Строение молекулы. Серная кислота: химические свойства, характеристики, получение серной кислоты на производстве

12.10.2019

В окислительно-восстановительных процессах сернистый газ может быть как окислителем, так и восстановителем, потому что атом в этом соединении имеет промежуточную степень окисления +4.

Как окислитель SO 2 реагирует с более сильными восстановителями, например с :

SO 2 + 2H 2 S = 3S↓ + 2H 2 O

Как восстановитель SO 2 реагирует с более сильными окислителями, например с в присутствии катализатора, с и т.д.:

2SO 2 + O 2 = 2SO 3

SO 2 + Cl 2 + 2H 2 O = H 2 SO 3 + 2HCl

Получение

1) Сернистый газ образуется при горении серы:

2) В промышленности его получают при обжиге пирита:

3) В лаборатории сернистый газ можно получить:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O

Применение

Сернистый газ находит широкое применение в текстильной промышленности для отбеливания различных изделий. Кроме того, его используют в сельском хозяйстве для уничтожения вредных микроорганизмов в теплицах и погребах. В больших количествах SO 2 идет на получение серной кислоты.

Оксид серы (VI ) – SO 3 (серный ангидрид)

Серный ангидрид SO 3 – это бесцветная жидкость, которая при температуре ниже 17 о С превращается в белую кристаллическую массу. Очень хорошо поглощает влагу (гигроскопичен).

Химические свойства

Кислотно-основные свойства

Как типичный кислотный оксид серный ангидрид взаимодействует:

SO 3 + CaO = CaSO 4

в) с водой:

SO 3 + H 2 O = H 2 SO 4

Особым свойством SO 3 является его способность хорошо растворяться в серной кислоте. Раствор SO 3 в серной кислоте имеет название олеум.

Образование олеума: H 2 SO 4 + n SO 3 = H 2 SO 4 ∙ n SO 3

Окислительно-восстановительные свойства

Оксид серы (VI) характеризуется сильными окислительными свойствами (обычно восстанавливается до SO 2):

3SO 3 + H 2 S = 4SO 2 + H 2 O

Получение и применение

Серный ангидрид образуется при окислении сернистого газа:

2SO 2 + O 2 = 2SO 3

В чистом виде серный ангидрид практического значения не имеет. Он получается как промежуточный продукт при производстве серной кислоты.

H 2 SO 4

Упоминания о серной кислоте впервые встречаются у арабских и европейских алхимиков. Ее получали, прокаливая на воздухе железный купорос (FeSO 4 ∙7H 2 O): 2FeSO 4 = Fe 2 O 3 + SO 3 + SO 2 либо смесь с : 6KNO 3 + 5S = 3K 2 SO 4 + 2SO 3 + 3N 2 , а выделяющиеся пары серного ангидрида конденсировали. Поглощая влагу, они превращались в олеум. В зависимости от способа приготовления H 2 SO 4 называли купоросным маслом или серным маслом. В 1595 г. алхимик Андреас Либавий установил тождественность обоих веществ.

Долгое время купоросное масло не находило широкого применения. Интерес к нему сильно возрос после того, как в XVIII в. был открыт процесс получения из индиго индигокармина – устойчивого синего красителя. Первую фабрику по производству серной кислоты основали недалеко от Лондона в 1736 г. Процесс осуществляли в свинцовых камерах, на дно которых наливали воду. В верхней части камеры сжигали расплавленную смесь селитры с серой, затем туда запускали воздух. Процедуру повторяли до тех пор, пока на дне ёмкости не образовывалась кислота требуемой концентрации.

В XIX в. способ усовершенствовали: вместо селитры стали использовать азотную кислоту (она при разложении в камере даёт ). Чтобы возвращать в систему нитрозные газы были сконструированы специальные башни, которые и дали название всему процессу – башенный процесс. Заводы, работающие по башенному методу, существуют и в наше время.

Серная кислота – это тяжелая маслянистая жидкость без цвета и запаха, гигроскопична; хорошо растворяется в воде. При растворении концентрированной серной кислоты в воде выделяется большое количество тепла, поэтому ее надо осторожно приливать в воду (а не наоборот!) и перемешивать раствор.

Раствор серной кислоты в воде с содержанием H 2 SO 4 менее 70% обычно называют разбавленной серной кислотой, а раствор более 70% — концентрированной серной кислотой.

Химические свойства

Кислотно-основные свойства

Разбавленная серная кислота проявляет все характерные свойства сильных кислот. Она реагирует:

H 2 SO 4 + NaOH = Na 2 SO 4 + 2H 2 O

H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl

Процесс взаимодействия ионов Ва 2+ с сульфат-ионами SO 4 2+ приводит к образованию белого нерастворимого осадка BaSO 4 . Это качественная реакция на сульфат-ион .

Окислительно – восстановительные свойства

В разбавленной H 2 SO 4 окислителями являются ионы Н + , а в концентрированной – сульфат-ионы SO 4 2+ . Ионы SO 4 2+ являются более сильными окислителями, чем ионы Н + (см.схему).

В разбавленной серной кислоте растворяются металлы, которые в электрохимическом ряду напряжений находятся до водорода . При этом образуются сульфаты металлов и выделяется :

Zn + H 2 SO 4 = ZnSO 4 + H 2

Металлы, которые в электрохимическом ряду напряжений находятся после водорода, не реагируют с разбавленной серной кислотой:

Cu + H 2 SO 4 ≠

Концентрированная серная кислота является сильным окислителем, особенно при нагревании. Она окисляет многие , и некоторые органические вещества.

При взаимодействии концентрированной серной кислоты с металлами, которые в электрохимическом ряду напряжений находятся после водорода (Cu, Ag, Hg), образуются сульфаты металлов, а также продукт восстановления серной кислоты – SO 2 .

Реакция серной кислоты с цинком

Более активными металлами (Zn, Al, Mg) концентрированная серная кислота может восстанавливаться до свободной . Например, при взаимодействии серной кислоты с , в зависимости от концентрации кислоты одновременно могут образовываться различные продукты восстановления серной кислоты – SO 2 , S, H 2 S:

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ + 4H 2 O

4Zn + 5H 2 SO 4 = 4ZnSO 4 + H 2 S + 4H 2 O

На холоде концентрированная серная кислота пассивирует некоторые металлы, например и , поэтому ее перевозят в железных цистернах:

Fe + H 2 SO 4 ≠

Концентрированная серная кислота окисляет некоторые неметаллы ( , и др.), восстанавливаясь до оксида серы (IV) SO 2:

S + 2H 2 SO 4 = 3SO 2 + 2H 2 O

C + 2H 2 SO 4 = 2SO 2 + CO 2 + 2H 2 O

Получение и применение

В промышленности серную кислоту получают контактным способом. Процесс получения происходит в три стадии:

  1. Получение SO 2 путем обжига пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

  1. Окисление SO 2 в SO 3 в присутствии катализатора – оксида ванадия (V):

2SO 2 + O 2 = 2SO 3

  1. Растворение SO 3 в серной кислоте:

H 2 SO 4 + n SO 3 = H 2 SO 4 ∙ n SO 3

Полученный олеум перевозят в железных цистернах. Из олеума получают серную кислоту нужной концентрации, приливая его в воду. Это можно выразить схемой:

H 2 SO 4 ∙ n SO 3 + H 2 O = H 2 SO 4

Серная кислота находит разнообразное применение в самых различных областях народного хозяйства. Ее используют для осушки газов, в производстве других кислот, для получения удобрений, различных красителей и лекарственных средств.

Соли серной кислоты


Большинство сульфатов хорошо растворимы в воде (малорастворим CaSO 4 , еще менее PbSO 4 и практически нерастворим BaSO 4). Некоторые сульфаты, содержащие кристаллизационную воду, называются купоросами:

CuSO 4 ∙ 5H 2 O медный купорос

FeSO 4 ∙ 7H 2 O железный купорос

Соли серной кислоты имеют все . Особенным является их отношение к нагреванию.

Сульфаты активных металлов ( , ) не разлагаются даже при 1000 о С, а других (Cu, Al, Fe) – распадаются при небольшом нагревании на оксид металла и SO 3:

CuSO 4 = CuO + SO 3

Скачать:

Скачать бесплатно реферат на тему: «Производство серной кислоты контактным способом»

Скачать рефераты по другим темам можно

*на изображении записи фотография медного купороса

Российский Университет Дружбы Народов

Факультет иностранных языков и общеобразовательных дисциплин

Сера. Ее использование в медицине.

Выполнила

студентка группы СВ-53

Руководитель семинаров по химии

Кафедры химии

Профессор В.Ф. Захаров

Москва, 2002

    Нахождение серы в природе.

    Физические свойства серы.

    Химические свойства серы и ее соединений.

1) Свойства простого вещества.

    Свойства оксидов:

    оксид серы (IV);

    оксид серы (VI).

    Свойства кислот и их солей:

    сернистая кислота и ее соли;

    сероводород и сульфиды;

    серная кислота и ее соли.

    Использование серы в медицине.

Общая характеристика подгруппы кислорода

В подгруппу кислорода входят пять элементов: кислород, сера, селен, теллур и полоний (полоний – радиоактивный элемент). Это p-элементыVI группы периодической системы Д.И. Менделеева. Они имеют групповое название – халькогены, что означает «образующие руды».

Свойства элементов подгруппы кислорода

Свойства

Порядковый номер

Валентные электроны

Энергия ионизации атома, эВ

Относительная электроотрицательность

Степень окисления в соединениях

Радиус атома, нм

У атомов халькогенов одинаковое строение внешнего энергетического уровня – ns 2 np 4 . Этим объясняется сходство их химических свойств. Все халькогены в соединениях с водородом и металлами проявляют степень окисления –2, а в соединениях с кислородом и другими активными неметаллами – обычно +4 и +6. для кислорода, как и для фтора, не типична степень окисления, равная номеру группы. Он проявляет степень окисления обычно –2 и в соединениях с фтором +2.

Водородные соединения элементов подгруппы кислорода отвечают формуле H 2 R (R – символ элемента): H 2 O , H 2 S , H 2 Se , H 2 Te . Они называются хальководородами. При растворении их в воде образуются кислоты (формулы те же). Сила этих кислот возрастает с ростом порядкового номера элемента, что объясняется уменьшением энергии связи в ряду соединенийH 2 R . Вода, диссоциирующая на ионыH + иОН - , является амфотерным электролитом.

Сера, селен и теллур образуют одинаковые формы соединений с кислородом типа RO 2 и RO 3 . Им соответствуют кислоты типаH 2 RO 3 иH 2 RO 4 . С ростом порядкового номера элемента сила этих кислот убывает. Все они проявляют окислительные свойства, а кислоты типаH 2 RO 3 также и восстановительные.

Закономерно изменяются свойства простых веществ: с увеличением заряда ядра ослабевают неметаллические и возрастают металлические свойства. Так, кислород и теллур – неметаллы, но последний обладает металлическим блеском и проводит электрический ток.

Нахождение серы в природе

Сера широко распространена в природе. Она составляет 0,05% массы земной коры. В свободном состоянии (самородная сера) в больших количествах встречается в Италии (остров Сицилия) и США. Месторождения самородной серы имеются в Куйбышевской области (Поволжье), в государствах Средней Азии, в Крыму и других районах.

Сера часто встречается в виде соединений с другими элементами. Важнейшими ее природными соединениями являются сульфиды металлов: FeS 2 – железный колчедан, или пирит;HgS – киноварь и др., а также соли серной кислоты (кристаллогидраты):CaSO 4 ּ 2 H 2 O – гипс,Na 2 SO 4 ּ 10 H 2 O – глауберова соль,MgSO 4 ּ 7 H 2 O – горькая соль и др.

Физические свойства серы

Природная сера состоит из смеси четырех устойчивых изотопов: ,
,
,
.

Сера образует несколько аллотропных модификаций. Устойчивая при комнатной температуре ромбическая сера представляет собой желтый порошок, плохо растворимый в воде, но хорошо растворимый в сероуглероде, анилине и некоторых других растворителях. Плохо проводит теплоту и электричество. При кристаллизации из хлороформаCHCl 3 или из сероуглеродаCS 2 она выделяется в виде прозрачных кристаллов октаэдрической формы. Ромбическая сера состоит из циклических молекулS 8 , имеющих форму короны. При 113 0 Cона плавится, превращаясь в желтую легкоподвижную жидкость. При дальнейшем нагревании расплав загустевает, так как в нем образуются длинные полимерные цепочки. А если нагреть серу до 444,6 0 С, она закипает. Выливая кипящую серу тонкой струйкой в холодную воду, можно получитьпластическую серу – резиноподобную модификацию, состоящую из полимерных цепочек. При медленном охлаждении расплава образуются темно-желтые игольчатые кристаллымоноклинной серы. (t пл =119 0 C). Подобно ромбической сере, эта модификация состоит из молекулS 8 . При комнатной температуре пластическая и моноклинная сера неустойчивы и самопроизвольно превращаются в порошок ромбической серы.

Химические свойства серы и ее соединений

Свойства простого вещества.

Атом серы, имея незавершенный внешний энергетический уровень, может присоединять два электрона и проявлять степень окисления –2. Такую степень окисления сера проявляет в соединениях с металлами и водородом (например, Na 2 S иH 2 S ). При отдаче или оттягивании электронов к атому более электроотрицательного элемента степень окисления серы может быть +2, +4 и +6.

Сера легко образует соединения со многими элементами. При сгорании ее на воздухе или в кислороде образуется оксид серы (IV)SO 2 и частично оксид серы (VI)SO 3 :

S + O 2 = SO 3

2S + 3O 2 = 2SO 3

Это наиболее важные оксиды серы.

При нагревании сера непосредственно соединяется с водородом, галогенами (кроме йода), фосфором, углем, а также со всеми металлами, кроме золота, платины и иридия. Например:

S + H 2 = H 2 S

3S + 2P = P 2 S 3

S + Cl 2 = SCl 2

2S + C = CS 2

S + Fe = FeS

Как следует из примеров, в реакциях с металлами и некоторыми неметаллами сера является окислителем, в реакциях же с более активными неметаллами, как например, с кислородом, хлором, - восстановителем.

Свойства оксидов

Оксид серы (IV )

Сернистый газ SO 2 – бесцветный газ с удушливым резким запахом. При растворении его в воде (при 0 0 С 1 объем воды растворяет более 70 объемовSO 2 ) образуется сернистая кислотаH 2 SO 3 , которая известна только в растворах.

В лабораторных условиях для получения SO 2 действуют на твердый сульфит натрия концентрированной серной кислотой:

Na 2 SO 3 + 2H 2 SO 4 = 2NaHSO 4 + SO 2 + H 2 O

В промышленности SO 2 получают при обжиге сульфидных руд, например пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 ,

или при сжигании серы. Сернистый газ является полупродуктом в производстве серной кислоты. Его используют также (вместе с гидросульфитами натрия NaHSO 3 и кальцияCa(HSO 3) 2) для выделения целлюлозы из древесины. Этим газом окуривают деревья и кустарники, чтобы уничтожать вредителей сельского хозяйства.

Химические реакции, характерные для SO 2 , можно разделить на 3 группы:

    Реакции, протекающие без изменения степени окисления, например:

SO 2 + Ca(OH) 2 = CaSO 3 + H 2 O

2SO 2 + O 2 = 2SO 3

    Реакции, протекающие с понижением степени окисления серы, например:

SO 2 + 2H 2 S = 3S + 2H 2 O

Таким образом, SO 2 может проявлять как окислительные, так и восстановительные свойства.

Оксид серы (VI )

Серный ангидрид SO 3 при комнатной температуре представляет собой бесцветную легко летучую жидкость (t кип =44,8 0 С,t пл =16,8 0 С), которая со временем переходит в асбестовидную модификацию, состоящую из блестящих шелковистых кристаллов. Волокна серного ангидрида устойчивы лишь в запаянном сосуде. Поглощая влагу воздуха, они превращаются в густую бесцветную жидкость – олеум (от лат.oleum– «масло»). Хотя формально олеум можно рассматривать как растворSO 3 вH 2 SO 4 , на самом деле он представляет собой смесь различных пиросерных кислот:H 2 S 2 O 7 ,H 2 S 3 O 10 и т.д. С водойSO 3 взаимодействует очень энергично: при этом выделяется так много теплоты, что образующиеся мельчайшие капельки серной кислоты создают туман. Работать с этим веществом нужно крайне осторожно.

Оксид серы (VI) получают окислениемSO 2 кислородом только в присутствии катализатора:

2SO 2 + O 2 2SO 3 + Q.

Необходимость использования катализатора в этой обратимой реакции обусловлена тем, что хороший выход SO 3 (т.е. смещение равновесия вправо) можно получить только при понижении температуры, однако при низких температурах очень сильно падает скорость протекания реакции.

Оксид серы (VI) энергично соединяется с водой, образуя серную кислоту:

SO 3 + H 2 O = H 2 SO 4

Свойства кислот и их солей

Сернистая кислота и ее соли

Оксид серы (IV) хорошо растворим в воде (в 1 объеме воды при 20 0 С растворяется 40 объемов SО 2). При этом образуется существующая только в водном растворе сернистая кислота:

SO 2 + Н 2 О = Н 2 SO 3

Реакция соединения SO 2 с водой обратимая. В водном растворе оксид серы (IV) и сернистая кислота находятся в химическом равновесии, которое можно смещать. При связыванииН 2 SO 3 щелочью (нейтрализация кислоты) реакция протекает в сторону образования сернистой кислоты; при удаленииSO 2 (продувание через раствор азотаили нагревание) реакция протекает в сторону исходных веществ. В растворе сернистой кислоты всегда имеется оксид серы (IV), который придает ему резкий запах.

Сернистая кислота обладает всеми свойствами кислот. В растворе Н 2 S O 3 диссоциирует ступенчато:

Н 2 S О 3 H + + HSO 4

HSO 3 - H + + SO 3 2-

Как двухосновная кислота она образует два ряда солей - сульфиты и гидросульфиты. Сульфиты образуются при полной нейтрализации кислоты щелочью:

Н 2 SO 3 + 2 N аОН = N а HS О 4 + 2Н 2 О

Гидросульфиты получаются при недостатке щелочи (по сравнению с количеством, необходимым для полной нейтрализации кислоты):

Н 2 SO 3 + N аОН = NаНS O 3 + Н 2 О

Как и оксид серы (IV), сернистая кислота и ее соли являются сильны­ми восстановителями. При этом степень окисления серы возрастает. Так, Н 2 S О 3 легко окисляется в серную кислоту даже кислородом воздуха:

2 SO 3 + O 2 = 2Н 2 SO 4

Поэтому долго хранившиеся растворы сернистой кислоты всегда со­держат серную кислоту.

Еще легче протекает окисление сернистой кислоты бромом и перманганатом калия:

Н 2 S О 3 + В r 2 + Н 2 О = Н 2 SO 4 + 2НВr

2 S 0 3 + 2Км n О 4 = 2Н 2 SO 4 + 2М nSO 4 + К 2 S О 4 + 2Н 2 О

Оксид серы (IV) и сернистая кислота обесцвечивают многие краси­тели, образуя сними бесцветные соединения. Последние могут снова разлагаться при нагреванииили на свету, в результате чего окраска восстанавливается. Следовательно, белящее действиеSO 2 иН 2 SO 4 отличается от белящего действия хлора. Обычно оксидом серы (IV) белят шерсть, шелк и солому (хлорной водой эти материалы разруша­ются).

Важное применение находит раствор гидросульфита кальция Ca (HSO 3 ) 2 (сульфитный щелок), которым обрабатывают волокна древесины и бумажную массу.

Сероводород и сульфиды

Сероводород Н 2 S - бесцветный газ с запахом тухлых яиц. Он хоро­шо растворим в воде (при 20 °C в 1 объеме воды растворяется 2,5 объема сероводорода).Раствор сероводорода в воде называется сероводородной водой или сероводородной кислотой (она обнаруживает свойства слабой кислоты).

Сероводород - очень ядовитый газ, поражаю­щий нервную систему. Поэтому работать с ним надо в вытяжных шка­фах или с герметически закрывающимися приборами. Допустимое содержание Н 2 Sв производственных помещениях составляет 0,01 мг в 1 л воздуха.

Сероводород встречается в природе в вул­канических газах и в водах некоторых минеральных источников, на­пример Пятигорска; Мацесты. Он образуется при гниении серосодержащих органических веществ различных растительных и животных остатков. Этим объясняется характерный неприятный запах сточных вод, выгребных ям и свалок мусора.

Сероводород может быть получен непосредственным соединением серы с водородом при нагревании:

S + Н 2 = H 2 S

Но обычно его получают действием разбавленной соляной или серной кислоты на сульфид железа (II):

2НСl + FеS = F еС l 2 + Н 2 S

Эту реакцию часто проводят в аппарате Киппа.

Н 2 S- менее прочное соединение, чем вода. Это обусловлено большим размером атома серы по сравнению с атомом кислорода. Поэтому связь Н-0 короче и прочнее связи Н-S. При сильном нагревании сероводород почти полностью разлагается на серу и водород:

Н 2 S = S + Н 2

Газообразный Н 2 Sгорит на воздухе голубым пламенем с образованием оксида серы (IV) и воды:

2 S + 3 O 2 = 2 SO 2 + 2Н 2 О

При недостатке кислорода образуются сера и вода:

2 S + O 2 = 2 S + 2Н 2 О

Этой реакцией пользуются для получения серы из сероводорода в промышленном масштабе.

Сероводород - довольно сильный восстановитель. Это его важное химическое свойство можно объяснить так. В растворе Н 2 S сравнитель­но легко отдает электроны молекулам кислорода воздуха:

Н 2 S - 2 е - = S + 2H + 2

O 2 + 4 е - = 2O 2- 1

В этом случае Н 2 Sокисляется кислородом воздуха до серы, которая делает сероводородную воду мутной. Суммарное уравнение реакции:

2 Н 2 S + O 2 = 2S + 2 Н 2 O

Этим объясняется и тот факт, что сероводород не накапливается в очень больших количествах в природе при гниении органических веществ - кислород воздуха окисляет его в свободную серу.

Энергично реагирует сероводород с растворами галогенов. Напри­мер:

Н 2 S + I 2 = 2HI + S

Происходит выделение серы и обесцвечивание раствора йода.

Сероводородная кислота как двухосновная образует два ряда солей - средние (сульфиды) и кислые (гидросульфиды). Например, 2 S - сульфид натрия,NаН S - гидросульфид натрия. Гидросульфиды почти все хорошо растворимы в воде. Сульфиды щелочных и щелочно-земельных металлов также растворимы в воде, а остальных металлов практически нерастворимы или мало растворимы; некоторые из них не растворяются и в разбавленных кислотах. Поэтому такие сульфиды можно легко получить, пропуская сероводород через соли соответствующего металла, например:

С uSO 4 + Н 2 S = CuS + H 2 SO 4

Некоторые сульфиды имеют характерную окраску: CuS иР bS - черную,С dS - желтую,ZnS - белую,MnS - розовую,SnS - коричне­вую,Sb 2 S 3 - оранжевую и т. д. На различной растворимости сульфи­дов и различной окраске многих из них основан качественный анализ катионов.

Серная кислота и ее соли

Серная кислота - тяжелая бесцветная масля­нистая жидкость. Крайне гигроскопична. Поглощает влагу с выделе­нием большого количества теплоты, поэтому нельзя воду приливать к концентрированной кислоте - произойдет разбрызгивание кислоты. Для разбавления надо серную кислоту приливать небольшими количествами к воде.

Безводная серная кислота растворяет до 70% оксида серы (VI). При обычной температуре она не летуча и не имеет запаха. При нагре­вании отщепляет SO 3 до тех пор, пока не образуется раствор, содержа­щий 98,3%Н 2 SO 4 . БезводнаяH 2 SO 4 почти не проводит электрический ток.

Концентрированная серная кислота обугливает органические вещества - сахар, бумагу, дерево, волокна и т. д. отнимая от них элементы воды. При этом образуются гидраты серной кислоты. Обугливание сахара можно выразить уравнением

С 12 Н 22 О 11 + n Н 2 SO 4 = 12С + Н 2 SO 4 ּ n Н 2 О

Образовавшийся уголь частично вступает во взаимодействие с кисло­той:

С + 2Н 2 SO 4 = СО 2 + 2 SO 2 + 2Н 2 О

Поэтому кислота, которая идет в продажу, имеет бурый цвет от слу­чайно попавших и обуглившихся в ней пыли и органических веществ.

На поглощении (отнятии) воды серной кислотой основана осушка газов.

Как сильная нелетучая кислота Н 2 SO 4 вытесняет другие кислоты из сухих солей. Например:

NаNОз + Н 2 SO 4 = NаН SO 4 + Н NO 3

Однако если Н 2 S О 4 добавляется к растворам солей, то вытеснения кислот не происходит.

Очень важное химическое свойство серной кислоты - отношение ее к металлам. Разбавленная и концентрированная серная кислота реаги­рует с ними различно. Разбавленная серная кислота окисляет только металлы, стоящие в ряду напряжений левее водорода, за счет ионовH + , например:

Zn + H 2 SO 4 ( разб ) = ZnSO 4 + H 2

Концентрированная серная кислота при обычной температуре со многими металлами не реагирует. Поэтому безводную серную кислоту можно хранить в железной таре и перевозить в сталь­ных цистернах. Однако при нагревании концентрированнаяН 2 SO 4 взаимодействует почти со всеми металлами (кромеР t , А u и некоторых других), а так же с неметаллами. При этом она выступает как окислитель, сама восстанавлива­ется обычно доSO 2 . Водород в этом случае не выделяется, а образует­ся вода. Например:

С u + 2 Н 2 SO 4 = С uSO 4 + SO 2 + 2 Н 2 O

2Ag + 2H 2 SO 4 = Ag 2 SO 4 + SO 2 + 2H 2 O

C + 2H 2 SO 4 + = CO 2 + 2SO 2 + 2H 2 O

2P + 5H 2 SO 4 = 2H 3 PO 4 + 5SO 2

Серная кислота обладает всеми свойствами кислот.

Серная кислота, будучи двухосновной, образует два ряда солей: средние, называемые сульфатами, и кислые, называемые гид­росульфатами. Сульфаты образуются при полной нейтрализа­ции кислоты щелочью (на 1 моль кислоты приходится 2 моля щелочи), а гидросульфаты - при недостатке щелочи (на 1 моль кислоты - 1 моль щелочи):

Н 2 SO 4 + 2 N а OH = Nа 2 SO 4 + 2Н 2 О

Н 2 SO 4 + NaOH = N а HSO 4 + Н 2 О

Многие соли серной кислоты имеют большое практическое значе­ние.

Большинство солей серной кислоты растворимо в воде. Соли Са SO 4 иР bSO 4 мало растворимы в воде, аВа SO 4 практически нерастворима как в воде, так и в кислотах. Это свойство позволяет использовать любую растворимую соль бария, напримерВаС l 2 , как реагент на серную кислоту и ее соли (точнее, на ионSO 4 2- ):

H 2 SO 4 + BaCl 2 = BaSO 4 + 2HCl

NaSO 4 + BaCl 2 = BaSO 4 + 2NaCl

При этом выпадает белый нерастворимый в воде и кислотах осадок сульфата бария.

Серная кислота является важнейшим продуктом основной химической промышленности, занимающейся производством неорганических кислот, щелочей, солей, минеральных удобрений и хлора.

По разнообразию применения серная кислота занимает первое место среди кислот. Наибольшее количество ее расходуется для полу­чения фосфорных и азотных удобрений. Будучи нелетучей кислотой, серная кислота используется для получения других кислот - соляной, плавиковой, фосфорной, уксусной и т. д. Много ее идет для очистки нефтепродуктов - бензина, керосина и смазочных масел - от вредных примесей. В машиностроении серной кислотой очищают поверхность металла от оксидов перед покрытием (никелированием, хромированием и др.). Серная кислота применяется в производстве взрывчатых ве­ществ, искусственного волокна, красителей, пластмасс и многих дру­гих. Ее употребляют для заливки аккумуляторов. В сельском хозяйст­ве она используется для борьбы с сорняками (гербицид).

Этим определяется значение серной кислоты в нашем народном хозяйстве.

Использование серы в медицине

Сера очищенная (Sulfurdepuratum) – мелкий порошок лимонно-желтого цвета – используется при энтеробиозе в качестве противоглистного средства. Она является также легким слабительным средством, входит в состав сложного порошка солодкового корня. Стерильный 1-2% раствор серы очищенной в персиковом масле (сульфозин) иногда применяют для пирогенной терапии при сифилисе.

Кроме того, соединения серы, как органические, так и неорганические, находят широкое применение в медицине. Атомы серы входят в состав множества препаратов самого различного действия. Поскольку охватить вниманием их все не представляется возможным, ограничимся несколькими примерами.

Сернистая кислота - это неорганическая двухосновная неустойчивая кислота средней силы. Непрочное соединение, известна только в водных растворах при концентрации не более шести процентов. При попытках выделить чистую сернистую кислоту она распадается на оксид серы (SO2) и воду (H2O). Например, при воздействии серной кислоты (H2SO4) в концентрированном виде на сульфит натрия (Na2SO3) вместо сернистой кислоты выделяется оксид серы (SO2). Вот так выглядит данная реакция:

Na2SO3 (сульфит натрия) + H2SO4 (серная кислота) = Na2SO4 (сульфат натрия) + SO2 (серы диоксид) + H2O (вода)

Раствор сернистой кислоты

При его хранении необходимо исключить доступ воздуха. Иначе сернистая кислота, медленно поглощая кислород (O2), превратится в серную.

2H2SO3 (кислота сернистая) + O2 (кислород) = 2H2SO4 (кислота серная)

Растворы сернистой кислоты имеют довольно специфический запах (напоминает запах, остающийся после зажжения спички), наличие которого можно объяснить присутствием оксида серы (SO2), химически не связанного водой.

Химические свойства сернистой кислоты

1. H2SO3) может использоваться в качестве восстановителя или окислителя.

H2SO3 является хорошим восстановителем. С ее помощью можно из свободных галогенов получить галогеноводороды. Например:

H2SO3 (кислота сернистая) + Cl2 (хлор, газ) + H2O (вода) = H2SO4 (кислота серная) + 2HCl (соляная кислота)

Но при взаимодействии с сильными восстановителями данная кислота будет выполнять роль окислителя. Примером может послужить реакция сернистой кислоты с сероводородом:

H2SO3 (кислота сернистая) + 2H2S (сероводород) = 3S (сера) + 3H2O (вода)

2. Рассматриваемое нами химическое соединение образует два - сульфиты (средние) и гидросульфиты (кислые). Эти соли являются восстановителями, так же, как и (H2SO3) сернистая кислота. При их окислении образуются соли серной кислоты. При прокаливании сульфитов активных металлов образуются сульфаты и сульфиды. Это реакция самоокисления-самовосстановления. Например:

4Na2SO3 (сульфит натрия) = Na2S + 3Na2SO4 (сульфат натрия)

Сульфиты натрия и калия (Na2SO3 и K2SO3) применяются при крашении тканей в текстильной промышленности, при отбеливании металлов, а также в фотографии. Кальция гидросульфит (Ca(HSO3)2), существующий только в растворе, используется для переработки древесного материала в специальную сульфитную целлюлозу. Из нее потом делают бумагу.

Применение сернистой кислоты

Сернистая кислота используется:

Для обесцвечивания шерсти, шелка, древесной массы, бумаги и других аналогичных веществ, не выдерживающих отбеливания при помощи более сильных окислителей (например, хлора);

Как консервант и антисептик, например, для предотвращения ферментации зерна при получении крахмала или для предотвращения процесса брожения в бочках вина;

Для сохранения продуктов, например, при консервировании овощей и плодов;

В переработке в целлюлозу сульфитную, из которой потом получают бумагу. В этом случае используется раствор кальция гидросульфита (Ca(HSO3)2), который растворяет лигнин - особое вещество, связывающее волокна целлюлозы.

Сернистая кислота: получение

Данную кислоту можно получить посредством растворения сернистого газа (SO2) в воде (H2O). Вам понадобятся серная кислота в концентрированном виде (H2SO4), медь (Cu) и пробирка. Алгоритм действий:

1. Осторожно налейте в пробирку концентрированную сернистую кислоту и затем поместите туда кусочек меди. Нагрейте. Происходит следующая реакция:

Cu (медь) + 2H2SO4 (серная кислота) = CuSO4 (сульфат серы) + SO2 (сернистый газ) + H2O (вода)

2. Поток сернистого газа необходимо направить в пробирку с водой. При его растворении частично происходит с водой, в результате которой образуется сернистая кислота:

SO2 (сернистый газ) + H2O (вода) = H2SO3

Итак, пропуская сернистый газ через воду, можно получить сернистую кислоту. Стоит учесть, что данный газ оказывает раздражающее воздействие на оболочки дыхательных путей, может вызвать их воспаление, а также потерю аппетита. При длительном его вдыхании возможна потеря сознания. Обращаться с этим газом нужно с предельной осторожностью и внимательность.

При растворении в воде диоксида серы (SO 2) получается химическое соединение, известное как сернистая кислота. Формула этого вещества записывается так: H 2 SO 3 . По правде говоря, данное соединение является крайне нестабильным, с определенным допущением даже можно утверждать, что его на самом деле не существует. Тем не менее данную формулу часто используют для удобства написания уравнений химических реакций.

Сернистая кислота: основные свойства

Для водного раствора двуокиси серы характерна кислая среда. Сам он обладает всеми свойствами, которые присущи кислотам, в том числе и реакцией нейтрализации. Сернистая кислота способна образовывать два вида солей: гидросульфиты и обычные сульфиты. Оба относятся к группе восстановителей. Первый вид обычно получается, когда сернистая кислота присутствует в довольно большом количестве: Н 2 SO 3 + KOH -> KHSO 3 + Н 2 O. В противном случае получается обычный сульфит: Н 2 SO 3 + 2КОН -> К 2 SO 3 + 2Н 2 O. Качественной реакцией на данные соли является их взаимодействие с сильной кислотой. В результате выделяется газ SO 2 , который легко отличить по характерному резкому запаху.

Сернистая кислота способна оказывать отбеливающее воздействие. Не секрет, что подобный эффект также дает и хлорная вода. Однако рассматриваемое соединение имеет одно важное преимущество: в отличие от хлора сернистая кислота не приводит к разрушению красителей, сернистый газ формирует с ними бесцветные химические соединения. Данное свойство нередко применяется для беления тканей из шелка, шерсти, растительного материала, а также всего, что разрушается от окислителей, содержащих в своем составе Cl. В старину данное соединение даже применяли для возвращения первоначального вида дамским соломенным шляпкам. H 2 SO 3 представляет собой достаточно сильный восстановитель. При доступе кислорода ее растворы постепенно превращаются в серную кислоту. В тех же случаях, когда она взаимодействует с более сильным восстановителем (к примеру, с сероводородом), серная кислота, наоборот, проявляет окислительные свойства. Диссоциация данного вещества проходит в два этапа. Вначале формируется гидросульфит-анион, а затем наступает вторая ступень, и он превращается в анион-сульфит.

Где используется сернистая кислота

Получение данного вещества играет большую роль в производстве всевозможных виноматериалов в качестве антисептика, в частности с его помощью удается предотвратить процесс брожения продукта в бочках и тем самым обеспечить его сохранность. Также его применяют для того, чтобы воспрепятствовать ферментации зерна в ходе извлечения из него крахмала. Сернистая кислота и препараты на ее основе обладают широким антимикробным свойством, и поэтому их часто применяют в плодоовощной промышленности при консервировании. Гидросульфит кальция, его еще называют сульфитный щелок, используют для того, чтобы переработать древесину в сульфитную целлюлозу, из которой впоследствии изготавливают бумагу. Осталось добавить, что для человека это соединение является ядовитым, а потому любые лабораторные работы и эксперименты с ним требуют осторожности и повышенного внимания.

Диоксид (двуокись) серы образуется при сжигании серы в воздухе или кислороде. Он получается также при прокаливании на воздухе («обжигании») сульфидов металлов, например железного колчедана:

По этой реакции диоксид серы получают обычно в промышленности (о других промышленных способах получения см, 9 § 131).

Диоксид серы - бесцветный газ («сернистый газ») с резким эапахом горячей серы. Он довольно легко конденсируется в бесцветную жидкость, кипящую при . При испарении жидкого происходит сильное понижение температуры (до ).

Диоксид серы хорошо растворяется в воде (около 40 объемов в 1 объеме воды при ); при этом частично происходит реакция с водой и образуется сернистая кислота:

Таким образом, диоксид серы является ангидридом сернистой кислоты. При нагревании растворимость уменьшается и равновесие смещается влево; постепенно весь диоксид серы снова выделяется из раствора.

Молекула построена аналогично молекуле озона. Ядра составляющих ее атомов образуют равнобедренный треугольник:

Здесь атом серы, как и центральный атом кислорода в молекуле озона, находится в состоянии -гибридизации и угол близок к . Ориентированная перпендикулярно к плоскости молекулы -орбиталь атома серы не участвует в гибридизации. За счет этой орбитали и аналогично ориентированных -орбиталей атомов кислорода образуется трехцентровая -связь; осуществляющая ее пара электронов принадлежит всем трем атомам молекулы.

Диоксид серы применяют для получения серной кислоты, а также (в значительно меньших количествах) для беления соломы, шерсти, шелка и как дезинфицирующее средство (для уничтожения плесневых грибков в подвалах, погребах, винных бочках, бродильных чанах).

Сернистая кислота - очень непрочное соединение. Она известна только в водных растворах. При попытках выделить сернистую кислоту она распадается на и воду. Например, при действии концентрированной серной кислоты на сульфит натрия вместо сернистой кислоты выделяется диоксид серы:

Раствор сернистой кислоты необходимо предохранять от доступа воздуха, иначе она, поглощая из воздуха кислород, медленно окисляется в серную кислоту:

Сернистая кислота - хороший восстановитель. Например, свободные галогены восстанавливаются ею в галогеноводороды:

Однако при взаимодействии с сильными восстановителями сернистая кислота может играть роль окислителя. Так, реакция ее с сероводородом в основном протекает согласно уравнению:

Будучи двухосновной , сернистая кислота образует два ряда солей. Средние ее соли называются сульфитами, кислые - гидросульфитами.

Как и кислота, сульфиты и гидросульфиты являются восстановителями. При их окислении получаются соли серной кислоты.

Сульфиты наиболее активных металлов при прокаливании разлагаются с образованием сульфидов и сульфатов (реакция самоокисления - самовосстановления):

Сульфиты калия и натрия применяются для отбеливания некоторых материалов, в текстильной промышленности при крашении тканей, в фотографии. Раствор (эта соль существует только в растворе) применяется для переработки древесины в так называемую сульфитную целлюлозу, из которой потом получают бумагу.



© dagexpo.ru, 2024
Стоматологический сайт