Сумма первых 100 чисел арифметической прогрессии. Сумма первых n-членов арифметической прогрессии. Числовые последовательности vi

17.01.2024

Сумма арифметической прогрессии.

Сумма арифметической прогрессии - штука простая. И по смыслу, и по формуле. Но задания по этой теме бывают всякие. От элементарных до вполне солидных.

Сначала разберёмся со смыслом и формулой суммы. А потом и порешаем. В своё удовольствие.) Смысл суммы прост, как мычание. Чтобы найти сумму арифметической прогрессии надо просто аккуратно сложить все её члены. Если этих членов мало, можно складывать безо всяких формул. Но если много, или очень много... сложение напрягает.) В этом случае спасает формула.

Формула суммы выглядит просто:

Разберёмся, что за буковки входят в формулу. Это многое прояснит.

S n - сумма арифметической прогрессии. Результат сложения всех членов, с первого по последний. Это важно. Складываются именно все члены подряд, без пропусков и перескоков. И, именно, начиная с первого. В задачках, типа найти сумму третьего и восьмого членов, или сумму членов с пятого по двадцатый - прямое применение формулы разочарует.)

a 1 - первый член прогрессии. Здесь всё понятно, это просто первое число ряда.

a n - последний член прогрессии. Последнее число ряда. Не очень привычное название, но, в применении к сумме, очень даже годится. Дальше сами увидите.

n - номер последнего члена. Важно понимать, что в формуле этот номер совпадает с количеством складываемых членов.

Определимся с понятием последнего члена a n . Вопрос на засыпку: какой член будет последним, если дана бесконечная арифметическая прогрессия?)

Для уверенного ответа нужно понимать элементарный смысл арифметической прогрессии и... внимательно читать задание!)

В задании на поиск суммы арифметической прогрессии всегда фигурирует (прямо или косвенно) последний член, которым следует ограничиться. Иначе конечной, конкретной суммы просто не существует. Для решения не суть важно, какая задана прогрессия: конечная, или бесконечная. Не суть важно, как она задана: рядом чисел, или формулой n-го члена.

Самое главное - понимать, что формула работает с первого члена прогрессии до члена c номером n. Собственно, полное название формулы выглядит вот так: сумма n первых членов арифметической прогрессии. Количество этих самых первых членов, т.е. n , определяется исключительно заданием. В задании вся эта ценная информация частенько зашифровывается, да... Но ничего, в примерах ниже мы эти секреты пораскрываем.)

Примеры заданий на сумму арифметической прогрессии.

Прежде всего, полезная информация:

Основная сложность в заданиях на сумму арифметической прогрессии заключается в правильном определении элементов формулы.

Эти самые элементы составители заданий шифруют с безграничной фантазией.) Здесь главное - не бояться. Понимая суть элементов, достаточно просто их расшифровать. Разберём подробно несколько примеров. Начнём с задания на основе реального ГИА.

1. Арифметическая прогрессия задана условием: a n = 2n-3,5. Найдите сумму первых 10 её членов.

Хорошее задание. Лёгкое.) Нам для определения суммы по формуле чего надо знать? Первый член a 1 , последний член a n , да номер последнего члена n.

Где взять номер последнего члена n ? Да там же, в условии! Там сказано: найти сумму первых 10 членов. Ну и с каким номером будет последний, десятый член?) Вы не поверите, его номер - десятый!) Стало быть, вместо a n в формулу будем подставлять a 10 , а вместо n - десятку. Повторю, номер последнего члена совпадает с количеством членов.

Осталось определить a 1 и a 10 . Это легко считается по формуле n-го члена, которая дана в условии задачи. Не знаете, как это сделать? Посетите предыдущий урок, без этого - никак.

a 1 = 2·1 - 3,5 = -1,5

a 10 =2·10 - 3,5 =16,5

S n = S 10 .

Мы выяснили значение всех элементов формулы суммы арифметической прогрессии. Остаётся подставить их, да посчитать:

Вот и все дела. Ответ: 75.

Ещё задание на основе ГИА. Чуть посложнее:

2. Дана арифметическая прогрессия (a n), разность которой равна 3,7; a 1 =2,3. Найти сумму первых 15 её членов.

Сразу пишем формулу суммы:

Эта формулка позволяет нам найти значение любого члена по его номеру. Ищем простой подстановкой:

a 15 = 2,3 + (15-1)·3,7 = 54,1

Осталось подставить все элементы в формулу суммы арифметической прогрессии и посчитать ответ:

Ответ: 423.

Кстати, если в формулу суммы вместо a n просто подставим формулу n-го члена, получим:

Приведём подобные, получим новую формулу суммы членов арифметической прогрессии:

Как видим, тут не требуется n-й член a n . В некоторых задачах эта формула здорово выручает, да... Можно эту формулу запомнить. А можно в нужный момент её просто вывести, как здесь. Ведь формулу суммы и формулу n-го члена всяко надо помнить.)

Теперь задание в виде краткой шифровки):

3. Найти сумму всех положительных двузначных чисел, кратных трём.

Во как! Ни тебе первого члена, ни последнего, ни прогрессии вообще... Как жить!?

Придётся думать головой и вытаскивать из условия все элементы суммы арифметической прогрессии. Что такое двузначные числа - знаем. Из двух циферок состоят.) Какое двузначное число будет первым ? 10, надо полагать.) А последнее двузначное число? 99, разумеется! За ним уже трёхзначные пойдут...

Кратные трём... Гм... Это такие числа, которые делятся на три нацело, вот! Десятка не делится на три, 11 не делится... 12... делится! Так, кое-что вырисовывается. Уже можно записать ряд по условию задачи:

12, 15, 18, 21, ... 96, 99.

Будет ли этот ряд арифметической прогрессией? Конечно! Каждый член отличается от предыдущего строго на тройку. Если к члену прибавить 2, или 4, скажем, результат, т.е. новое число, уже не поделится нацело на 3. До кучи можно сразу и разность арифметической прогрессии определить: d = 3. Пригодится!)

Итак, можно смело записать кое-какие параметры прогрессии:

А какой будет номер n последнего члена? Тот, кто думает, что 99 - фатально заблуждается... Номера - они всегда подряд идут, а члены у нас - через тройку перескакивают. Не совпадают они.

Тут два пути решения. Один путь - для сверхтрудолюбивых. Можно расписать прогрессию, весь ряд чисел, и посчитать пальчиком количество членов.) Второй путь - для вдумчивых. Нужно вспомнить формулу n-го члена. Если формулу применить к нашей задаче, получим, что 99 - это тридцатый член прогрессии. Т.е. n = 30.

Смотрим на формулу суммы арифметической прогрессии:

Смотрим, и радуемся.) Мы вытащили из условия задачи всё необходимое для расчёта суммы:

a 1 = 12.

a 30 = 99.

S n = S 30 .

Остаётся элементарная арифметика. Подставляем числа в формулу и считаем:

Ответ: 1665

Ещё один тип популярных задачек:

4. Дана арифметическая прогрессия:

-21,5; -20; -18,5; -17; ...

Найти сумму членов с двадцатого по тридцать четвёртый.

Смотрим на формулу суммы и... огорчаемся.) Формула, напомню, считает сумму с первого члена. А в задаче нужно считать сумму с двадцатого... Не сработает формула.

Можно, конечно, расписать всю прогрессию в ряд, да поскладывать члены с 20 по 34. Но... как-то тупо и долго получается, правда?)

Есть более элегантное решение. Разобьём наш ряд на две части. Первая часть будет с первого члена по девятнадцатый. Вторая часть - с двадцатого по тридцать чётвёртый. Понятно, что если мы посчитаем сумму членов первый части S 1-19 , да сложим с суммой членов второй части S 20-34 , получим сумму прогрессии с первого члена по тридцать четвёртый S 1-34 . Вот так:

S 1-19 + S 20-34 = S 1-34

Отсюда видно, что найти сумму S 20-34 можно простым вычитанием

S 20-34 = S 1-34 - S 1-19

Обе суммы в правой части считаются с первого члена, т.е. к ним вполне применима стандартная формула суммы. Приступаем?

Вытаскиваем из условия задачи парметры прогрессии:

d = 1,5.

a 1 = -21,5.

Для расчёта сумм первых 19 и первых 34 членов нам нужны будут 19-й и 34-й члены. Считаем их по формуле n-го члена, как в задаче 2:

a 19 = -21,5 +(19-1)·1,5 = 5,5

a 34 = -21,5 +(34-1)·1,5 = 28

Остаётся всего ничего. От суммы 34 членов отнять сумму 19 членов:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Ответ: 262,5

Одно важное замечание! В решении этой задачи имеется очень полезная фишка. Вместо прямого расчёта того, что нужно (S 20-34), мы посчитали то, что, казалось бы, не нужно - S 1-19 . А уж потом определили и S 20-34 , отбросив от полного результата ненужное. Такой "финт ушами" частенько спасает в злых задачках.)

В этом уроке мы рассмотрели задачи, для решения которых достаточно понимать смысл суммы арифметической прогрессии. Ну и пару формул знать надо.)

Практический совет:

При решении любой задачи на сумму арифметической прогрессии рекомендую сразу выписывать две главные формулы из этой темы.

Формулу n-го члена:

Эти формулы сразу подскажут, что нужно искать, в каком направлении думать, чтобы решить задачу. Помогает.

А теперь задачи для самостоятельного решения.

5. Найти сумму всех двузначных чисел, которые не делятся нацело на три.

Круто?) Подсказка скрыта в замечании к задаче 4. Ну и задачка 3 поможет.

6. Арифметическая прогрессия задана условием: a 1 =-5,5; a n+1 = a n +0,5. Найдите сумму первых 24 её членов.

Непривычно?) Это рекуррентная формула. Про неё можно прочитать в предыдущем уроке. Не игнорируйте ссылку, такие задачки в ГИА частенько встречаются.

7. Вася накопил к Празднику денег. Целых 4550 рублей! И решил подарить самому любимому человеку (себе) несколько дней счастья). Пожить красиво, ни в чём себе не отказывая. Потратить в первый день 500 рублей, а в каждый последующий день тратить на 50 рублей больше, чем в предыдущий! Пока не кончится запас денег. Сколько дней счастья получилось у Васи?

Сложно?) Поможет дополнительная формула из задачи 2.

Ответы (в беспорядке): 7, 3240, 6.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ VI

§ 144. Сумма членов арифметической прогрессии

Рассказывают, что однажды учитель начальной школы, желая занять класс на продолжительное время самостоятельной работой, дал детям «трудное» задание - вычислить сумму всех натуральных чисел от 1 до 100:

1 + 2 + 3 + 4 + ... + 100.

Один из учеников моментально предложил решение. Вот оно.:

1+2 +3+... + 98 +99+ 100 = (1 + 100) + (2 + 99) + (3 + 98) + ... +(49 + 52)+ (50 + 51) =
= 101 + 101 + . . . + 101 + 101 = 101 50 = 5050.
50 раз

Это был Карл Гаусс, ставший потом одним из самых знаменитых математиков мира*.

*Подобный случай с Гауссом действительно имел место. Однако здесь он значительно упрощен. Предложенные учителем числа были пятизначными и составляли арифметическую прогрессию с трехзначной разностью.

Идею такого решения можно использовать для нахождения суммы членов любой арифметической прогрессий.

Лемма. Сумма двух членов конечной арифметической прогрессии, равноудаленных от концов, равна сумме крайних членов.

Например, в конечной арифметической прогрессии

1, 2, 3.....98, 99, 100

члены 2 и 99, 3 и 98, 4 и 97 и т. д. являются равноудаленными от концов этой прогрессии. Поэтому их суммы 2 + 99, 3 + 98, 4 + 97 равны сумме крайних членов 1 + 100.

Доказательство леммы. Пусть в конечной арифметической прогрессии

a 1 , a 2 , ..., a n - 1 , a n

два каких-нибудь члена одинаково удалены от концов. Предположим, что один из них есть k -й член слева, то есть a k , а другой - k -й член справа, то есть a n -k+ 1 . Тогда

a k + a n -k+ 1 =[a 1 + (k - 1)d ] + [a 1 + (п - k )d ] = 2a 1 + (n - 1)d .

Сумма крайних членов, данной прогрессии равна

a 1 + a n = a 1 + [a 1 + (n - 1)d ] = 2a 1 + (n - 1)d .

Таким образом,

a k + a n -k+ 1 = a 1 + a n

что и требовалось доказать.

Используя доказанную лемму, легко получить общую формулу для суммы п членов любой арифметической прогрессии.

S n = a 1 +a 2 + ...+ a n - 1 + a n

S n = a n + a n - 1 + ... + a 2 + a 1 .

Складывая эти два равенства почленно, получаем:

2S n = (a 1 +a n ) + (a 2 +a n - 1)+...+(a n - 1 +a 2) + (a n +a 1)

a 1 +a n = a 2 +a n - 1 = a 3 +a n - 2 =... .

2S n = n (a 1 +a n ),

Сумма членов конечной арифметической прогрессии равна произведению полусуммы крайних членов на число всех членов.

В частности,

Упражнения

971. Найти сумму всех нечетных трехзначных чисел.

972. Сколько ударов сделают часы в течение суток, если они отбивают только число целых часов?

973. Чему равна сумма первых п чисел натурального ряда?

974. Вывести формулу длины пути, пройденного телом при равномерно ускоренном движении:

где v 0 - начальная скорость в м / сек , а - ускорение в м / сек 2 , t - время движения в сек .

975. Найти сумму всех несократимых дробей со знаменателем 3, заключенных между целыми положительными числами т и п (т < п ).

976. Рабочий обслуживает 16 ткацких станков, работающих автоматически. Производительность каждого станка а м/ч . Рабочий включил первый станок в 7 ч , а каждый следующий на 5 мин позже предыдущего. Узнать выработку в метрах за первые 2 ч работы.

977. Решить уравнения:

а) 1 + 7 + 13 + ... + х = 280;

б) (х + 1) + (х + 4) + (х + 7) +...+ (х + 28) = 155

978. С 1 по 12 июля включительно температура воздуха ежедневно поднималась в среднем на 1 / 2 градуса. Зная, что средняя, температура за это время оказалась равной 18 3 / 4 градуса, определить, какой была температура воздуха 1 июля.

979. Найти арифметическую прогрессию, у которой среднее арифметическое п первых членов при любом п равно их числу.

980. Найти сумму первых двадцати членов арифметической прогрессии, в которой

a 6 + a 9 + a 12 + a 15 = 20.

На этом уроке мы выведем формулу суммы членов конечной арифметической прогрессии и решим некоторые задачи с применением этой формулы.

Тема: Прогрессии

Урок: Формула суммы членов конечной арифметической прогрессии

1. Вступление

Рассмотрим задачу: найти сумму натуральных чисел от 1 до 100 включительно.

Дано: 1, 2, 3, …, 98, 99, 100.

Найти: S100=1+2+3 … +98 + 99 + 100.

Решение: S100=(1+100)+(2+99)+(3+98)+…+(50+51)=101+101+101+…+101=101 х 50=5050.

Ответ: 5050.

Последовательность натуральных чисел 1, 2, 3, …, 98, 99, 100 является арифметической прогрессией : а1=1, d=1.

Мы нашли сумму первых ста натуральных чисел, т. е. сумму первых n членов арифметической прогрессии.

Рассмотренное решение предложил великий математик Карл Фридрих Гаусс, живший в 19 веке. Задача была им решена в возрасте 5-ти лет.

Историческая справка: Иога́нн Карл Фри́дрих Га́усс (1777 — 1855) — немецкий математик, механик, физик и астроном. Считается одним из величайших математиков всех времён, «королём математиков». Лауреат медали Копли (1838), иностранный член Шведской (1821) и Российской (1824) Академий наук, английского Королевского общества. Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных в одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 101x50=5050.

2. Вывод формулы суммы первых n членов арифметической прогрессии

Рассмотрим аналогичную задачу для произвольной арифметической прогрессии.

Найти: сумму первых n членов арифметической прогрессии.

Покажем, что все выражения в скобках равны между собой, а именно выражению . Пусть d - разность арифметической прогрессии. Тогда:

И т. д. Следовательно, мы можем записать:

Откуда получаем формулу суммы первых n членов арифметической прогрессии:

.

3. Решение задач на применение формулы суммы первых n членов арифметической прогрессии

1. Решим задачу о сумму натуральных чисел от 1 до 100 с помощью формулы суммы первых n членов арифметической прогрессии:

Решение: а1=1, d=1, n=100.

Общая формула:

.

В нашем случае: .

Ответ: 5050.

Общая формула:

. Найдем по формуле n-го члена арифметической прогрессии: .

В нашем случае: .

Чтобы найти , сначала надо найти .

Это можно сделать по общей формуле .Сначала применим эту формулу для нахождения разности арифметической прогрессии.

Т. е. . Значит .

Теперь можем найти .

Используя формулу суммы первых n членов арифметической прогрессии

, найдем .

4. Вывод второй формулы суммы первых n членов арифметической прогрессии

Получим вторую формулу для суммы первых n членов арифметической прогрессии, а именно: докажем, что .

Доказательство:

В формулу суммы первых n членов арифметической прогрессии подставим выражение для , а именно . Получим: , т. е. . Что и требовалось доказать.

Проанализируем полученные формулы. Для вычислений по первой формуле надо знать первый член, последний член и n по второй формуле - надо знать первый член, разность и n.

И в заключение заметим, что в любом случае Sn- это квадратичная функция от n, потому что .

5. Решение задач на применение второй формулы суммы первых n членов арифметической прогрессии

Общая формула:

.

В нашем случае:.

Ответ: 403.

2. Найти сумму всех двузначных чисел, кратных 4.

{12; 16; 20; …; 96} - множество чисел, удовлетворяющих условию задачи.

Значит, имеем арифметическую прогрессию .

n найдем из формулы для :.

Т. е. . Значит .

Используя вторую формулу суммы первых n членов арифметической прогрессии

, найдем .

Требуется найти сумму всех членов с 10 по 25-й включительно.

Один из способов решения заключается в следующем:

Следовательно, .

6. Итог урока

Итак, мы вывели формулы для суммы членов конечной арифметической прогрессии. Использовали эти формулы при решении некоторых задач.

На следующем уроке мы познакомимся с характеристическим свойством арифметической прогрессии.

1. Макарычев Ю. Н. и др. Алгебра 9 класс (учебник для средней школы).-М.: Просвещение, 1992.

2. Макарычев Ю. Н., Миндюк Н. Г., Нешков, К. И. Алгебра для 9 класса с углубл. изуч. математики.-М.: Мнемозина, 2003.

3. Макарычев Ю. Н., Миндюк Н. Г Дополнительные главы к школьному учебнику алгебры 9 класса.-М.: Просвещение, 2002.

4. Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебре для 8-9 классов (учебное пособие для учащихся школ и классов с углубл. изуч. математики).-М.: Просвещение, 1996.

5. Мордкович А. Г. Алгебра 9 класс, учебник для общеобразовательных учреждекний. - М.: Мнемозина, 2002.

6. Мордкович А. Г. , Мишутина Т. Н., Тульчинская Е. Е. Алгебра 9 класс, задачник для общеобразовательных учреждекний. - М.: Мнемозина, 2002.

7. Глейзер Г. И. История математики в школе. 7-8 классы (пособие для учителей).-М.: Просвещение, 1983.

1. Раздел College. ru по математике.

2. Портал Естественных Наук.

3. Exponenta. ru Образовательный математический сайт.

1. № 362, 371, 377, 382 (Макарычев Ю. Н. и др. Алгебра 9 класс).

2. № 12.96 (Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебре для 8-9 классов).

При изучении алгебры в общеобразовательной школе (9 класс) одной из важных тем является изучение числовых последовательностей, к которым относятся прогрессии -геометрическая и арифметическая. В данной статье рассмотрим арифметическую прогрессию и примеры с решениями.

Что собой представляет арифметическая прогрессия?

Чтобы это понять, необходимо дать определение рассматриваемой прогрессии, а также привести основные формулы, которые далее будут использованы при решении задач.

Арифметическая или алгебраическая прогрессия - это такой набор упорядоченных рациональных чисел, каждый член которого отличается от предыдущего на некоторую постоянную величину. Эта величина называется разностью. То есть, зная любой член упорядоченного ряда чисел и разность, можно восстановить всю арифметическую прогрессию.

Приведем пример. Следующая последовательность чисел будет прогрессией арифметической: 4, 8, 12, 16, ..., поскольку разность в этом случае равна 4 (8 - 4 = 12 - 8 = 16 - 12). А вот набор чисел 3, 5, 8, 12, 17 уже нельзя отнести к рассматриваемому виду прогрессии, поскольку разность для него не является постоянной величиной (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Важные формулы

Приведем теперь основные формулы, которые понадобятся для решения задач с использованием арифметической прогрессии. Обозначим символом a n n-й член последовательности, где n - целое число. Разность обозначим латинской буквой d. Тогда справедливы следующие выражения:

  1. Для определения значения n-го члена подойдет формула: a n = (n-1)*d+a 1 .
  2. Для определения суммы первых n слагаемых: S n = (a n +a 1)*n/2.

Чтобы понять любые примеры арифметической прогрессии с решением в 9 классе, достаточно запомнить эти две формулы, поскольку на их использовании строятся любые задачи рассматриваемого типа. Также следует не забывать, что разность прогрессии определяется по формуле: d = a n - a n-1 .

Пример №1: нахождение неизвестного члена

Приведем простой пример прогрессии арифметической и формул, которые необходимо использовать для решения.

Пусть дана последовательность 10, 8, 6, 4, ..., необходимо в ней найти пять членов.

Из условия задачи уже следует, что первые 4 слагаемых известны. Пятое можно определить двумя способами:

  1. Вычислим для начала разность. Имеем: d = 8 - 10 = -2. Аналогичным образом можно было взять любые два других члена, стоящих рядом друг с другом. Например, d = 4 - 6 = -2. Поскольку известно, что d = a n - a n-1 , тогда d = a 5 - a 4 , откуда получаем: a 5 = a 4 + d. Подставляем известные значения: a 5 = 4 + (-2) = 2.
  2. Второй способ также требует знания разности рассматриваемой прогрессии, поэтому сначала нужно определить ее, как показано выше (d = -2). Зная, что первый член a 1 = 10, воспользуемся формулой для n числа последовательности. Имеем: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Подставляя в последнее выражение n = 5, получаем: a 5 = 12-2 * 5 = 2.

Как видно, оба способа решения привели к одному и тому же результату. Отметим, что в этом примере разность d прогрессии является отрицательной величиной. Такие последовательности называются убывающими, так как каждый следующий член меньше предыдущего.

Пример №2: разность прогрессии

Теперь усложним немного задачу, приведем пример, как

Известно, что в некоторой 1-й член равен 6, а 7-й член равен 18. Необходимо найти разность и восстановить эту последовательность до 7 члена.

Воспользуемся формулой для определения неизвестного члена: a n = (n - 1) * d + a 1 . Подставим в нее известные данные из условия, то есть числа a 1 и a 7 , имеем: 18 = 6 + 6 * d. Из этого выражения можно легко вычислить разность: d = (18 - 6) /6 = 2. Таким образом, ответили на первую часть задачи.

Чтобы восстановить последовательность до 7 члена, следует воспользоваться определением алгебраической прогрессии, то есть a 2 = a 1 + d, a 3 = a 2 + d и так далее. В итоге восстанавливаем всю последовательность: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, a 7 = 18.

Пример №3: составление прогрессии

Усложним еще сильнее условие задачи. Теперь необходимо ответить на вопрос, как находить арифметическую прогрессию. Можно привести следующий пример: даны два числа, например, - 4 и 5. Необходимо составить прогрессию алгебраическую так, чтобы между этими помещалось еще три члена.

Прежде чем начинать решать эту задачу, необходимо понять, какое место будут занимать заданные числа в будущей прогрессии. Поскольку между ними будут находиться еще три члена, тогда a 1 = -4 и a 5 = 5. Установив это, переходим к задаче, которая аналогична предыдущей. Снова для n-го члена воспользуемся формулой, получим: a 5 = a 1 + 4 * d. Откуда: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. Здесь получили не целое значение разности, однако оно является рациональным числом, поэтому формулы для алгебраической прогрессии остаются теми же самыми.

Теперь добавим найденную разность к a 1 и восстановим недостающие члены прогрессии. Получаем: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, что совпало с условием задачи.

Пример №4: первый член прогрессии

Продолжим приводить примеры арифметической прогрессии с решением. Во всех предыдущих задачах было известно первое число алгебраической прогрессии. Теперь рассмотрим задачу иного типа: пусть даны два числа, где a 15 = 50 и a 43 = 37. Необходимо найти, с какого числа начинается эта последовательность.

Формулы, которыми пользовались до настоящего времени, предполагают знание a 1 и d. В условии задачи об этих числах ничего неизвестно. Тем не менее выпишем выражения для каждого члена, о котором имеется информация: a 15 = a 1 + 14 * d и a 43 = a 1 + 42 * d. Получили два уравнения, в которых 2 неизвестные величины (a 1 и d). Это означает, что задача сводится к решению системы линейных уравнений.

Указанную систему проще всего решить, если выразить в каждом уравнении a 1 , а затем сравнить полученные выражения. Первое уравнение: a 1 = a 15 - 14 * d = 50 - 14 * d; второе уравнение: a 1 = a 43 - 42 * d = 37 - 42 * d. Приравнивая эти выражения, получим: 50 - 14 * d = 37 - 42 * d, откуда разность d = (37 - 50) / (42 - 14) = - 0,464 (приведены лишь 3 знака точности после запятой).

Зная d, можно воспользоваться любым из 2 приведенных выше выражений для a 1 . Например, первым: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Если возникают сомнения в полученном результате, можно его проверить, например, определить 43 член прогрессии, который задан в условии. Получим: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Небольшая погрешность связана с тем, что при вычислениях использовалось округление до тысячных долей.

Пример №5: сумма

Теперь рассмотрим несколько примеров с решениями на сумму арифметической прогрессии.

Пусть дана числовая прогрессия следующего вида: 1, 2, 3, 4, ...,. Как рассчитать сумму 100 этих чисел?

Благодаря развитию компьютерных технологий можно эту задачку решить, то есть последовательно сложить все числа, что вычислительная машина сделает сразу же, как только человек нажмет клавишу Enter. Однако задачу можно решить в уме, если обратить внимание, что представленный ряд чисел является прогрессией алгебраической, причем ее разность равна 1. Применяя формулу для суммы, получаем: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Любопытно отметить, что эта задача носит название "гауссовой", поскольку в начале XVIII века знаменитый немецкий еще будучи в возрасте всего 10 лет, смог решить ее в уме за несколько секунд. Мальчик не знал формулы для суммы алгебраической прогрессии, но он заметил, что если складывать попарно числа, находящиеся на краях последовательности, то получается всегда один результат, то есть 1 + 100 = 2 + 99 = 3 + 98 = ..., а поскольку этих сумм будет ровно 50 (100 / 2), то для получения правильного ответа достаточно умножить 50 на 101.

Пример №6: сумма членов от n до m

Еще одним типичным примером суммы арифметической прогрессии является следующий: дан такой чисел ряд: 3, 7, 11, 15, ..., нужно найти, чему будет равна сумма его членов с 8 по 14.

Задача решается двумя способами. Первый из них предполагает нахождение неизвестных членов с 8 по 14, а затем их последовательное суммирование. Поскольку слагаемых немного, то такой способ не является достаточно трудоемким. Тем не менее предлагается решить эту задачу вторым методом, который является более универсальным.

Идея заключается в получении формулы для суммы алгебраической прогрессии между членами m и n, где n > m - целые числа. Выпишем для обоих случаев два выражения для суммы:

  1. S m = m * (a m + a 1) / 2.
  2. S n = n * (a n + a 1) / 2.

Поскольку n > m, то очевидно, что 2 сумма включает в себя первую. Последнее умозаключение означает, что если взять разность между этими суммами, и добавить к ней член a m (в случае взятия разности он вычитается из суммы S n), то получим необходимый ответ на задачу. Имеем: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m/2). В это выражение необходимо подставить формулы для a n и a m . Тогда получим: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

Полученная формула является несколько громоздкой, тем не менее сумма S mn зависит только от n, m, a 1 и d. В нашем случае a 1 = 3, d = 4, n = 14, m = 8. Подставляя эти числа, получим: S mn = 301.

Как видно из приведенных решений, все задачи основываются на знании выражения для n-го члена и формулы для суммы набора первых слагаемых. Перед тем как приступить к решению любой из этих задач, рекомендуется внимательно прочитать условие, ясно понять, что требуется найти, и лишь затем приступать к решению.

Еще один совет заключается в стремлении к простоте, то есть если можно ответить на вопрос, не применяя сложные математические выкладки, то необходимо поступать именно так, поскольку в этом случае вероятность допустить ошибку меньше. Например, в примере арифметической прогрессии с решением №6 можно было бы остановиться на формуле S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m , и разбить общую задачу на отдельные подзадачи (в данном случае сначала найти члены a n и a m).

Если возникают сомнения в полученном результате, то рекомендуется его проверять, как это было сделано в некоторых приведенных примерах. Как находить арифметическую прогрессию, выяснили. Если разобраться, то это не так сложно.

Тип урока: изучение нового материала.

Цели урока:

  • расширение и углубление представлений учащихся о задачах, решаемых с использованием арифметической прогрессии; организация поисковой деятельности учащихся при выводе формулы суммы первых n членов арифметической прогрессии;
  • развитие умений самостоятельно приобретать новые знания, использовать для достижения поставленной задачи уже полученные знания;
  • выработка желания и потребности обобщать полученные факты, развитие самостоятельности.

Задачи:

  • обобщить и систематизировать имеющиеся знания по теме “Арифметическая прогрессия”;
  • вывести формулы для вычисления суммы n первых членов арифметической прогрессии;
  • научить применять полученные формулы при решении различных задач;
  • обратить внимание учащихся на порядок действий при нахождении значения числового выражения.

Оборудование:

  • карточки с заданиями для работы в группах и парах;
  • оценочный лист;
  • презентация “Арифметическая прогрессия”.

I. Актуализация опорных знаний.

1. Самостоятельная работа в парах.

1-й вариант:

Дайте определение арифметической прогрессии. Запишите рекуррентную формулу, с помощью которой задается арифметическая прогрессия. Приветите пример арифметической прогрессии и укажите её разность.

2-й вариант:

Запишите формулу n-го члена арифметической прогрессии. Найдите 100-й член арифметической прогрессии {a n }: 2, 5, 8 …
В это время два ученика на обратной стороне доски готовят ответы на эти же вопросы.
Учащиеся оценивают работу партнера, сверяя с доской. (Листочки с ответами сдают).

2. Игровой момент.

Задание 1.

Учитель. Я задумала некоторую арифметическую прогрессию. Задайте мне только два вопроса, чтобы после ответов вы быстро смогли бы назвать 7-й член этой прогрессии. (1, 3, 5, 7, 9, 11, 13, 15…)

Вопросы учащихся.

  1. Чему равен шестой член прогрессии и чему равна разность?
  2. Чему равен восьмой член прогрессии и чему равна разность?

Если вопросов больше не последует, то учитель может стимулировать их – “запрет” на d (разность), то есть не разрешается спрашивать чему равна разность. Можно задать вопросы: чему равен 6-й член прогрессии и чему равен 8-й член прогрессии?

Задание 2.

На доске записано 20 чисел: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

Учитель стоит спиной к доске. Ученики называют номер числа, а учитель мгновенно называет само число. Объясните, как мне это удается?

Учитель помнит формулу n-го члена a n = 3n – 2 и, подставляя задаваемые значения n, находит соответствующие значения a n .

II. Постановка учебной задачи.

Предлагаю решить старинную задачу, относящуюся ко II-му тысячелетию до нашей эры, найденную в египетских папирусах.

Задача: “Пусть тебе сказано: раздели 10 мер ячменя между 10 человеками, разность между каждым человеком и его соседом равняется 1/8 меры”.

  • Как эта задача связана с темой арифметическая прогрессия? (Каждый следующий получает на 1/8 меры больше, значит разность d=1/8, 10 человек, значит n=10.)
  • А что, по-вашему мнению, означает число 10 мер? (Сумма всех членов прогрессии.)
  • Что ещё необходимо знать, чтобы было легко и просто разделить ячмень согласно условию задачи? (Первый член прогрессии.)

Задача урока – получение зависимости суммы членов прогрессии от их числа, первого члена и разности, и проверка того, верно ли в древности решали поставленную задачу.

Прежде чем сделать вывод формулы, посмотрим, как решали задачу древние египтяне.

А решали её следующим образом:

1) 10 мер: 10 = 1 мера – средняя доля;
2) 1 мера ∙ = 2 меры – удвоенная средняя доля.
Удвоенная средняя доля – это сумма долей 5-го и 6-го человек.
3) 2 меры – 1/8 меры = 1 7/8 меры – удвоенная доля пятого человека.
4) 1 7/8: 2 = 5/16 – доля пятого; и так далее можно найти долю каждого предыдущего и последующего человека.

Получим последовательность:

III. Решение поставленной задачи.

1. Работа в группах

I-я группа: Найти сумму 20 последовательных натуральных чисел: S 20 =(20+1)∙10 =210.

В общем виде

II-я группа: Найти сумму натуральных чисел от 1 до 100 (Легенда о маленьком Гауссе).

S 100 = (1+100)∙50 = 5050

Вывод:

III-я группа: Найти сумму натуральных чисел от 1 до 21.

Решение: 1+21=2+20=3+19=4+18…

Вывод:

IV-я группа: Найти сумму натуральных чисел от 1 до 101.

Вывод:

Этот метод решения рассмотренных задач называется “Метод Гаусса”.

2. Каждая группа представляет решение задачи на доске.

3. Обобщение предложенных решений для произвольной арифметической прогрессии:

a 1 , a 2 , a 3 ,…, a n-2 , a n-1 , a n .
S n =a 1 + a 2 + a 3 + a 4 +…+ a n-3 + a n-2 + a n-1 + a n .

Найдем эту сумму рассуждая аналогично:

4. Решили мы поставленную задачу? (Да.)

IV. Первичное осмысление и применение полученных формул при решении задач.

1. Проверка решения старинной задачи по формуле.

2. Применение формулы при решении различных задач.

3. Упражнения на формирование умения применения формулы при решении задач.

А) №613

Дано: (а n) – арифметическая прогрессия;

(а n): 1, 2, 3, …, 1500

Найти: S 1500

Решение: , а 1 = 1, а 1500 = 1500,

Б) Дано: (а n) – арифметическая прогрессия;
(а n): 1, 2, 3, …
S n = 210

Найти: n
Решение:

V. Самостоятельная работа с взаимопроверкой.

Денис поступил на работу курьером. В первый месяц его зарплата составила 200 рублей, в каждый последующий она повышалась на 30 рублей. Сколько всего он заработал за год?

Дано: (а n) – арифметическая прогрессия;
а 1 = 200, d=30, n=12
Найти: S 12
Решение:

Ответ: 4380 рублей получил Денис за год.

VI. Инструктаж по домашнему заданию.

  1. п. 4.3 – выучить вывод формулы .
  2. №№ 585, 623 .
  3. Составить задачу, которая решалась бы с использованием формулы суммы n первых членов арифметической прогрессии.

VII. Подведение итогов урока.

1. Оценочный лист

2. Продолжи предложения

  • Сегодня на уроке я узнал …
  • Изученные формулы …
  • Я считаю что …

3. Сможешь ли ты найти сумму чисел от 1 до 500? Каким методом будешь решать эту задачу?

Список литературы.

1. Алгебра, 9-й класс. Учебник для общеобразовательных учреждений. Под ред. Г.В. Дорофеева. М.: “Просвещение”, 2009.



© dagexpo.ru, 2024
Стоматологический сайт