Супрамолекулярная химия. Молекулярная химия

24.09.2019

супрамолекулярная химия (англ. ) — область химии, исследующая супрамолекулярные структуры (ансамбли, состоящие из двух и более молекул, удерживаемых вместе посредством ); «химия молекулярных ансамблей и межмолекулярных связей» (определение Ж.-М. Лена).

Описание

Традиционная химия основана на ковалентных связях между атомами. В то же время для синтеза сложных наносистем и молекулярных устройств, используемых в , возможностей одной ковалентной химии недостаточно, ведь такие системы могут содержать несколько тысяч атомов. На помощь приходят межмолекулярные взаимодействия - именно они помогают объединить отдельные молекулы в сложные ансамбли, называемые супрамолекулярными структурами.

Простейший пример супрамолекулярных структур - это комплексы типа «хозяин–гость». Хозяином (рецептором) обычно выступает большая органическая молекула с полостью в центре, а гостем - более простая молекула или ион. Например, циклические полиэфиры различного размера (краун-эфиры) довольно прочно связывают ионы щелочных металлов (рис. 1).

Для супрамолекулярных структур характерны следующие свойства.

1. Наличие не одного, а нескольких связывающих центров у хозяина. В краунэфирах эту роль выполняют атомы кислорода, обладающие неподеленными электронными парами.

2. Комплементарность: геометрические структуры и электронные свойства хозяина и гостя взаимно дополняют друг друга. В краун-эфирах это проявляется в том, что диаметр полости должен соответствовать радиусу иона. Комплементарность позволяет хозяину осуществлять селективное связывание гостей строго определенной структуры. В супрамолекулярной химии это явление называют « » (англ. - molecular recognition) (рис. 2).

3. Комплексы с большим числом связей между комплементарными хозяином и гостем обладают высокой структурной организацией.

Супрамолекулярные структуры очень широко распространены в живой природе. Все реакции в живых организмах протекают с участием - катализаторов белковой природы. Ферменты - идеальные молекулы-хозяева. Активный центр каждого фермента устроен таким образом, что в него может попасть только то вещество (субстрат), которое соответствует ему по размерам и энергии; с другими субстратами фермент реагировать не будет. Другим примером супрамолекулярных биохимических структур служат молекулы , в которых две полинуклеотидные цепи комплементарно связаны друг с другом посредством множества водородных связей. Каждая цепь является одновременно и гостем, и хозяином для другой цепи.

Основные типы нековалентных взаимодействий, формирующих супрамолекулярные структуры: ионные, и . Все нековалентные взаимодействия слабее ковалентных - их энергия редко достигает 100 кДж/моль, однако большое число связей между хозяином и гостем обеспечивает высокую устойчивость супрамолекулярных ансамблей. Нековалентные взаимодействия слабы индивидуально, но сильны коллективно.

Формирование супрамолекулярных ансамблей может происходить самопроизвольно - такое явление называют . Это - процесс, в котором небольшие молекулярные компоненты самопроизвольно соединяются вместе, образуя намного более крупные и сложные супрамолекулярные . При самосборке энтропия системы уменьшается, ΔS

ΔG = ΔH T ΔS

необходимо, чтобы ΔH H| > |T ΔS |. Это означает, что самосборка происходит с выделением большого количества теплоты. Главной движущей силой самосборки служит стремление химических систем к понижению энергии Гиббса путем образования новых химических связей, энтальпийный эффект здесь преобладает над энтропийным.

Основными классами супрамолекулярных соединений являются кавитанды, криптанды, каликсарены, комплексы «гость–хозяин», катенаны, . К супрамолекулярным структурам можно также отнести , .

Методы супрамолекулярной химии находят широкое применение в химическом анализе, медицине,

- 89.80 Кб

Понятие квантового состояния частицы в системе справедливо в тех случаях, когда взаимод. между частицами можно заменить нек-рым эффективным полем, а каждую частицу можно характеризовать индивидуальным набором квантовых чисел; при строгом рассмотрении системы взаимод. частиц существуют только квантовые состояния всей системы в целом. Одночастичное приближение лежит в основе метода самосогласов. поля (метод Хартри-Фока; см. Молекулярных орбиталей методы), широко применяемого в теории атомных и мол. спектров, квантовой теории хим. связи, при описании оболочечных моделей атома и ядра и т.д.

Паули принцип в рамках одночастичного приближения позволяет обосновать периодич. систему хим. элементов Д. И. Менделеева, т.к. наличие в одном состоянии только одного электрона объясняет последовательность заполнения электронных оболочек и связанную с этой последовательностью периодичность св-в элементов. Макс. число электронов в оболочке с главным квантовым числом n определяется, согласно Паули принципу, числом разл. наборов квантовых чисел l, ml, и ms, т. е. равно 2(2l + 1) = 2n2. Отсюда получаются числа заполнения электронных оболочек в порядке возрастания номера оболочки: 2, 8, 18, 32 ... Для эквивалентных электронов атома, т. е. электронов с одинаковыми n и l, в силу Паули принципа осуществляются не все возможные состояния, а лишь те, к-рые различаются ml или ms. B частности, для электронной конфигурации (пр)2 правило векторного сложения моментов кол-ва движения дает шесть термов: 1,3S, 1,3P 1,3D, из к-рых разрешены только три: 1S, 3P и 1D, т. к. для остальных трех термов наборы квантовых чисел для двух электронов совпадают. Учет Паули принципа необходим также при нахождении разрешенных электронных состояний молекул и мол. комплексов. Паули принцип играет фундам. роль в квантовой теории твердого тела, теории ядерных реакций и р-ций между элементарными частицами.

16 Значение периодического закона. Периодическая система элементов явилась одним из наиболее ценных обобщений в химии. Она представляет собой как бы конспект химии всех элементов, график по которому можно читать свойства элементов и их соединений. Система позволила уточнить положение, величины атомных масс, значение валентности некоторых элементов. На основе таблицы можно было предсказать существование и свойства еще не открытых элементов. Менделеев предсказал и описал свойства не открытых в то время элементов, которые он назвал экабор (скандий), экаалюминий (галий), экасилиций (германий). Менделеев сформулировал периодический закон и предложил его графическое отображение, однако в то время нельзя было определить природу периодичности. Не была вскрыта причина периодичности изменения свойств и их соединений.Смысл периодического закона был выявлен позднее, в связи с открытиями по строеию атома.

Теория строения атома

Атом - это электронейтральная частица, которая состоит из положительно заряженного ядра и негативно заряженных электронов.

Строение атомных ядер

Ядра атомов состоят из элементарных частиц двух видов: протонов (p) и нейтронов (n). Сумма протонов и нейтронов в ядре одного атома называется нуклонным числом: где А - нуклонное число, N - число нейтронов, Z - число протонов.

Протоны имеют позитивный заряд (1), нейтроны заряда не имеют (0), электроны имеют негативный заряд (- 1). Массы протона и нейтрона приблизительно одинаковы, их принимают ровными 1. Масса электрона намного меньше, чем масса протона, потому в химии ею пренебрегают, считая, что вся масса атома сосредоточена в его ядре. Число положительно заряженных протонов в ядре равняется числу негативно заряженных электронов, то есть атом в целом электронейтрален. Атомы с одинаковым зарядом ядра складывают химический элемент. Атомы разных элементовназываются нуклидами.

17. Химическая связь - это взаимодействие двух атомов, осуществляемое путем обмена электронами. При образовании химической связи атомы стремятся приобрести устойчивую восьмиэлектронную (или двухэлектронную) внешнюю оболочку, соответствующую строению атома ближайшего инертного газа. Различают следующие виды химической связи: ковалентная (полярная и неполярная; обменная и донорно-акцепторная), ионная, водородная и металлическая.

18.Ковалентная связь – наиболее общий вид химической связи, возникающий за счет обобществления электронной пары посредством обменного механизма, когда каждый из взаимодействующих атомов поставляет по одному электрону, или по донорно-акцепторному механизму, если электронная пара передается в общее пользование одним атомом (донором) другому атому (акцептору)

Классический пример неполярной ковалентной связи (разность электроотрицательностей равна нулю) наблюдается у гомоядерных молекул: H–H, F–F. Энергия двухэлектронной двухцентровой связи лежит в пределах 200–2000 кДж∙моль–1.

При образовании гетероатомной ковалентной связи электронная пара смещена к более электроотрицательному атому, что делает такую связь полярной. Ионность полярной связи в процентах вычисляется по эмпирическому соотношению 16(χA – χB) + 3,5(χA – χB)2, где χA и χB – электроотрицательности атомов А и В молекулы АВ. Кроме поляризуемости ковалентная связь обладает свойством насыщаемости – способностью атома образовывать столько ковалентных связей, сколько у него имеется энергетически доступных атомных орбиталей. Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

19.Ионная связь – частный случай ковалентной, когда образовавшаяся электронная пара полностью принадлежит более электроотрицательному атому, становящемуся анионом. Основой для выделения этой связи в отдельный тип служит то обстоятельство, что соединения с такой связью можно описывать в электростатическом приближении, считая ионную связь обусловленной притяжением положительных и отрицательных ионов. Взаимодействие ионов противоположного знака не зависит от направления, а кулоновские силы не обладают свойством насыщености. Поэтому каждый ион в ионном соединении притягивает такое число ионов противоположного знака, чтобы образовалась кристаллическая решетка ионного типа. В ионном кристалле нет молекул. Каждый ион окружен определенным числом ионов другого знака (координационное число иона). Ионные пары могут существовать в газообразном состоянии в виде полярных молекул. В газообразном состоянии NaCl имеет дипольный момент ~3∙10–29 Кл∙м, что соответствует смещению 0,8 заряда электрона на длину связи 0,236 нм от Na к Cl, т. е. Na0,8+Cl0,8–. Электроотрицательность (χ) - фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары.

Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом. Л. Полинг использовал понятие электроотрицательности для объяснения того факта, что энергия гетероатомной связи A-B (A, B - символы любых химических элементов) в общем случае больше среднего геометрического значения гомоатомных связей A-A и B-B.

В настоящее время для определения электроотрицательностей атомов существует много различных методов, результаты которых хорошо согласуются друг с другом, за исключением относительно небольших различий, и во всяком случае внутренне непротиворечивы.

Металлическая связь возникает в результате частичной делокализации валентных электронов, которые достаточно свободно движутся в решетке металлов, электростатически взаимодействуя с положительно заряженными ионами. Силы связи не локализованы и не направлены, а делокализированные электроны обусловливают высокую тепло- и электропроводность.

Водородная связь. Ее образование обусловленно тем, что в результате сильного смещения электронной пары к электроотрицательному атому атом водорода, обладающий эффективным положительным зарядом, может взаимодействовать с другим электроотрицательным атомом (F, O, N, реже Cl, Br, S). Энергия такого электростатического взаимодействия составляет 20–100 кДж∙моль–1. Водородные связи могут быть внутри- и межмолекулярными. Внутримолекулярная водородная связь образуется, например, в ацетилацетоне и сопровождается замыканием цикла.

20. Понятие "Гибридизация" в химии было предложено американским химиком Лайнусом Полингом для объяснения структуры таких молекул как метан.

Исторически применялась только для простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. Поэтому в настоящее время используется в основном в педагогических целях и в синтетической органической химии.

Существует три вида гибридизации:

Sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании `0;-связей, либо занимаются неподелёнными парами электронов, длина 0,120 нм.

Sp²-гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании `0;-связей, длина 0,134 нм.

Sp³-гибридизация

Происходит при смешивании одной s- и трех p-орбиталей. Возникают четыре одинаковые орбитали, расположенные относительно друг друга под тетраэдрическими углами 109° 28’ (109,47°), длина 0,154 нм. Метод молекулярных орбиталей исходит из того, что каждую молекулярную орбиталь представляют в виде алгебраической суммы (линейной комбинации) атомных орбиталей. Например, в молекуле водорода в образовании МО могут участвовать только 1s атомные орбитали двух атомов водорода, которые дают две МО, представляющие собой сумму и разность атомных орбиталей 1s1 и 1s2 – МО± = C11s1 ±C21s2.

21. Металлическая связь- связь между положительными ионами в кристаллах металлов, осуществляемая за счет притяжения электронов, свободно перемещающихся по кристаллу. В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов. Эти электроны достаточно слабо связаны со своими ядрами и могут легко отрываться от них. В результате в кристаллической решетке металла появляются положительно заряженные ионы и свободные электроны. Поэтому в кристаллической решетке металлов существует большая свобода перемещения электронов: одни из атомов будут терять свои электроны, а образующиеся ионы могут принимать эти электроны из «электронного газа». Как следствие, металл представляет собой ряд положительных ионов, локализованных в определенных положениях кристаллической решетки, и большое количество электронов, сравнительно свободно перемещающихся в поле положительных центров. В этом состоит важное отличие металлических связей от ковалентных, которые имеют строгую направленность в пространстве.

Металлическая связь отличается от ковалентной также и по прочности: ее энергия в 3-4 раза меньше энергии ковалентной связи.

Энергия связи - энергия, необходимая для разрыва химической связи во всех молекулах, составляющих один моль вещества. Энергии ковалентных и ионных связей обычно велики и составляют величины порядка 100-800 кДж/моль.

22. ВОДОРОДНАЯ СВЯЗЬ (Н-связь) – особый тип взаимодействия между реакционно-способными группами, при этом одна из групп содержит атом водорода, склонный к такому взаимодействию. Водородная связь – глобальное явление, охватывающее всю химию. В отличие от обычных химических связей, Н-связь появляется не в результате целенаправленного синтеза, а возникает в подходящих условиях сама и проявляется в виде межмолекулярных или внутримолекулярных взаимодействий. Особенности водородной связи. Отличительная черта водородной связи – сравнительно низкая прочность, ее энергия в 5–10 раз ниже, чем энергия химической связи. По энергии она занимает промежуточное положение между химическими связями и Ван-дер-ваальсовыми взаимодействиями, теми, что удерживают молекулы в твердой или жидкой фазе. В образовании Н-связи определяющую роль играет электроотрицательность участвующих в связи атомов – способность оттягивать на себя электроны химической связи от атома – партнера, участвующего в этой связи. В результате на атоме А с повышенной электроотрицательностью возникает частичный отрицательный заряд d- , а на атоме-партнере – положительный d+, химическая связь при этом поляризуется: Аd-–Нd+.

Краткое описание

Производство минеральных макро- и микроудобрений, а также кормовых фосфатов. Внесение извести, гипса и других веществ для улучшения структуры почв. Применение химических средств защиты растений: гербицидов, зооцидов и инсектицидов и т. д. Использование в растениеводстве стимуляторов роста и плодоношения растений. Разработка способов выращивания экологически чистой сельскохозяйственной продукции. Повышение продуктивности животных с помощью стимуляторов роста, специальных кормовых добавок. Производство и применение полимерных материалов для сельского хозяйства. Производство материалов для средств малой механизации, использующихся в сельском хозяйстве. Основная цель химизации сельского хозяйства - обеспечение роста производства, улучшение качества и продление сроков сохранности сельскохозяйственной продукции, повышение эффективности земледелия и животноводства. Для борьбы с вредителями, сорняками и болезнями в нашей стране ежегодно выпускают более 500 тыс. т пестицидов. Их применение позволяет сберечь до сотни тысяч тонн урожая в год.

Супрамолекулярная (надмолекулярная) химия (Supramolecular chemistry , Супермолекулярная химия ) - междисциплинарная область науки, включающая химические, физические и биологические аспекты рассмотрения более сложных, чем молекулы , химических систем, связанных в единое целое посредством межмолекулярных (нековалентных) взаимодействий. Объекты супрамолекулярной химии - супрамолекулярные ансамбли , строящиеся самопроизвольно из комплементарных , то есть имеющих геометрическое и химическое соответствие фрагментов, подобно самопроизвольной сборке сложнейших пространственных структур в живой клетке . Одной из фундаментальных проблем современной химии является направленное конструирование таких систем, создание из молекулярных «строительных блоков» высокоупорядоченных супрамолекулярных соединений с заданной структурой и свойствами. Супрамолекулярные образования характеризуются пространственным расположением своих компонентов, их архитектурой, «супраструктурой», а также типами межмолекулярных взаимодействий, удерживающих компоненты вместе. В целом межмолекулярные взаимодействия слабее, чем ковалентные связи , так что супрамолекулярные ассоциаты менее стабильны термодинамически, более лабильны кинетически и более гибки динамически, чем молекулы.

Согласно терминологии супрамолекулярной химии, компоненты супрамолекулярных ассоциатов принято называть рецептор (ρ) и субстрат (σ), где субстрат - меньший по размеру компонент, вступающий в связь. Термины соединение включения , клатрат и соединение (комплекс) типа гость-хозяин характеризуют соединения, существующие в твёрдом состоянии и относящиеся к твёрдым супрамолекулярным ансамблям.

Селективное связывание определённого субстрата σ и его рецептора ρ с образованием супермолекулы σρ происходит в результате процесса молекулярного распознавания . Если помимо центров связывания рецептор содержит реакционноспособные функциональные группы , он может влиять на химические превращения на связанном с ним субстрате, выступая в качестве супрамолекулярного катализатора . Липофильный, растворимый в мембранах рецептор может выступать в роли носителя , осуществляя транспорт , перенос связанного субстрата. Таким образом, молекулярное распознавание, превращение, перенос - это основные функции супрамолекулярных объектов.

Супрамолекулярную химию можно разделить на две широкие, частично перекрывающиеся области, в которых рассматриваются соответственно: 1) супермолекулы - хорошо определённые, дискретные олиго молекулярные образования, возникающие за счёт межмолекулярной ассоциации нескольких компонентов (рецептора и субстрата(ов)) в соответствии с некоторой «программой», работающей на основе принципов молекулярного распознавания; 2) супрамолекулярные ансамбли - полимолекулярные ассоциаты, возникающие в результате спонтанной ассоциации неопределённо большого числа компонентов в специфическую фазу, характеризуемую более или менее определённой организацией на микроскопическом уровне и макроскопическими свойствами, зависящими от природы фазы (плёнка, слой, мембрана , везикула , мезоморфная фаза, кристалл и т. д.).

Для описания расположения субстрата(ов) относительно рецептора используется специальный формализм. Внешние комплексы-аддукты могут быть обозначены как , или . Для обозначения комплексов включения σ в ρ и частичного пересечения σ и ρ используются математические символы включения ⊂ и пересечения ∩ - и , соответственно. В современной химической литературе наряду с символом ∩ так же часто используется альтернативный символ @.

Что такое молекулярная химия


Раздел химии, изучающий молекулы

Молекула (новолат. molecula, уменьшительное от лат. moles - масса, наименьшая частица вещества, облащая его химическими свойствами. Молекула состоит из атомов, точнее - из атомных ядер, окружающих их внутренних электронов и внешних валентных электронов, образующих химические связи (см. Валентность. Внутренние электроны атомов обычно не участвуют в образовании химических связей. Состав и строение молекул данного вещества не зависят от способа его получения. В случае одноатомных молекул (например, инертных газов понятия молекулы и атома совпат.
Впервые понятие о молекулах было введено в химии в связи с необходимостью отличать молекулу как наименьшее количество вещества, вступающее в химические реакции, от атома как наименьшего количества данного элемента, входящего в состав молекулы (Международный конгресс в Карлсруэ, 1860). Основные закономерности строения молекул были установлены в результате исследования химических реакций, анализа и синтеза химических соединений, а также благодаря применению ряда физических методов.
Атомы объединяются в молекулы в большинстве случаев химическими связями. Как правило, такая связь создаётся одной, двумя или тремя парами электронов, которыми владеют сообща два атома. Молекула может содержать положительно и отрицательно заряженные атомы, т. Е. Ионы; в этом случае реализуются электростатические взаимодействия. Помимо указанных, в молекулах существуют и более слабые взаимодействия между атомами. Между валентно не связанными атомами действуют силы отталкивания.
Состав молекул выражают формулами химическими. Эмпирическая формула (например, С2Н6О для этилового спирта устанавливается на основании атомного соотношения содержащихся в веществе элементов, определяемого химическим анализом, и молекулярной массы.
Развитие учения о структуре молекул неразрывно связано с успехами прежде всего органической химии. Теория строения органических соединений, созданная в 60-х гг. 19 в. Трудами А. М. Бутлерова, Ф. А. Кекуле, А. С. Купера и др. Позволила представить строение молекул структурными формулами или формулами строения, выражающими последовательность валентных химических связей в молекулах. При одной и той же эмпирической формуле могут существовать молекулы разного строения, обладающие различными свойствами (явление изомерии. Таковы, например, этиловый спирт С5Н5ОН и диметиловый эфир (СН3)2О. Структурные формулы этих соединений разнятся:
В некоторых случаях изомерные молекулы быстро превращаются одна в другую и между ними устанавливается динамическое равновесие (см. Таутомерия. В дальнейшем Я. Х. Вант-Гофф и независимо французский химик А. Ж. Ле Бель пришли к пониманию пространственного расположения атомов в молекуле и к объяснению явления стереоизомерии. А. Вернер (1893) распространил общие идеи теории строения на неорганические комплексные соединения. К началу 20 в. Химия располагала подробной теорией строения молекул, исходящей из изучения только их химических свойств. Замечательно, что прямые физические методы исследования, развитые позднее, в подавляющем большинстве случаев полностью подтвердили структурные формулы химии, установленные путём исследования макроскопических количеств вещества, а не отдельных молекул.
В физике понятие о молекулах оказалось необходимым для объяснения свойств газов, жидкостей и твёрдых тел. Прямое экспериментальное доказательство существования молекул впервые было получено при изучении броуновского движения


ПОХОЖИЕ ЗАДАНИЯ:


  • Тема:
  • Cтраница 1


    Химия молекул, таких, как С2Н2, N2H2 и Н202, определяется орбиталями, образующимися при комбинации рх - и ру - А. В линейном ацетилене эти орбитали порождают заполненные тсв - и свободные icg - орбитали (гл. Молекула, естественно, имеет аксиальную симметрию.  

    Химия молекулы окиси углерода частично может быть хорошо объяснена этой формой, эквивалент которой с точки зрения теории молекулярных орбит здесь не рассматривается. В этой структуре углерод имеет изолированную пару электронов и одну незаполненную орбиту, так как ядро углерода окружено лишь секстетом электронов вместо обычного октета. Исходя из этих соображений, можно ожидать, что окись углерода способна взаимодействовать также с нуклео-фильными группами, например основаниями, которые могут явиться источником электронов для заполнения октета. Действительно, подобные реакции окиси углерода известны; некоторые их них также будут рассмотрены ниже.  

    Химией молекул продолжает оставаться современная органическая химия. Однако для неорганических соединений молекулярная форма существования вещества характерна лишь для газо - и парообразного состояния.  

    Химией молекул продолжает оставаться современная органическая химия, а большинство неорганических веществ не имеют молекулярной структуры. В последнем случае макротела состоят либо из атомов одного и того же химического элемента, либо из атомов разных элементов. Признание немолекулярной формы существования твердого вещества приводит к необходимости пересмотра некоторых положений химической атомистики, модернизации основных законов и понятий, справедливых для пневматической (газовой) химии.  

    В химии молекул различают два осн.  

    Как и в химии молекул, в ядерной химии возможно протекание экзотермических и эндотермических реакций. Определение величины и знака теплового эффекта реакций может быть проведено при помощи закона эквивалентности массы и энергии.  

    Теория групп применяется здесь гораздо шире, чем в химии молекул. В то же время возможность вывести закономерности спектра масс частиц из фундаментальных принципов, скажем из геометродинамики, здесь значительно более проблематична, чем возможность рассчитать энергию связи молекулы с помощью уравнения Шредин-гера.  

    Такое стремление распространить идеи и теории, выросшие в недрах органической химии (химии молекул), на область неорганической химии оказалось, как это нам теперь ясно, неправомерным главным образом потому, что неорганические соединения - это, как правило, немолекулярные системы. В таких же системах преобладают не ковалентные, а ионные связи. Отличительная же особенность комплексных соединений состоит в том, что они представляют собою соединения молекул, а не атомов.  

    Сначала речь шла только о козфициентах, которые, впрочем, часто находили на основании анализа кристаллических структурных объединений и переносили в молекулярную химию, несмотря на отсутствие материала по отношению между химией молекул и кристаллохимией. Для соединении определенных классов эти соотношения настолько просты, что позволяют заранее приписывать частицам некоторые валентности, из которых можно вывести фактические коэфициенты. Нельзя упускать из вида, что эта закономерность (которая вследствие многочисленных затруднений не может считаться чем-то само собой подразумевающимся для химических соединений вообще) так быстро получила признание лишь по геохимической причине. Кислород является важнейшим элементом внешней литосферы, и именно на основании отношений между числами атомов кислорода и других элементов в кислородных соединениях было выведено правило, что у электронейтральных объединений невозможны любые стехиометрические соотношения.  

    Сначала речь шла только о коэфициентах, которые, впрочем, часто находили на основании анализа кристаллических структурных объединений и переносили в молекулярную химию, несмотря на отсутствие материала по отношению между химией молекул и кристаллохимией. В настоящее время мы можем считать, что в электронейтральных атомных объединениях известные виды атомов в нормальных условиях стоят в простых стехиометрических отношениях к другим. Для соединений определенных классов эти соотношения настолько просты, что позволяют заранее приписывать частицам некоторые валентности, из которых можно вывести фактические коэфициенты. Нельзя упускать из вида, что эта закономерность (которая вследствие многочисленных затруднений не может считаться чем-то само собой подразумевающимся для химических соединений вообще) так быстро получила признание лишь по геохимической причине. Кислород является важнейшим элементом внешней литосферы, и именно на основании отношений между числами атомов кислорода и других элементов в кислородных соединениях было выведено правило, что у электронейтральных объединений невозможны любые стехиометрические соотношения.  

    Проявления электронно-колебательных (или, короче, виброн-ных) взаимодействий в многоатомных системах, в литературе объединяемые под общим названием эффекта Яна - Теллера, образуют в настоящее время новое быстро развивающееся направление в физике и химии молекул и кристаллов.  

    Легко - видеть, что между реакциями I и II существуют принципиальные различия. Реакция I представляют собой химию молекул; в активации их реагентов участвуют только энергетические факторы. Реакции II предсталвяют собой всю химию, изменение молекул в которой осуществляется преимущественно при участии бертоллидных систем. Направление и скорость реакций I определяются всецело химическим строением реагирующих молекул. Направление же и скорость реакций II обусловливаются как химическим строением реагирующих молекул, так и химической организацией катализирующей системы.  

    Поскольку для образования кольца, замкнутого водородными связями, необходимо возбужденное состояние, по-видимому, нет смысла детально исследовать влияние различных групп заместителей на процесс циклизации, используя данные по обычным реакциям органической химии. Можно сказать, что фотохимия занимается химией молекул в возбужденном, а не в основном состоянии.  

    Я хотел кратко остановиться на вопросе о реакционной способности молекул в триплетном состоянии. Вопрос этот, вообще говоря, очень большой, поскольку химия молекул в триплетном состоянии представляет собой самостоятельную область. Я остановлюсь только на качественной характеристике энергии активации реакции, в которой участвуют молекулы, находящиеся в триплетном состоянии. Чем отличается такая молекула от радикала. Простейшим примером является молекула О2, для которой триплетное состояние основное. В данном случае, очевидно, энергии активации нет.  



    © dagexpo.ru, 2024
    Стоматологический сайт