс - проводник оттолкнулся. Можно ли на основании этих данных определить направление тока в проводнике?



1264. Две катушки, по которым идет ток, висят рядом на тонких металлических нитях. Катушки притягиваются друг к другу. О чем это говорит?
Ток в катушках идет в разных направлениях.

1265. На рисунке 146 изображен сосуд с серной кислотой. На поверхности плавает пробка, в которую вставлены медная и цинковая пластинки. Пластинки погружены в кислоту. Верхние концы пластинок соединены друг с другом жесткой спиралью. При установлении равновесия будет ли вся система ориентирована в каком-то определенном направлении? Если да, то почему?

В катушке образуется магнитное поле под действием электрического тока. Система повернется своим южным полюсом к северному полюсу Земли, и северным к южному.

1266. На рисунке 147 изображена катушка соленоида. Нарисуйте силовые линии магнитного поля такой катушки.

1267. Если в катушку, по которой идет ток, внести железный сердечник, ее магнитное действие усиливается. Почему?
Железо – ферромагнетик при внесении его в магнитное поле, изменяется ориентация магнитных доменов. Магнитное поле резко усиливается.

1268. На каком конце соленоида будет его северный полюс, если внутрь соленоида вставить железный стержень (рис. 148)?

На конце А

1269. Чем определяется величина магнитного действия электромагнита?
Силой тока в нем, числом витков и величиной сердечника.

1270. На рисунке 149 изображен электромагнит. Нарисуйте полюсы на его концах.

А — южный, В — северный.

1271. Если на совершенно однородный стержень намотать провод так, как изображено на рисунке 150, и пустить ток через обмотку, намагнитится ли железный стержень?

Да, намагнитится.

1272. Два соленоида расположены как показано на рисунке 151. Обращенные друг к другу концы катушек будут притягиваться или отталкиваться?

1273. Поскольку катушка с током является магнитом, она имеет магнитные полюсы. Как можно изменить их полярность?
Изменить направление тока в катушке.

1274. Через электромагнит проходит небольшой ток. Можно ли, не меняя силу тока, усилить электромагнит? Если да, то как это сделать?
Да, можно, увеличить размер сердечника.

1275. Электромагниты бывают различной мощности. На производстве используют электромагниты большой мощности, например, для подъема машин, металлолома и т.д., а в медицинских приборах применяют очень слабые электромагниты. Каким образом достигается такая разница в их мощностях?

Различия можно достичь, пуская ток различной силы в электромагнитах, меняя их размер, число витков в катушках, величину сердечника.

Естественные и искусственные магниты

Основные магнитные явления.

Магнитное поле

Прежде чем углублять наши знания о магнитных явлениях, на­помним некоторые известные факты.

Естественные и искусственные магниты

В природе встречаются некоторые железные руды, обладающие способностью притягивать к себе находящиеся поблизости небольшие железные предметы (напри­мер, железные опилки или гвозди, рис. 7.1, а ). Если кусок такой руды подвесить на нити, он установится по длине в направлении с севера на юг (N ® S ) (рис. 7.1, б ). Куски такой руды называются естественными магни­тами.

Рис. 7.1 Рис. 7.2

Кусок железа или стали, на­ходящийся вблизи магнита, сам намагничивается, т.е. приобретает способность притягивать к себе другие железные предметы. Например, железный гвоздь, поднесенный к магниту, сам намагничи­вается и притягивает к себе железные опилки (рис. 7.2). Магнитные свойства куска железа или стали проявляются тем сильнее, чем ближе он находится к магниту. Особенно сильно намагничивание в том случае, когда железо притянуто к магниту вплотную.

После удаления магнита намагнитившийся под его действием кусок железа или стали теряет значительную часть своих магнитных свойств, но все же остается в боль­шей или меньшей мере намагниченным. Он превращается, таким образом, в искусственный магнит, обладающий всеми теми же свойствами, что и магнит естественный. В этом можно убедиться при помощи такого простого опыта. На рис. 7.3, а стальной брусок 1 , притянутый к концу магнита, сам намагнитился настолько сильно, что удер­живает груз, состоящий из нескольких таких же брусков 2 5 . В свою очередь, каждый из этих брусков удерживает силами магнитного притяжения все бруски, расположен­ные ниже его. Таким образом, вся цепочка висит, удер­живаясь силами магнитного притяжения, которые урав­новешивают силы тяжести, действующие на бруски.

Рис. 7.3

Если мы немного отодвинем магнит, придерживая пальцами верх­ний брусок, то цепочка рассыплется: бруски размагничи­ваются настолько, что каждый из них уже не в состоянии удержать нижние бруски (рис. 7.3). Однако каждый из брусков сохранил известную долю намагничивания. До­статочно внести какой-нибудь из этих брусков в железные опилки, и мы увидим, что они пристанут к его концам.

То намагничивание, которое имело место, когда кусок железа находился вблизи магнита, называют временным намагничиванием, в отличие от постоянного, или остаточ­ного, намагничивания, которое сохраняется и после уда­ления магнита.



© dagexpo.ru, 2024
Стоматологический сайт