Структура атома: что такое нейтрон? Нейтрон (элементарная частица)

21.09.2019

Нейтрон - нейтральная частица, относящаяся к классу адронов. Открыта в 1932 г. английским физиком Дж. Чедвиком. Вместе с протонами нейтроны входят в состав атомных ядер. Электрический заряд нейтрона равен нулю. Это подтверждается прямыми измерениями заряда по отклонению пучка нейтронов в сильных электрических полях, показавшими, что (здесь - элементарный электрический заряд, т. е. абсолютная величина заряда электрона). Косвенные данные дают оценку . Спин нейтрона равен 1/2. Как адрон с полуцелым спином он относится к группе барионов (см. Протон). У каждого бариона есть античастица; антинейтрон был открыт в 1956 г. в опытах по рассеянию антипротонов на ядрах. Антинейтрон отличается от нейтрона знаком барионного заряда; у нейтрона, как и у протона, барионный заряд равен .

Как и протон и прочие адроны, нейтрон не является истинно элементарной частицей: он состоит из одного м-кварка с электрическим зарядом и двух -кварков с зарядом - , связанных между собой глюонным полем (см. Элементарные частицы, Кварки, Сильные взаимодействия).

Нейтроны устойчивы лишь в составе стабильных атомных ядер. Свободный нейтрон - нестабильная частица, распадающаяся на протон , электрон и электронное антинейтрино (см. Бета-распад): . Время жизни нейтрона составляет с, т. е. около 15 мин. В веществе в свободном виде нейтроны существуют еще меньше вследствие сильного поглощения их ядрами. Поэтому они возникают в природе или получаются в лаборатории только в результате ядерных реакций.

По энергетическому балансу различных ядерных реакций определена величина разности масс нейтрона и протона: МэВ. Из сопоставления ее с массой протона получим массу нейтрона: МэВ; это соответствует г, или , где - масса электрона.

Нейтрон участвует во всех видах фундаментальных взаимодействий (см. Единство сил природы). Сильные взаимодействия связывают нейтроны и протоны в атомных ядрах. Пример слабого взаимодействия - бета-распад нейтрона - здесь уже рассматривался. Участвует ли эта нейтральная частица в электромагнитных взаимодействиях? Нейтрон обладает внутренней структурой, и в нем при общей нейтральности существуют электрические токи, приводящие, в частности, к появлению у нейтрона магнитного момента. Иными словами, в магнитном поле нейтрон ведет себя подобно стрелке компаса.

Это лишь один из примеров его электромагнитного взаимодействия.

Большой интерес приобрели поиски диполь-ного электрического момента нейтрона, для которого была получена верхняя граница: . Здесь самые эффективные опыты удалось поставить ученым Ленинградского института ядерной физики АН СССР. Поиски дипольного момента нейтронов важны для понимания механизмов нарушения инвариантности относительно обращения времени в микропроцессах (см. Четность).

Гравитационные взаимодействия нейтронов наблюдались непосредственно по их падению в поле тяготения Земли.

Сейчас принята условная классификация нейтронов по их кинетической энергии: медленные нейтроны эВ, есть много их разновидностей), быстрые нейтроны ( эВ), высокоэнергичные эВ). Весьма интересными свойствами обладают очень медленные нейтроны ( эВ), получившие название ультрахолодных. Оказалось, что ультрахолодные нейтроны можно накапливать в «магнитных ловушках» и даже ориентировать там их спины в определенном направлении. С помощью магнитных полей специальной конфигурации ультрахолодные нейтроны изолируются от поглощающих стенок и могут «жить» в ловушке, пока не распадутся. Это позволяет проводить многие тонкие эксперименты по изучению свойств нейтронов.

Другой метод хранения ультрахолодных нейтронов основан на их волновых свойствах. При малой энергии длина волны де Бройля (см. Квантовая механика) настолько велика, что нейтроны отражаются от ядер вещества подобно тому, как свет отражается от зеркала. Такие нейтроны можно просто хранить в замкнутой «банке». Эта идея была высказана советским физиком Я. Б. Зельдовичем в конце 1950-х гг., и первые результаты были получены в Дубне, в Объединенном институте ядерных исследований спустя почти десятилетие. Недавно советским ученым удалось построить сосуд, в котором ультрахолодные нейтроны живут до своего естественного распада.

Свободные нейтроны способны активно взаимодействовать с атомными ядрами, вызывая ядерные реакции. В результате взаимодействия медленных нейтронов с веществом можно наблюдать резонансные эффекты, дифракционное рассеяние в кристаллах и т. п. Благодаря этим своим особенностям нейтроны широко используются в ядерной физике и физике твердого тела. Они играют важную роль в ядерной энергетике, в производстве трансурановых элементов и радиоактивных изотопов, находят практическое применение в химическом анализе и в геологической разведке.

Толковый словарь русского языка. Д.Н. Ушаков

нейтрон

нейтрона, м. (от латин. neutrum, букв. ни то, ни другое) (физ. нов.). Входящая в ядро атома материальная частица, лишенная электрического заряда, электрически нейтральная.

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

нейтрон

А, м. (спец.). Электрически нейтральная элементарная частица с массой, почти равной массе протона.

прил. нейтронный, -ая, -ое.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

нейтрон

м. Электрически нейтральная элементарная частица.

Энциклопедический словарь, 1998 г.

нейтрон

НЕЙТРОН (англ. neutron, от лат. neuter - ни тот, ни другой) (n) нейтральная элементарная частица со спином 1/2 и массой, превышающей массу протона на 2,5 электронных масс; относится к барионам. В свободном состоянии нейтрон нестабилен и имеет время жизни ок. 16 мин. Вместе с протонами нейтрон образуют атомные ядра; в ядрах нейтрон стабилен.

Нейтрон

(англ. neutron, от лат. neuter ≈ ни тот, ни другой; символ n), нейтральная (не обладающая электрическим зарядом) элементарная частица со спином 1/2 (в единицах постоянной Планка) и массой, незначительно превышающей массу протона. Из протонов и Н. построены все ядра атомные. Магнитный момент Н. равен примерно двум ядерным магнетонам и отрицателен, т. е. направлен противоположно механическому, спиновому, моменту количества движения. Н. относятся к классу сильно взаимодействующих частиц (адронов) и входят в группу барионов, т. е. обладают особой внутренней характеристикой ≈ барионным зарядом, равным, как и у протона (р), +

    Н. были открыты в 1932 английским физиком Дж. Чедвиком, который установил, что обнаруженное немецкими физиками В. Боте и Г. Бекером проникающее излучение, возникающее при бомбардировке атомных ядер (в частности, бериллия) a-частицами, состоит из незаряженных частиц с массой, близкой к массе протона.

    Н. устойчивы только в составе стабильных атомных ядер. Свободный Н. ≈ нестабильная частица, распадающаяся на протон, электрон (е-) и электронное антинейтрино:

    среднее время жизни Н. t » 16 мин. В веществе свободные Н. существуют ещё меньше (в плотных веществах единицы ≈ сотни мксек) вследствие их сильного поглощения ядрами. Поэтому свободные Н. возникают в природе или получаются в лаборатории только в результате ядерных реакций (см. Нейтронные источники). В свою очередь, свободный Н. способен взаимодействовать с атомными ядрами, вплоть до самых тяжёлых; исчезая, Н. вызывает ту или иную ядерную реакцию, из которых особое значение имеет деление тяжёлых ядер, а также радиационный захват Н., приводящий в ряде случаев к образованию радиоактивных изотопов. Большая эффективность Н. в осуществлении ядерных реакций, своеобразие взаимодействия с веществом совсем медленных Н. (резонансные эффекты, дифракционное рассеяние в кристаллах и т.п.) делают Н. исключительно важным орудием исследования в ядерной физике и физике твёрдого тела. В практических приложениях Н. играют ключевую роль в ядерной энергетике производстве трансурановых элементов и радиоактивных изотопов (искусственная радиоактивность), а также широко используются в химическом анализе (активационный анализ) и в геологической разведке (нейтронный каротаж).

    В зависимости от энергии Н. принята их условная классификация: ультрахолодные Н. (до 10-7эв), очень холодные (10-7≈10-4 эв), холодные (10-4≈5×10-3эв), тепловые (5×10-3≈0,5 эв), резонансные (0,5≈104 эв), промежуточные (104≈105эв), быстрые (105≈108 эв), высокоэнергичные (108≈1010эв) и релятивистские (³ 1010 эв); все Н. с энергией до 105эв объединяют общим названием медленные нейтроны .

    ══О методах регистрации Н. см. Нейтронные детекторы.

    Основные характеристики нейтронов

    Масса . Наиболее точно определяемой величиной является разность масс Н. и протона: mn ≈ mр= (1,29344 ╠ 0,00007) Мэв, измеренная по энергетическому балансу различных ядерных реакций. Из сопоставления этой величины с массой протона получается (в энергетических единицах)

    mn = (939,5527 ╠ 0,0052) Мэв;

    это соответствует mn» 1,6╥10-24г, или mn» 1840 mе, где mе ≈ масса электрона.

    Спин и статистика. Значение 1/2 для спина Н. подтверждается большой совокупностью фактов. Непосредственно спин был измерен в опытах по расщеплению пучка очень медленных Н. в неоднородном магнитном поле. В общем случае пучок должен расщепиться на 2J+ 1 отдельных пучков, где J ≈ спин Н. В опыте наблюдалось расщепление на 2 пучка, откуда следует, что J = 1/

    Как частица с полуцелым спином, Н. подчиняется Ферми ≈ Дирака статистике (является фермионом); независимо это было установлено на основе экспериментальных данных по строению атомных ядер (см. Ядерные оболочки).

    Электрический заряд нейтрона Q = 0. Прямые измерения Q по отклонению пучка Н. в сильном электрическом поле показывают, что, по крайней мере, Q < 10-17e, где е ≈ элементарный электрический заряд, а косвенные измерения (по электрической нейтральности макроскопических объёмов газа) дают оценку Q < 2╥10-22е.

    Другие квантовые числа нейтрона . По своим свойствам Н. очень близок протону: n и р имеют почти равные массы, один и тот же спин, способны взаимно превращаться друг в друга, например в процессах бета-распада; они одинаковым образом проявляют себя в процессах, вызванных сильным взаимодействие, в частности ядерные силы , действующие между парами р≈р, n≈p и n≈n, одинаковы (если частицы находятся соответственно в одинаковых состояниях). Такое глубокое сходство позволяет рассматривать Н. и протон как одну частицу ≈ нуклон, которая может находиться в двух разных состояниях, отличающихся электрическим зарядом Q. Нуклон в состоянии с Q = + 1 есть протон, с Q = 0 ≈ Н. Соответственно, нуклону приписывается (по аналогии с обычным спином) некоторая внутренняя характеристика ≈ изотонический спин I, равный 1/2, «проекция» которого может принимать (согласно общим правилам квантовой механики) 2I + 1 = 2 значения: + 1/2 и ≈1/2. Т. о., n и р образуют изотопический дублет (см. Изотопическая инвариантность): нуклон в состоянии с проекцией изотопического спина на ось квантования + 1/2 является протоном, а с проекцией ≈1/2 ≈ Н. Как компоненты изотопического дублета, Н. и протон, согласно современной систематике элементарных частиц, имеют одинаковые квантовые числа: барионный заряд В =+ 1, лептонный заряд L = 0, странность S = 0 и положительную внутреннюю чётность . Изотопический дублет нуклонов входит в состав более широкой группы «похожих» частиц ≈ так называемый октет барионов с J = 1/2, В = 1 и положительной внутренней чётностью; помимо n и р в эту группу входят L-, S╠-, S0-, X
    --, X0- гипероны , отличающиеся от n и р странностью (см. Элементарные частицы).

    Магнитный дипольный момент нейтрона, определённый из экспериментов по ядерному магнитному резонансу, равен:

    mn = ≈ (1,91315 ╠ 0,00007) mя,

    где mя=5,05×10-24эрг/гс ≈ ядерный магнетон. Частица со спином 1/2, описываемая Дирака уравнением, должна обладать магнитным моментом, равным одному магнетону, если она заряжена, и нулевым, если не заряжена. Наличие магнитного момента у Н., так же как аномальная величина магнитного момента протона (mр = 2,79mя), указывает на то, что эти частицы имеют сложную внутреннюю структуру, т. е. внутри них существуют электрические токи, создающие дополнительный «аномальный» магнитный момент протона 1,79mя и приблизительно равный ему по величине и противоположный по знаку магнитный момент Н. (≈1,9mя) (см. ниже).

    Электрический дипольный момент. С теоретической точки зрения, электрический дипольный момент d любой элементарной частицы должен быть равен нулю, если взаимодействия элементарных частиц инвариантны относительно обращения времени (Т-инвариантность). Поиски электрического дипольного момента у элементарных частиц являются одной из проверок этого фундаментального положения теории, и из всех элементарных частиц, Н. ≈ наиболее удобная частица для таких поисков. Опыты по методу магнитного резонанса на пучке холодных Н. показали, что dn < 10-23см╥e. Это означает, что сильное, электромагнитное и слабое взаимодействия с большой точностью Т-инвариантны.

    Взаимодействия нейтронов

    Н. участвуют во всех известных взаимодействиях элементарных частиц ≈ сильном, электромагнитном, слабом и гравитационном.

    Сильное взаимодействие нейтронов . Н. и протон участвуют в сильных взаимодействиях как компоненты единого изотопического дублета нуклонов. Изотопическая инвариантность сильных взаимодействий приводит к определённой связи между характеристиками различных процессов с участием Н. и протона, например эффективные сечения рассеяния p+-мезона на протоне и p
    --мезона на Н. равны, так как системы p+р и p-n имеют одинаковый изотопический спин I = 3/2 и отличаются лишь значениями проекции изотопического спина I3 (I3 = + 3/2 в первом и I3 = ≈ 3/2 во втором случаях), одинаковы сечения рассеяния К+ на протоне и К╟на Н, и т.п. Справедливость такого рода соотношений экспериментально проверена в большом числе опытов на ускорителях высокой энергии. [Ввиду отсутствия мишеней, состоящих из Н., данные о взаимодействии с Н. различных нестабильных частиц извлекаются главным образом из экспериментов по рассеянию этих частиц на дейтроне (d) ≈ простейшем ядре, содержащем Н.]

    При низких энергиях реальные взаимодействия Н. и протонов с заряженными частицами и атомными ядрами сильно различаются из-за наличия у протона электрического заряда, обусловливающего существование дальнодействующих кулоновских сил между протоном и др. заряженными частицами на таких расстояниях, на которых короткодействующие ядерные силы практически отсутствуют. Если энергия столкновения протона с протоном или атомным ядром ниже высоты кулоновского барьера (которая для тяжелых ядер порядка 15 Мэв), рассеяние протона происходит в основном за счёт сил электростатического отталкивания, не позволяющих частицам сблизиться до расстояний порядка радиуса действия ядерных сил. Отсутствие у Н. электрического заряда позволяет ему проникать через электронные оболочки атомов и свободно приближаться к атомным ядрам. Именно это обусловливает уникальную способность Н. сравнительно малых энергий вызывать различные ядерные реакции, в том числе реакцию деления тяжёлых ядер. О методах и результатах исследований взаимодействия Н. с ядрами см. в статьях Медленные нейтроны, Нейтронная спектроскопия, Ядра атомного деление, Рассеяние медленных Н. на протонах при энергиях вплоть до 15 Мэв сферически симметрично в системе центра инерции. Это указывает на то, что рассеяние определяется взаимодействием n ≈ р в состоянии относительного движения с орбитальным моментом количества движения l = 0 (так называемая S-волна). Рассеяние в S-cocтоянии является специфически квантовомеханическим явлением, не имеющим аналога в классической механике. Оно превалирует над рассеянием в др. состояниях, когда де-бройлевская длина волны Н.

    порядка или больше радиуса действия ядерных сил (≈ постоянная Планка, v ≈ скорость Н.). Поскольку при энергии 10 Мэв длина волны Н.

    эта особенность рассеяния Н. на протонах при таких энергиях непосредственно даёт сведения о порядке величины радиуса действия ядерных сил. Теоретическое рассмотрение показывает, что рассеяние в S-cocтоянии слабо зависит от детальной формы потенциала взаимодействия и с хорошей точностью описывается двумя параметрами: эффективным радиусом потенциала r и так называемой длиной рассеяния а. Фактически для описания рассеяния n ≈ р число параметров вдвое больше, так как система np может находиться в двух состояниях, обладающих различными значениями полного спина: J = 1 (триплетное состояние) и J = 0 (синглетное состояние). Опыт показывает, что длины рассеяния Н. протоном и эффективные радиусы взаимодействия в синглетном и триплетном состояниях различны, т. е. ядерные силы зависят от суммарного спина частиц, Из экспериментов следует также, что связанное состояние системы np (ядро дейтерия) может существовать лишь при суммарном спине 1, в то время как в синглетном состоянии величина ядерных сил недостаточна для образования связанного состояния Н. ≈ протон. Длина ядерного рассеяния в синглетном состоянии, определённая из опытов по рассеянию протонов на протонах (два протона в S-cocтоянии, согласно Паули принципу, могут находиться только в состоянии с нулевым суммарным спином), равна длине рассеяния n≈p в синглетном состоянии. Это согласуется с изотопической инвариантностью сильных взаимодействий. Отсутствие связанной системы пр в синглетном состоянии и изотопическая инвариантность ядерных сил приводят к выводу, что не может существовать связанной системы двух Н. ≈ так называемый бинейтрон (аналогично протонам, два Н. в S-cocтоянии должны иметь суммарный спин, равный нулю). Прямых опытов по рассеянию n≈n не проводилось ввиду отсутствия нейтронных мишеней, однако, косвенные данные (свойства ядер) и более непосредственные ≈ изучение реакций 3H + 3H ╝ 4He + 2n, p- + d ╝ 2n + g ≈ согласуются с гипотезой изотопической инвариантности ядерных сил и отсутствием бинейтрона. [Если бы существовал бинейтрон, то в этих реакциях наблюдались бы при вполне определенных значениях энергии пики в энергетических распределениях соответственно a-частиц (ядер 4He) и g-квантов.] Хотя ядерное взаимодействие в синглетном состоянии недостаточно велико, чтобы образовать бинейтрон, это не исключает возможности образования связанной системы, состоящей из большого числа одних только Н. ≈ нейтронных ядер. Этот вопрос требует дальнейшего теоретического и экспериментального изучения. Попытки обнаружить на опыте ядра из трёх-четырёх Н., а также ядра 4H, 5H, 6H не дали пока положительного результата, Несмотря на отсутствие последовательной теории сильных взаимодействий, на основе ряда существующих представлении можно качественно понять некоторые закономерности сильных взаимодействий и структуры Н. Согласно этим представлениям, сильное взаимодействие между Н. и др. адронами (например, протоном) осуществляется путём обмена виртуальными адронами (см. Виртуальные частицы) ≈ p-мезонами, r-мезонами и др. Такая картина взаимодействия объясняет короткодействующий характер ядерных сил, радиус которых определяется комптоновской длиной волны самого лёгкого адрона ≈ p-мезона (равной 1,4×10-13см). Вместе с тем она указывает на возможность виртуального превращения Н. в др. адроны, например процесс испускания и поглощения p-мезона: n ╝ p + p- ╝ n. Известная из опыта интенсивность сильных взаимодействий такова, что Н. подавляющее время должен проводить в подобного рода «диссоциированных» состояниях, находясь как бы в «облаке» виртуальных p-мезонов и др. адронов. Это приводит к пространственному распределению электрического заряда и магнитного момента внутри Н., физические размеры которого определяются размерами «облака» виртуальных частиц (см. также Формфактор). В частности, оказывается возможным качественно интерпретировать отмеченное выше приблизительное равенство по абсолютной величине аномальных магнитных моментов Н. и протона, если считать, что магнитный момент Н. создаётся орбитальным движением заряженных p
    --мезонов, испускаемых виртуально в процессе n ╝ p + p- ╝ n, а аномальный магнитный момент протона ≈ орбитальным движением виртуального облака p+-мезонов, создаваемого процессом р ╝ n + p+ ╝ р.

    Электромагнитные взаимодействия нейтрона. Электромагнитные свойства Н. определяются наличием у него магнитного момента, а также существующим внутри Н. распределением положительного и отрицательного зарядов и токов. Все эти характеристики, как следует из предыдущего, связаны с участием Н. в сильном взаимодействии, обусловливающем его структуру. Магнитный момент Н. определяет поведение Н. во внешних электромагнитных полях: расщепление пучка Н. в неоднородном магнитном поле, прецессию спина Н. Внутренняя электромагнитная структура Н. проявляется при рассеянии электронов высокой энергии на Н. и в процессах рождения мезонов на Н. g-квантами (фоторождение мезонов). Электромагнитные взаимодействия Н. с электронными оболочками атомов и атомными ядрами приводят к ряду явлений, имеющих важное значение для исследования строения вещества. Взаимодействие магнитного момента Н. с магнитными моментами электронных оболочек атомов проявляется существенно для Н., длина волны которых порядка или больше атомных размеров (энергия Е < 10 эв), и широко используется для исследования магнитной структуры и элементарных возбуждений (спиновых волн) магнитоупорядоченных кристаллов (см. Нейтронография). Интерференция с ядерным рассеянием позволяет получать пучки поляризованных медленных Н. (см. Поляризованные нейтроны).

    Взаимодействие магнитного момента Н. с электрическим полем ядра вызывает специфическое рассеяние Н., указанное впервые американским физиком Ю. Швингером и потому называемое «швингеровским». Полное сечение этого рассеяния невелико, однако при малых углах (~ 3╟) оно становится сравнимым с сечением ядерного рассеяния; Н., рассеянные на такие углы, в сильной степени поляризованы.

    Взаимодействие Н. ≈ электрон (n≈e), не связанное с собственным или орбитальным моментом электрона, сводится в основном к взаимодействию магнитного момента Н. с электрическим полем электрона. Другой, по-видимому меньший, вклад в (n≈e)-взаимодействие может быть обусловлен распределением электрических зарядов и токов внутри Н. Хотя (n≈e)-взаимодействие очень мало, его удалось наблюдать в нескольких экспериментах.

    Слабое взаимодействие нейтрона проявляется в таких процессах, как распад Н.:

    захват электронного антинейтрино протоном:

    и мюонного нейтрино (nm) нейтроном: nm + n ╝ р + m-, ядерный захват мюонов: m- + р ╝ n + nm, распады странных частиц, например L ╝ p╟ + n, и т.д.

    Гравитационное взаимодействие нейтрона. Н. ≈ единственная из имеющих массу покоя элементарных частиц, для которой непосредственно наблюдалось гравитационное взаимодействие ≈ искривление в поле земного тяготения траектории хорошо коллимированного пучка холодных Н. Измеренное гравитационное ускорение Н. в пределах точности эксперимента совпадает с гравитационным ускорением макроскопических тел.

    Нейтроны во Вселенной и околоземном пространстве

    Вопрос о количестве Н. во Вселенной на ранних стадиях её расширения играет важную роль в космологии. Согласно модели горячей Вселенной (см. Космология), значительная часть первоначально существовавших свободных Н. при расширении успевает распасться. Часть Н., которая оказывается захваченной протонами, должна в конечном счёте привести приблизительно к 30%-ному содержанию ядер Не и 70%-ному ≈ протонов. Экспериментальное определение процентного состава He во Вселенной ≈ одна из критических проверок модели горячей Вселенной.

    Эволюция звёзд в ряде случаев приводит к образованию нейтронных звёзд, к числу которых относятся, в частности, так называемые пульсары .

    В первичной компоненте космических лучей Н. в силу своей нестабильности отсутствуют. Однако взаимодействия частиц космических лучей с ядрами атомов земной атмосферы приводят к генерации Н. в атмосфере. Реакция 14N (n, р)14С, вызываемая этими Н., ≈ основной источник радиоактивного изотопа углерода 14C в атмосфере, откуда он поступает в живые организмы; на определении содержания 14C в органических остатках основан радиоуглеродный метод геохронологии. Распад медленных Н., диффундирующих из атмосферы в околоземное космическое пространство, является одним из основных источников электронов, заполняющих внутреннюю область радиационного пояса Земли.

    Бомбардировка ядер урана нейтронами бериллиевого стержня забирала гораздо больше энергии, чем ее высвобождалось при первичном делении.

    Поэтому для работы реактора было необходимо, чтобы каждый атом расщепленный нейтронами

    Поэтому для работы реактора было необходимо, чтобы каждый атом, расщепленный нейтронами бериллиевого стержня, в свою очередь вызывал расщепление других атомов.

    Хороший источник нейтронов был по карману даже небогатой лаборатории: немножко радия и несколько граммов бериллиевого порошка.

    Такое же количество в циклотроне можно было получить за два дня, если использовать нейтроны , выбиваемые разогнанными дейтронами из бериллиевой мишени.

    Затем удалось показать, что бериллиевое излучение на самом деле состоит из гамма-лучей и потока нейтронов .

    Понимаете, первоначальный поток нейтронов представит собой простое сферическое расширение от первичного взрыва, но его захватит бериллий, - объяснял Фромм, стоя рядом с Куати.

    Ад, акаша, алкоголизм, Ангел, антивещество, антигравитация, антифотон, астения, астрология, атом, Армагеддон, аура, аутогенная тренировка, белая горячка, бессонница, бесстрастие, Бог, божественное, божественный путь, Буддизм, буддхи, будущее, будущее Вселенной, будущее Солнечной системы, вакуум, Великий обет, вещество, виртуальный, влияние на судьбу, внеземная цивилизация, Вселенная, всемирный потоп, воплощение, время, Высший Разум, Высшие Знания, галактика, геологические периоды, Гермес Трисмегист, гиперон, гипноз, головной мозг, гороскоп, гравитационные волны, гравитация, гуна, Дао, двойник, деперсонализация, дефект массы, демон, Дзэн-буддизм, добро зло, ДНК, Древние Знания, дрейф материков, Дух, душа, дхьяна, дьявол, Единая Теория Поля, жизнь, заболевания психики, зарождение жизни, звезда, земная жизнь, знание будущего, знания, зомби, зомбирование, изменение судьбы, измененные состояния сознания, измерение вещества, Изумрудная Скрижаль, иммунная система, инстинкт, интеллект, интуиция, искривление света, ис

    К стержню из карбида бора, сильно поглощающего нейтроны , подвесили графитовый вытеснитель длиной 4,5 м.

    Замещение этих столбов графитовым вытеснителем, слабее поглощающим нейтроны , и создает местный реактор.

    Минимальный размер Минимальный размер живого косного естественного тела естественного тела определяется дисперсностью определяется дыханием, материи-энергии - атомом, главным образом газовой электроном, корпускулой, биогенной миграцией атомов нейтроном и т.

    Идея долгоживущего компаунд-ядра позволила Бору предвидеть, что подходящими окажутся даже совсем медленные нейтроны .

    Структурное различие между ними сводится к числу входящих в них протонов, нейтронов , мезонов и электронов, однако каждое очередное прибавление к системе пары протон-электрон резко меняет функциональные свойства всей совокупной единицы в целом и это является наглядным подтверждением регламентированности числа фн.

    Реактор РБМК-1000 - это реактор канального типа, замедлитель нейтронов - графит, теплоноситель - обычная вода.

НЕЙТРОН
Neutron

Нейтрон – нейтральная частица, относящаяся к классу барионов. Вместе с протоном нейтрон образует атомные ядра. Масса нейтрона m n = 938.57 МэВ/с 2 ≈ 1.675·10 -24 г. Нейтрон, как и протон, имеет спин 1/2ћ и является фермионом.. Он имеет и магнитный момент μ n = - 1.91μ N , где μ N = е ћ /2m р с – ядерный магнетон (m р – масса протона, использована Гауссова система единиц). Размер нейтрона около 10 -13 см. Он состоит из трёх кварков: одного u-кварка и двух d-кварков, т.е. его кварковая структура udd.
Нейтрон, являясь барионом, имеет барионное число В = +1. Нейтрон нестабилен в свободном состоянии. Так как он несколько тяжелее протона (на 0.14%), то он испытывает распад с образованием протона в конечном состоянии. При этом закон сохранения барионного числа не нарушается, так как барионное число протона также +1. В результате этого распада образуется также электрон е - и электронное антинейтрино e . Распад происходит за счёт слабого взаимодействия.


Схема распада n → р + е - + e .

Время жизни свободного нейтрона τ n ≈ 890 сек. В составе атомного ядра нейтрон может быть столь же стабилен, как и протон.
Нейтрон, будучи адроном, участвует в сильном взаимодействии.
Нейтрон был открыт в 1932 г. Дж. Чедвиком .

Что такое нейтрон? Каковы его структура, свойства и функции? Нейтроны - это самые большие из частиц, составляющих атомы, являющиеся строительными блоками всей материи.

Структура атома

Нейтроны находятся в ядре - плотной области атома, также заполненной протонами (положительно заряженными частицами). Эти два элемента удерживаются вместе при помощи силы, называем ядерной. Нейтроны имеют нейтральный заряд. Положительный заряд протона сопоставляется с отрицательным зарядом электрона для создания нейтрального атома. Несмотря на то что нейтроны в ядре не влияют на заряд атома, они все же обладают многими свойствами, которые влияют на атом, включая уровень радиоактивности.

Нейтроны, изотопы и радиоактивность

Частица, которая находится в ядре атома - нейтрон на 0,2% больше протона. Вместе они составляют 99,99% всей массы одного и того же элемента могут иметь различное количество нейтронов. Когда ученые ссылаются на атомную массу, они имеют в виду среднюю атомную массу. Например, углерод обычно имеет 6 нейтронов и 6 протонов с атомной массой 12, но иногда он встречается с атомной массой 13 (6 протонов и 7 нейтронов). Углерод с атомным номером 14 также существует, но встречается редко. Итак, атомная масса для углерода усредняется до 12,011.

Когда атомы имеют различное количество нейтронов, их называют изотопами. Ученые нашли способы добавления этих частиц в ядро ​​для создания больших изотопов. Теперь добавление нейтронов не влияет на заряд атома, так как они не имеют заряда. Однако они увеличивают радиоактивность атома. Это может привести к очень неустойчивым атомам, которые могут разряжать высокие уровни энергии.

Что такое ядро?

В химии ядро ​​является положительно заряженным центром атома, который состоит из протонов и нейтронов. Слово «ядро» происходит от латинского nucleus, которое является формой слова, означающего "орех" или "ядро". Этот термин был придуман в 1844 году Майклом Фарадеем для описания центра атома. Науки, участвующие в исследовании ядра, изучении его состава и характеристик, называются ядерной физикой и ядерной химией.

Протоны и нейтроны удерживаются сильной ядерной силой. Электроны притягиваются к ядру, но двигаются так быстро, что их вращение осуществляется на некотором расстоянии от центра атома. Заряд ядра со знаком плюс исходит от протонов, а что такое нейтрон? Это частица, которая не имеет электрического заряда. Почти весь вес атома содержится в ядре, так как протоны и нейтроны имеют гораздо большую массу, чем электроны. Число протонов в атомном ядре определяет его идентичность как элемента. Число нейтронов означает, какой изотоп элемента является атомом.

Размер атомного ядра

Ядро намного меньше общего диаметра атома, потому что электроны могут быть отдалены от центра. Атом водорода в 145 000 раз больше своего ядра, а атом урана в 23 000 раз больше своего центра. Ядро водорода является наименьшим, потому что оно состоит из одиночного протона.

Расположение протонов и нейтронов в ядре

Протон и нейтроны обычно изображаются как уплотненные вместе и равномерно распределенные по сферам. Однако это упрощение фактической структуры. Каждый нуклон (протон или нейтрон) может занимать определенный уровень энергии и диапазон местоположений. В то время как ядро ​​может быть сферическим, оно может быть также грушевидным, шаровидным или дисковидным.

Ядра протонов и нейтронов представляют собой барионы, состоящие из наименьших называемых кварками. Сила притяжения имеет очень короткий диапазон, поэтому протоны и нейтроны должны быть очень близки друг к другу, чтобы быть связанными. Это сильное притяжение преодолевает естественное отталкивание заряженных протонов.

Протон, нейтрон и электрон

Мощным толчком в развитии такой науки, как ядерная физика, стало открытие нейтрона (1932 год). Благодарить за это следует английского физика который был учеником Резерфорда. Что такое нейтрон? Это нестабильная частица, которая в свободном состоянии всего за 15 минут способна распадаться на протон, электрон и нейтрино, так называемую безмассовую нейтральную частицу.

Частица получила свое название из-за того, что она не имеет электрического заряда, она нейтральна. Нейтроны являются чрезвычайно плотными. В изолированном состоянии один нейтрон будет иметь массу всего 1,67·10 - 27 , а если взять чайную ложку плотно упакованную нейтронами, то получившийся кусок материи будет весить миллионы тонн.

Количество протонов в ядре элемента называется атомным номером. Это число дает каждому элементу свою уникальную идентичность. В атомах некоторых элементов, например углерода, число протонов в ядрах всегда одинаково, но количество нейтронов может различаться. Атом данного элемента с определенным количеством нейтронов в ядре называется изотопом.

Опасны ли одиночные нейтроны?

Что такое нейтрон? Это частица, которая наряду с протоном входит в Однако иногда они могут существовать сами по себе. Когда нейтроны находятся вне ядер атомов, они приобретают потенциально опасные свойства. Когда они двигаются с высокой скоростью, они производят смертельную радиацию. Так называемые нейтронные бомбы, известные своей способностью убивать людей и животных, при этом оказывают минимальное влияние на неживые физические структуры.

Нейтроны являются очень важной частью атома. Высокая плотность этих частиц в сочетании с их скоростью придает им чрезвычайную разрушительную силу и энергию. Как следствие, они могут изменить или даже разорвать на части ядра атомов, которые поражают. Хотя нейтрон имеет чистый нейтральный электрический заряд, он состоит из заряженных компонентов, которые отменяют друг друга относительно заряда.

Нейтрон в атоме - это крошечная частица. Как и протоны, они слишком малы, чтобы увидеть их даже с помощью электронного микроскопа, но они там есть, потому что это единственный способ, объясняющий поведение атомов. Нейтроны очень важны для обеспечения стабильности атома, однако за пределами его атомного центра они не могут существовать долго и распадаются в среднем всего лишь за 885 секунд (около 15 минут).

НЕЙТРОН

НЕЙТРОН

(англ. neutron, от лат. neuter - ни тот, ни другой) (n), электрически нейтральная элем. ч-ца со спином 1/2 и массой, незначительно превышающей массу протона; относится к классу адронов и входит в группу барионов. Из протонов и Н. построены все ядра атомные. Н. открыты в 1932 англ. физиком Дж. Чедвиком, установившим, что обнаруженное нем. физиками В. Боте и Г. Бекером проникающее , к-рое возникает при бомбардировке ат. ядер a-частицами, состоит из незаряж. ч-ц с массой, близкой к протонной.

Н. устойчивы только в составе стабильных ат. ядер. Свободный Н.- нестабильная ч-ца, распадающаяся по схеме:n®p+e-+v=c (бета-распад Н.); ср. Н. t=15,3 мин. В в-ве свободные Н. существуют ещё меньше (в плотных в-вах - единицы - сотни мкс) вследствие их сильного поглощения ядрами. Поэтому свободные Н. возникают в природе или получаются в лаборатории только в яд. реакциях. Свободные Н., взаимодействуя с ат. ядрами, вызывают разл. . Большая эффективность Н. в осуществлении яд. реакций, своеобразие вз-ствия с в-вом медленных Н. (резонансные эффекты, дифракц. рассеяние в кристаллах и т. п.) делают Н. исключительно важным орудием исследования в яд. физике и физике тв. тела (см. НЕЙТРОНОГРАФИЯ). В практич. приложениях Н. играют ключевую роль в яд. энергетике, в производстве трансурановых элементов и радиоакт. изотопов (искусств. ), а также используются в хим. анализе (активац. анализ) и в геол. разведке (нейтронный каротаж).

Основные характеристики нейтронов.

Масса. Наиболее точно определена разность масс Н. и протона: mn--mp=1,29344(7) МэВ, измеренная по энергетич. балансу разл. яд. реакций. Отсюда (и известной mp) mn= 939,5731(27) МэВ или mn»1,675Х10-24 г»1840me (me - эл-на).

Спин и статистика. Спин Н. J был измерен по расщеплению пучка очень медленных Н. в неоднородном магн. . Согласно квант. механике, пучок должен расщепляться на 2J+1 отд. пучков. Наблюдалось расщепление на два пучка, т. е. для Н. J=1/2 и Н. подчиняется Ферми - Дирака статистике (независимо это было установлено на основе эксперим. данных по строению ат. ядер).

Рассеяние медленных Н. на протонах при энергиях до 15 МэВ сферически симметрично в системе центра инерции. Это указывает на то, что рассеяние определяется вз-ствием np в состоянии относит. движения с орбит. моментом l=0 (т. н. S-волна). S-рассеяние превалирует над рассеянием в др. состояниях, когда де Бройля Н. ?? радиуса действия яд. сил. Т. к. при энергии 10 МэВ для Н. ?»2 10-13 см, эта особенность рассеяния Н. на протонах при таких энергиях даёт сведения о порядке величины радиуса действия яд. сил. Из теории рассеяния микрочастиц следует, что рассеяние в S-состоянии слабо зависит от детальной формы потенциала вз-ствия и с хорошей точностью описывается двумя параметрами: эфф. радиусом r потенциала и длиной рассеяния а. Для описания np-рассеяния число параметров вдвое больше, т. к. система может находиться в двух состояниях с разными значениями полного спина: 1 (триплетное состояние) и 0 (синглетное состояние). Опыт показывает, что длины рассеяния Н. протоном и эфф. радиусы вз-ствия в синглетном и триплетном состояниях различны, т. е. яд. силы зависят от суммарного спина ч-ц. В частности, связ. состояние системы np - ядро дейтерия может существовать лишь при спине 1. Длина рассеяния в синглетном состоянии, определённая из опытов по pp-рассеянию (два протона в S-состоянии, согласно Паули принципу, могут находиться только в состоянии с нулевым суммарным спином), равна длине np-рассеяния в синглетном состоянии. Это согласуется с изотопич. инвариантностью сильного вз-ствия. Отсутствие связ. системы np в синглетном состоянии и изотопич. инвариантность яд. сил приводят к выводу, что не может существовать связ. системы двух Н-- т. н. бинейтрон. Прямых опытов по nn-рассеянию не проводилось из-за отсутствия нейтронных мишеней, однако косв. данные (св-ва ядер) и более непосредственные - изучение реакций 3Н+3Н®4Не+2n, p-+d®2n+g согласуются с гипотезой изотопич. инвариантности яд. сил и отсутствием бинейтрона. (Если бы бинейтрон существовал, то в этих реакциях наблюдались бы при вполне определ. энергиях пики в энергетич. распределениях соотв. a-частиц и g-квантов.) Хотя яд. вз-ствие в синглетном состоянии недостаточно велико, чтобы образовать бинейтрон, это не исключает возможности образования связ. системы из большого числа одних только Н.- нейтронных ядер (ядра из трёх-четырёх Н. не обнаружены).

Э л е к т р о м а г н и т н о е в з а и м о д е й с т в и е. Эл.-магн. св-ва Н. определяются наличием у него магн. момента, а также существующим внутри Н. распределением положит. и отрицат. зарядов и токов. Магн. момент Н. определяет поведение Н. во внеш. эл.-магн. полях: расщепление пучка Н. в неоднородном магн. поле, прецессию спина Н. Внутр. эл.-магн. структура Н. (см. ФОРМФАКТОР) проявляется при рассеянии эл-нов высокой энергии на Н. и в процессах рождения мезонов на Н. g-квантами. Вз-ствие магн. момента Н. с магн. моментами электронных оболочек атомов существенно проявляется для Н., длина де Бройля к-рых??ат. размеров ( ? НЕЙТРОНОГРАФИЯ). Интерференция магн. рассеяния с ядерным позволяет получать пучки поляризованных медленных Н. Вз-ствие магн. момента Н. с электрич. полем ядра вызывает специфич. швингеровское рассеяние Н. (указано впервые амер. физиком Ю. Швингером). Полное этого рассеяния невелико, однако при малых углах (=3°) оно становится сравнимым с сечением яд. рассеяния; Н., рассеянные на такие углы, в сильной степени поляризованы. Вз-ствие Н. с эл-ном, не связанное с собств. или орбит. моментом эл-на, сводится в осн. к вз-ствию магн. момента Н. с электрнч. полем эл-на. Хотя это вз-ствие очень мало, его удалось наблюдать в иеск. экспериментах.

Слабое (I. проявляется в таких процессах, как распад Н.: n®p+e-+v=e, захват электронного протоном: v=e+р®n+е+ и мюонного нейтроном: vm+n®p+m-, яд. захват мюонов: m-+р®n+vm, распады странных частиц, напр. L®p°+n, а также в яд. реакциях, вызываемых II. и идущих с нарушением пространств. чётности.

Г р а в и т а ц и о н н о е в з а и м о д е й с т в и е. Н.- единственная из имеющих массу покоя элем. ч-ц, для к-рой непосредственно наблюдалось гравитац. вз-ствие - искривление в поле земного тяготения траектории хорошо коллимированного пучка холодных Н. Измеренное гравитац. Н. в пределах точности эксперимента совпадает с гравитац. ускорением макроскопич. тел.

Нейтроны во Вселенной и околоземном пространстве.

Вопрос о кол-ве Н. во Вселенной на ранних стадиях её расширения играет важную роль в космологии. Согласно модели горячей Вселенной, значит. часть первоначально существовавших свободных Н. при расширении успевает распасться. Часть Н., к-рая оказывается захваченной протонами, должна в конечном счёте привести прибл. к 30%-ному содержанию ядер Не и 70%-ному - протонов. Эксперим. определение процентного содержания Не во Вселенной - одна из критич. проверок модели горячей Вселенной. Эволюция звёзд в ряде случаев приводит к образованию нейтронных звёзд (к числу к-рых относятся, в частности, пульсары). В первичной компоненте косм. лучей Н. из-за своей нестабильности отсутствуют. Однако вз-ствие ч-ц косм. лучей с ядрами атомов земной атмосферы приводит к генерации Н. в атмосфере. Реакция 14N (n, p) 14С, вызываемая этими Н.,- осн. источник радиоакт. изотопа углерода 14С в атмосфере, откуда он поступает в живые организмы; на определении содержания 14С в органич. остатках основан радиоуглеродный метод геохронологии. Распад медленных Н., диффундирующих из атмосферы в околоземное косм. пр-во, явл. одним из источников эл-нов, заполняющих внутр. область радиационных поясов Земли.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

НЕЙТРОН

(n) (от лат. neuter - ни тот, ни другой) - элементарная частица с нулевым электрич. зарядом и массой, незначительно большей массы протона. Наряду с протоном под общим назв. нуклон входит в состав атомных ядер. H. имеет спин 1 / 2 и, следовательно, подчиняется Ферми - Дирака статистике (является фермионом). Принадлежит к семейству адра-нов; обладает барионным числом B= 1, т. е. входит в группу барионов.

Открыт в 1932 Дж. Чедвиком (J. Chadwick), показавшим, что жёсткое проникающее излучение, возникающее при бомбардировке ядер бериллия a-частицами, состоит из электрически нейтральных частиц с массой, примерно равной протонной. В 1932 Д. Д. Иваненко и В. Гей-зенберг (W. Heisenberg) выдвинули гипотезу о том, что атомные ядра состоят из протонов и H. В отличие от заряж. частиц, H. легко проникает в ядра при любой энергии и с большой вероятностью вызывает ядерные реакции захвата (n,g), (n,a), (n, p), если баланс энергии в реакции положительный. Вероятность экзотермич. ядерной реакции увеличивается при замедлении H. обратно пропорц. его скорости. Увеличение реакций захвата H. при их замедлении в водородсодержащих средах было обнаружено Э. Ферми (E. Fermi) с сотрудниками в 1934. Способность H. вызывать деление тяжёлых ядер, открытая О. Ганом (О. Hahn) и Ф. Штрасманом (F. Strassman) в 1938 (см. Деление ядер), послужила основой для создания ядерного оружия и ядерной энергетики. Своеобразие взаимодействия с веществом медленных H., имеющих де-бройлевскую длину волны порядка атомных расстояний (резонансные эффекты, дифракция и т. д.), служит основой широкого использования нейтронных пучков в физике твёрдого тела. (Классификацию H. по энергиям - быстрые, медленные, тепловые, холодные, ультрахолодные - см. в ст. Нейтронная физика. )

В свободном состоянии H. нестабилен - испытывает B-распад; n p + е - + v e ; его жизни t n = = 898(14) с, граничная энергия спектра электронов 782 кэВ (см. Бета-распад нейтрона). В связанном состоянии в составе стабильных ядер H. стабилен (по эксперим. оценкам, его время жизни превышает 10 32 лет). По астр. оценкам, 15% видимого вещества Вселенной представлено H., входящими в состав ядер 4 He. H. является осн. компонентой нейтронных звёзд. Свободные H. в природе образуются в ядерных реакциях, вызываемых a-частицами радиоактивного распада, космическими лучами и в результате спонтанного либо вынужденного деления тяжёлых ядер. Искусств. источниками H. служат ядерные реакторы, ядерные взрывы, ускорители протонов (на ср. энергии) и электронов с мишенями из тяжёлых элементов. Источниками монохроматичных пучков H. с энергией 14 МэВ являются низкоэнергетич. ускорители дейтронов с тритиевой или литиевой мишенью, а в будущем интенсивными источниками таких H. могут оказаться термоядерные установки УТС. (См. Нейтронные источники. )

Основные характеристики H.

Масса H. т п = 939,5731(27) МэВ/с 2 = = 1,008664967(34) ат. ед. массы 1,675 . 10 -24 г. Разность масс H. и протона измерена с наиб. точностью из энергетич. баланса реакции захвата H. протоном: n + p d + g (энергия g-кванта = 2,22 МэВ), m n - m p = 1,293323 (16) МэВ/с 2 .

Электрический заряд H. Q n = 0. Наиболее точные прямые измерения Q n выполнены по отклонению пучков холодных либо ультрахолодных H. в электростатич. поле: Q n <= 3·10 -21 е (е - заряд электрона). Косв. данные по электрич. нейтральности мак-роскопич. кол-ва газа дают Q n <= 2·10 -22 е.

Спин H. J = 1 / 2 был определён из прямых опытов по расщеплению пучка H. в неоднородном магн. поле на две компоненты [в общем случае число компонент равно (2J + 1)].

Внутренняя чётность H. положительная. Изотопический спин I = 1 / 2 , при этом проекция изотопич. спина H. I 3 = - 1 / 2 . В рамках SU (3)-симметрии H. входит в октет барионов (см. Унитарная симметрия).

Магнитный момент H. Несмотря на электронейтральность H., его магн. момент существенно отличен от нуля: m n = - 1,91304184(88)m Я, где m Я = е / 2m p c - ядерный магнетон (m р - масса протона); знак магн. момента определяется относительно направления его спина. Сопоставление магн. моментов протона (m p = 2,7928456) и H. позволило высказать гипотезу о роли p-мезонного окружения (шубы) "голого" нуклона в формировании структуры нуклона. Соотношение m p и m n (m p /m n - 3 / 2) может быть объяснено в рамках представлений о кварковой структуре нуклонов (см. ниже). Наиб. точно m n измерен сравнением с m p методом ядерного магнитного резонанса на пучке холодных H.

Электрический дипольный момент H. Динамический, т. е. индуцированный, ди-польный момент H. может возникать в сильном электрич. поле, напр. при рассеянии H. на тяжёлом ядре, либо при рассеянии g-квантов на дейтроне. Изменение энергии частицы в электрич. поле определяется соотношением D = -(a о 2 /2) . E 2 , где a 0 - поляризуемость частицы, E - напряжённость поля. Эксперименты дают оценки a 0 <= 10 -42 см 3 (принята , в к-рой = с = 1).

Статич. электрич. дипольный момент (ЭДМ) элементарной частицы должен быть тождественно равен нулю, если взаимодействия, к-рые она испытывает, инвариантны относительно обращения времени (T -инвариант-ны). ЭДМ отличен от нуля, если T -инвариантность нарушена, что, согласно теореме CPT (т. зарядового сопряжения, пространственной инверсии и обращения времени), эквивалентно нарушению СР -ин-вариантности. Хотя нарушение СР -инвариантности было обнаружено ещё в 1964 в распаде K 0 L -мезона, до сих пор СР -неинвариантные эффекты для др. частиц (или систем) не наблюдались. В совр. объединённых калибровочных теориях элементарных частиц нарушение T (или CP )-инвариантности может иметь место в электрослабом взаимодействии, хотя величина эффекта крайне мала. Разл. модели нарушения СР -инвариант-ности предсказывают величину ЭДМ H. на уровне (10 -24 -10 -32) е. см. Из-за своей электрич. нейтральности H.- весьма удобный объект для поисков СР -не-инвариантности. Наиб. чувствительный и надёжный метод - метод ЯМР с электрич. полем, наложенным на магн. иоле. Изменение направления электрич. поля при сохранении всех остальных характеристик резонансного спектрометра ЯМР вызывает смещение частоты ЯМР на величину Dv = - 4dЕ, где d - ЭДМ. Для d ~ 10 -25 е. см Dv ~10 -6 Гц. Используя метод удержания ультрахолодных H. в ЯМР-спектрометре, удаётся достичь такой чувствительности. Полученное наиб. точное ограничение на ЭДМ H.: d n <= 2·10 -25 е. см .

Структура H.

H. наряду с протоном принадлежит к легчайшим барионам. По совр. представлениям, ои состоит из трёх легчайших валентных кварков (двух d -кварков и одного u -кварка) трёх цветов, образующих бесцветную комбинацию. Кроме валентных кварков и связывающих их глюонов нуклон содержит "море" виртуальных кварк - , в т. ч. тяжёлых (странных, очарованных и т. д.). Квантовые числа H. целиком определяются набором валентных кварков, а пространств. структура - динамикой взаимодействия кварков и глюонов. Особенностью этого взаимодействия является рост эфф. константы взаимодействия ( эффективного заряда )с увеличением расстояния, так что размер области взаимодействия ограничен областью т. н. кон-файнмента кварков - областью невылетания цветных объектов, радиус которой ~10 -13 см (см. Удержание цвета).

Последоват. описание структуры адронов на основе совр. теории сильного взаимодействия - квантовой хромодинамики - пока встречает теоретич. трудности, однако для мн. задач вполне удовлетворит. результаты даёт описание взаимодействия нуклонов, представляемых как элементарные объекты, посредством обмена мезонами. Эксперим. исследование пространств. структуры H. выполняется с помощью рассеяния высокоэнергичных лептонов (электронов, мюонов, нейтрино , рассматриваемых в совр. теории как точечные частицы) на дейтронах. Вклад рассеяния на протоне измеряется в отд. эксперименте и может быть вычтен с помощью определ. вычислит. процедуры.

Упругое и квазиупругое (с расщеплением дейтрона) рассеяние электронов на дейтроне позволяет найти плотности электрич. заряда и магн. момента H. (формфактор H.). Согласно эксперименту, плотности магн. момента H. с точностью порядка неск. процентов совпадает с распределением плотности электрич. заряда протона и имеет среднеквадратичный радиус ~0,8·10 -13 см (0,8 Ф). Магн. форм-фактор H. довольно хорошо описывается т. н. диполь-ной ф-лой G M n = m n (1 + q 2 /0,71) -2 , где q 2 - квадрат переданного импульса в единицах (ГэВ/с) 2 .

Более сложен вопрос о величине электрич. (зарядового) формфактора H. G E n . Из экспериментов по рассеянию на дейтроне можно сделать заключение, что G E n (q 2 ) <= 0,1 в интервале квадратов переданных импульсов (0-1) (ГэВ/с) 2 . При q 2 0 вследствие равенства нулю электрич. заряда H. G E n -> 0, однако экспериментально можно определить дG E n (q 2 )/дq 2 | q 2=0 . Эта величина наиб. точно находится из измерений длины рассеяния H. на электронной оболочке тяжёлых атомов. Осн. часть такого взаимодействия определяется магн. моментом H. Наиб. точные эксперименты дают длину ne-рассеяния а nе = -1,378(18) . 10 -16 см, что отличается от расчётной, определяемой магн. моментом H.: a nе = -1,468 . 10 -16 см. Разность этих значений даёт среднеквадратичный электрич. радиус H. <r 2 E n >= = 0,088(12) Фили дG E n (q 2)/ дq 2 | q 2=0 = -0,02 F 2 . Эти циф-ры нельзя рассматривать как окончательные из-за большого разброса данных разл. экспериментов, превышающих приводимые ошибки.

В глубоко неупругом процессе рассеяния (взаимодействия с рождением многих вторичных адронов, преим. пионов) налетающая точечная частица (лептон) взаимодействует непосредственно с точечными компонентами нуклона - кварками. Кварковый состав H. (ddu )наиб. наглядно выявляется в экспериментах с взаимодействием нейтрино и антинейтрино высоких энергий с протонной и нейтронной (в составе дейтерия) мишенями. Напр., полное сечение s реакции v m n m - X (где X - совокупность адронов) примерно в два раза больше полного сечения реакции v m p m - X, поскольку v m взаимодействует только с d -кварком [кварковый состав протона (uud)]. Аналогично Поправки к этим простым соотношениям полных сечений связаны в осн. с наличием "моря" виртуальных пар кварк - антикварк.

Взаимодействия H.

Сильное взаимодействие H. с нуклонами. Следствием изотопич. инвариантности является равенство сечений нейтрон-нейтронного и протон-протонного взаимодействия, если в последнем случае учесть вклад кулонов-ского взаимодействия. На кварк-глюонном уровне изотопич. является следствием малой разности масс d- и u -кварков (при малости самой массы кварков). Этим же объясняется малость разности масс протона и H., а также величина и знак этой разности (d- кварк тяжелее u -кварка).

При низких энергиях (до 15 МэВ) рассеяние H. на протоне изотропно в системе центра масс, т. е. взаимодействие определяется в осн. S -волной (относит. движением с орбит. моментом L = 0). Для S -волнового взаимодействия сечение рассеяния может быть охарактеризовано двумя параметрами - эфф. радиусом потенциала взаимодействия и длиной рассеяния. Зависимость от относит. направления спинов H. и протона удваивает число параметров, т. к. длины рассеяния для синглетного (полный спин системы 0) и триплетного (полный спин 1) состояний различны (отличаются в неск. раз). Совр. значения длин рассеяния и эфф. радиусов (в Ф): = 1,70(3), r os = 2,67(3). Параметры np-рассеяния не могут быть непосредственно сопоставлены с рр- и nn-рассеянием, поскольку системы рр и nn в соответствии с Паули принципом не могут находиться в триплетом состоянии. Синглетная длина рр-рассеяния равна: а рр = -7,815(8) Ф, r 0 = 2,758 Ф. Расчёт кулоновского вклада в a рр позволяет получить чисто ядерную длину рр-рассеяния a я pp , к-рая оказывается равной -17,25 Ф. Согласно изотопич. инвариантности, а я pp = а nn . Определение параметров nn-рассеяния - сложная проблема, т. к. прямое взаимодействие свободных H. до сих пор не наблюдалось из-за трудности эксперимента. Предложено неск. вариантов эксперимента по поиску прямого nn-рассеяния в пучках высокопоточных импульсных или стационарных реакторов.

Наиб. определённые сведения об а пп . получены при исследовании реакции p-d 2ng: a nn = - 18,45(46) F, и реакции nd p2n: a nn = - 16,73(45) Ф. Расхождение результатов связано с неоднозначностью процедуры экстраполяции к нулевой энергии H. и недостаточным описанием дейтрона. Сравнивая а nn и a рр, можно заключить, что изотопич. инвариантность соблюдается, хотя эксперим. недостаточна.

На раннем этапе развития ядерной физики большую роль для понимания свойств ядерных сил сыграли осн. характеристики дейтрона. Дейтрон является связанным триплетным состоянием пр с энергией связи -2,224 МэВ. Синглетное состояние пр имеет положит. энергию связи 64 кэВ и является резонансом. Др. ре-зонансов и связанных состояний в области низких энергий в np-системе нет. Эти два параметра позволяют определить нуклон-нуклонного взаимодействия и радиус ядерных сил. Наличие у дейтрона квад-рупольного электрич. момента Q = 2,859 . 10 -27 см 2 приводит к выводу о существовании тензорных ядерных сил.

Радиац. захват H. протоном, nр dg, является простейшей ядерной реакцией. Сечение захвата при малых энергиях H. зависит от скорости H. как 1/ u. Для тепловых H. (с l = 1,73) s n g = 0,311 барн.

Изотопич. инвариантность ядерных сил и известная синглетного np-состояния позволяют обосновать отсутствие связанного nn-состояния (ди-нейтрона). Эксперим. поиски такого в реакциях типа А + В С + 2n подтверждают этот вывод: сечение образования динейтрона <=10 -29 см 2 . Не найдены также связанные состояния трёх и четырёх H. Для большего числа H. существование связанных состояний не исключено, хотя вероятность их образования в исследованных ядерных реакциях должна быть крайне мала.

При больших энергиях нуклон-нуклонного взаимодействия его характер меняется. При энергиях падающих нуклонов (200-400) МэВ, соответствующих их сближению на расстояния ~0,3 Ф, во взаимодействии проявляются отталкиват. силы. Это явление обычно сопоставляется с существованием жёсткой отталкивающей сердцевины (кора) у нуклонов и приписывается доминирующей роли на малых расстояниях обмена тяжёлыми векторными мезонами, напр. w-мезонами. Такое объяснение не единственно возможное. В модели "кварковых мешков" (см. Кварковые модели )это же явление объясняется слиянием на малых расстояниях двух нуклонов в один шестикварковый мешок, свойства к-рого качественно отличаются от свойств индивидуальных нуклонов; это приводит к тому, что экспериментально не наблюдаются два индивидуальных нуклона на малых расстояниях.

При более высоких энергиях взаимодействия становятся существенно неупругими и сопровождаются множеств. рождением p-мезонов и более тяжёлых частиц (см. Множественные процессы). Свойства кварков и глюонов при этом играют определяющую роль в динамике взаимодействия, вызывая образование струй вторичных адронов (см. Струя адронная )и др.

Взаимодействие H. с ядрами и с веществом. Как и при взаимодействии с протоном, взаимодействие H. с ядрами описывается достаточно короткодействующими силами по сравнению с де-бройлевской длиной волны H. Для малых энергий взаимодействие описывается длиной рассеяния и радиусом потенц. ямы. Отсутствие барьера для проникновения H. в ядро приводит к тому, что для H. малой энергии значит. роль играет канал реакции, идущий через образование составного ядра (компаунд-ядра). Нейтронные резонан-сы, определяемые состояниями компаунд-ядра при т. н. резонансных энергиях H., хорошо разделяются (см. Нейтронная спектроскопия). При ~ (0,1 - 1) МэВ в средних и тяжёлых ядрах перекрываются и поведение сечения описывается статистически. Феноменологически поведение сечения взаимодействия H. с ядрами описывается силовыми ф-циями s , p, d нейтронных резонансов с характерными флуктуациями. При более высоких энергиях феноменологич. описание усреднённых сечений достигается при помощи оптической модели, ядра. Взаимодействие H. большой энергии с ядрами сходно с взаимодействием протонов с ядрами.

Для медленных H. определяющими становятся его волновые свойства, когерентное взаимодействие с упорядоченными конденсиров. средами. H. с длиной волны, близкой к межатомным расстояниям, являются важнейшим средством исследования структуры твёрдых тел и динамики возбуждения в них. Наличие у H. магн. момента делает пучки поляризов. H. чрезвычайно чувствит. инструментом для исследования распределения намагниченности в веществе (см. Нейтронография).

Особенностью взаимодействия H. с большинством ядер является положит. , что приводит к коэф. преломления < 1. Благодаря этому H., падающие из вакуума на границу вещества, могут испытывать полное внутр. отражение. При скорости u. < (5-8) м/с (ультрахолодные H.) H. испытывают полное отражение от границы с углеродом, никелем, бериллием и др. при любом угле падения и могут удерживаться в замкнутых объёмах. Это свойство ультрахолодных H. широко используется в экспериментах (напр., для поиска ЭДМ H.) и позволяет реализовать нейтронооптич. устройства (см. Нейтронная оптика).

H. и слабое (электрослабое) взаимодействие. Важным источником сведений об электрослабом взаимодействии является b-распад свободного H. .На квар-ковом уровне этот процесс соответствует переходу . Обратный процесс взаимодействия электронного антинейтрино с протоном, , наз. обратным b-распадом. К этому же классу процессов относится электронный захват, имеющий место в ядрах, ре - nv e .

Распад свободного H. с учётом кинематич. параметров описывается двумя константами - векторной G V , являющейся вследствие векторного тока сохранения универс. константой слабого взаимодействия, и аксиально-векторной G A , величина к-рой определяется динамикой сильно взаимодействующих компонент нуклона - кварков и глюонов. Волновые ф-ции начального H. и конечного протона и перехода n p благодаря изотопич. инвариантности вычисляются достаточно точно. Вследствие этого вычисление констант G V и G A из распада свободного H. (в отличие от вычислений из b-распада ядер) не связано с учётом ядерно-структурных факторов.

Время жизни H. без учёта нек-рых поправок равно: t n = k(G 2 V + 3G 2 A ) -1 , где k включает кинематич. факторы и зависящие от граничной энергии b-распада кулонов-ские поправки и радиационные поправки.

Вероятность распада поляризов. H. со спином S , энергиями и импульсами электрона и антинейтрино и р е, в общем виде описывается выражением:

Коэф. корреляции a, А, В, D могут быть представлены в виде ф-ции от параметра а = (G A /G V ,)exp(i f). Фаза f отлична от нуля или p, если T -инвариантность нарушена. В табл. приведены эксперим. значения для этих коэф. и вытекающие из них значения a и f.


Имеется заметное отличие данных разл. экспериментов для т n , достигающее неск. процентов.

Описание электрослабого взаимодействия с участием H. при более высоких энергиях гораздо сложнее из-за необходимости учитывать структуру нуклонов. Напр., m - -захват, m - p nv m , описывается по крайней мере удвоенным числом констант. H. испытывает также с др. адронами без участия лептонов. К таким процессам относятся следующие.

1) Распады гиперонов L np 0 , S + np + , S - np - и т. д. Приведённая вероятность этих распадов в неск. раз меньше, чем у нестранных частиц, что описывается введением угла Кабиббо (см. Кабиббо угол).

2) Слабое взаимодействие n - n или n - p, к-рое проявляется как , не сохраняющие пространств. чётность. Обычная величина обусловленных ими эффектов порядка 10 -6 -10 -7 .

Взаимодействие H. со средними и тяжёлыми ядрами имеет ряд особенностей, приводящих в нек-рых случаях к значит. усилению эффектов несохранения чётности в ядрах. Один из таких эффектов - относит. разность сечения поглощения H. с поляризацией по направлению распространения и против него, к-рая в случае ядра 139 La равна 7% при = 1,33 эВ, соответствуют щей р -волновому нейтронному резонансу. Причиной усиления является сочетание малой энергетич. ширины состояний компаунд-ядра и большой плотности уровней с противоположной чётностью у этого компаунд-ядра, обеспечивающей на 2-3 порядка большее смешивание компонент с разной чётностью, чем у низко лежащих состояний ядер. В результате ряд эффектов: асимметрия испускания g-квантов относительно спина захватываемого поляризов. H. в реакции (n, g), асимметрия вылета заряж. частиц при распаде компаунд-состояний в реакции (n, р) или асимметрия вылета лёгкого (или тяжёлого) осколка деления в реакции (n, f ). Асимметрии имеют величину 10 -4 -10 -3 при энергии тепловых H. В р -волновых нейтронных резонансах реализуется дополнит. усиление, связанное с подавленностью вероятности образования сохраняющей чётность компоненты этого компаунд-состояния (из-за малой нейтронной ширины р -резонанса) по отношению к примесной компоненте с противоположной четностью, являющейся s -резонан-сом. Именно сочетание неск. факторов усиления позволяет крайне слабому эффекту проявляться с величиной, характерной для ядерного взаимодействия.

Взаимодействия с нарушением барионного числа. Теоретич. модели великого объединения и суперобъединения предсказывают нестабильность барионов - их распад в и мезоны. Эти распады могут быть заметны только для легчайших барионов - p и п, входящих в состав атомных ядер. Для взаимодействия с изменением барионного числа на 1, DB = 1, можно было бы ожидать превращения H. типа: n е + p - , или превращения с испусканием странных мезонов. Поиски такого рода процессов производились в экспериментах с применением подземных детекторов с массой в неск. тысяч тонн. На основании этих экспериментов можно сделать заключение, что время распада H. с нарушением барионного числа составляет более 10 32 лет.

Др. возможный тип взаимодействия с D В = 2 может привести к явлению взаимопревращения H. и антинейтронов в вакууме, т. е. к . В отсутствие внеш. полей или при их малой величине состояния H. и антинейтрона вырождены, поскольку массы их одинаковы, поэтому даже сверхслабое взаимодействие может их перемешивать. Критерием малости внеш. полей является малость энергии взаимодействия магн. момента H. с магн. полем (n и n ~ имеют противоположные по знаку магн. ) по сравнению с энергией, определяемой временем T наблюдения H. (согласно соотношению неопределённостей), D <=hT -1 . При наблюдении рождения антинейтронов в пучке H. от реактора или др. источника T есть время пролёта H. до детектора. Число антинейтронов в пучке растёт с ростом времени пролёта квадратично: /N n ~ ~ (T /t осц) 2 , где t осц - время осцилляции.

Прямые эксперименты по наблюдению рождения и в пучках холодных H. от высокопоточного реактора дают ограничение t осц > 10 7 с. В готовящихся экспериментах можно ожидать увеличения чувствительности до уровня t осц ~ 10 9 с. Ограничивающими обстоятельствами являются макс. интенсивность пучков H. и имитация явлений аннигиляции антинейтронов в детекторе космич. лучами.

Др. метод наблюдения осцилляции - наблюдение аннигиляции антинейтронов, к-рые могут образовываться в стабильных ядрах. При этом из-за большого отличия энергий взаимодействий возникающего антинейтрона в ядре от энергии связи H. эфф. время наблюдения становится ~ 10 -22 с, но большое число наблюдаемых ядер (~10 32) частично компенсирует уменьшение чувствительности по сравнению с экспериментом на пучках H. Из данных подземных экспериментов по поиску распада протона об отсутствии событий с энерговыделением ~2 ГэВ можно заключить с нек-рой неопределённостью, зависящей от незнания точного вида взаимодействия антинейтрона внутри ядра, что t осц > (1-3) . 10 7 с. Существ. повышение предела t осц в этих экспериментах затруднено фоном, обусловленным взаимодействием космич. нейтрино с ядрами в подземных детекторах.

Следует отметить, что поиски распада нуклона с DB = 1 и поиски -осцилляции являются независимыми экспериментами, т. к. вызываются принципиально разл. видами взаимодействий.

Гравитационное взаимодействие H. Нейтрон - одна из немногих элементарных частиц, падение к-рой в гравитац. поле Земли можно наблюдать экспериментально. Прямое ускорения свободного падения для H. выполнено с точностью 0,3% и не отличается от макроскопического. Актуальным остаётся вопрос о соблюдении эквивалентности принципа (равенства инертной и гравитац. масс) для H. и протонов.

Самые точные эксперименты выполнены методом Эт-веша для тел, имеющих разные ср. значения отношения A/Z, где А - ат. номер, Z - заряд ядер (в ед. элементарного заряда е). Из этих опытов следует одинаковость ускорения свободного падения для H. и протонов на уровне 2·10 -9 , а равенство гравитац. и инертной масс на уровне ~10 -12 .

Гравитац. ускорение и замедление широко используются в опытах с ультрахолодными H. Применение гравитац. рефрактометра для холодных и ультрахолодных H. позволяет с большой точностью измерить длины когерентного рассеяния H. на веществе.

H. в космологии и астрофизике

Согласно совр. представлениям, в модели Горячей Вселенной (см. Горячей Вселенной теория )образование барионов, в т. ч. протонов и H., происходит в первые минуты жизни Вселенной. В дальнейшем нек-рая часть H., не успевших распасться, захватывается протонами с образованием 4 He. Соотношение водорода и 4 He при этом составляет по массе 70% к 30%. При формировании звёзд и их эволюции происходит дальнейший нуклеосинтез, вплоть до ядер железа. Образование более тяжёлых ядер происходит в результате взрывов сверхновых с рождением нейтронных звёзд, создающих возможность последоват. захвата H. нуклидами. При этом комбинация т. н. s -процесса - медленного захвата H. с b-распадом между последовательными захватами и r -процесса - быстрого последоват. захвата при взрывах звёзд в осн. может объяснить наблюдаемую распространённость элементов в космич. объектах.

В первичной компоненте космич. лучей H. из-за своей нестабильности вероятно отсутствуют. H., образующиеся у поверхности Земли, диффундирующие в космич. и распадающиеся там, по-видимому, вносят вклад в формирование электронной и протонной компоненты радиационных поясов Земли.

Лит.: Гуревич И. С., Тарасов Л. В., Физика нейтронов низких энергий, M., 1965; Александров Ю. А.,. Фундаментальные свойства нейтрона, 2 изд., M., 1982.

В. M. Лобашов.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 Большой Энциклопедический словарь Словарь синонимов

Нейтральная элементарная частая с массой, близкой массе протона. Вместе с протонами нейтроны образуют атомное ядро. В свободном состоянии нейтрон нестабилен и распадается на протон и электрон. Термины атомной энергетики. Концерн Росэнергоатом,… … Термины атомной энергетики

Нейтрон - (n), нейтральная элементарная частица с массой, незначительно превышающей массу протона. Открыта и названа английским физиком Дж. Чедвиком в 1932. Нейтроны устойчивы только в составе ядер. Масса нейтрона равна 1,7ґ10 24 г. Свободный нейтрон… … Иллюстрированный энциклопедический словарь

НЕЙТРОН, нейтрона, муж. (от лат. neutrum, букв. ни то, ни другое) (физ. неол.). Входящая в ядро атома материальная частица, лишенная электрического заряда, электрически нейтральная. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

НЕЙТРОН, а, муж. (спец.). Электрически нейтральная элементарная частица с массой, почти равной массе протона. | прил. нейтронный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

нейтрон - Нейтральная элементарная частая с массой, близкой массе протона. Вместе с протонами нейтроны образуют атомное ядро. В свободном состоянии нестабилен и распадается на протон и электрон. Тематики… … Справочник технического переводчика




© dagexpo.ru, 2024
Стоматологический сайт