Свойства средней арифметической и расчет ее способом моментов. Cредние величины в статистике

21.09.2019

Формулы по статистике

Тема 1: Группировка статистических данных

Определение числа групп (если группи-ка по непрер. приз-ку или дискрет. со многими знач-ями)

Определение величины равного интервала :

Тема 2: Абсолютные и относительные величины

Относительные величины :

1) относит. вел-на структуры :

2) относит. вел-на планового задания :

3) относит. вел-на выполнения плана :

4) относит. вел-на динамики или темп роста :

5) относит. вел-на сравнения

6) относит. вел-на интенсивности (пример: фондоотдача = объем/стоимость (один год))

Тема 3: Средние величины и показатели вариации

Средняя арифметическая

простая :

взвешенная :

Средняя гармоническая

простая :

взвешенная : , сумма значений признака по группе

Свойства средн. арифметической:

    если каждую вари-ту х умен-ть или увел-ть на одно и то же число, то ср. вел-на умен-ется или увел-ется на это же число;

    если каждую вари-ту х умен-ть или увел-ть в одно и то же число раз, то ср. вел-на умен-ется или увел-ется в одно и то же число раз;

    если каждую частоту f умен-ть или увел-ть в одно и то же число раз, то ср. вел-на не изменится.

Ср. вел-на зависит от вар-ты х и структуры совок-сти , кот. харак-ется долями d .

Ряд распределения имеет 3 центра :

1) ср. аримет-кое ;

2) мода – наиболее часто встречающаяся вар-та ;

3) медиана – вар-та, стоящая в середине ряда распре-ния. Сначала находят N медианы, кот. равен n/2, если число еди-ц совок-сти n – чётное, или , если число еди-ц совок-сти нечетное .

Осн. пока-ли вариации :

1) размах вариации :

2) ср. линейное отклонение (ср. арифм-кая из абсолют. откл-ний отдел. значений)

Для несгруппир. данных:

Для сгруппир. данных:

3) ср. квадратическое отклонение (хар-ет ср. абсол. откл-ние вар-ты от ср. вел-ны)

Для несгруппир. данных :

Для сгруппир. данных :

4) Дисперсия – квадрат среднеквадр-ного откл-ния

Для несгруппир. данных :

Для сгруппир. данных :

Общая дисперсия: (для сгрупп.) (для несгрупп.)

ср. вел-на резул. приз-ка в сово-сти, - частота (в совокупности!)

Внутригрупповая дисперсия: - кол-во вариант в группе i

Междугрупповая дисперсия: - кол-во вариант в группе i

Правило сложения дисперсий:

Не имеет еди-ц измерения.

5) Коэффициент вариации хар-ет ср. относит. откл-ние вар-ты от ср. вел-ны.

Способ моментов

Часто мы сталкиваемся с расчетом средней арифметической упрощенным способом.

В этом случае используются свойства средней величины. Метод упрощенного расчета называется способом моментов, либо способом отсчета от условного нуля.

Способ моментов предполагает следующие действия :

1) Выбирается начало отсчета (из х ) – условный нуль (A ). Обычно как можно ближе к середине распре-ния.

2) Находятся отклонения вариантов от условного нуля ().

4) Если эти отклонения содержат общий множитель (k ), то рассчитанные

отклонения делятся на этот множитель.

Способ моментов :

Средняя:

Дисперсия:

Тема 4: Выборочное наблюдение

Обозначения в теории выборки:

N – числи-ль генер. выборки

n – числи-ль генер. выборки

Генер. средняя (оценивают)

– выбор. средняя (рассчитывают)

p – генер. доля (оценивают)

w – выбор. доля (рассчитывают)

P (t ) – задаваемый уровень веро-сти

Генер. средняя: с задан. уровнем вероя-сти P(t)

– ошибка выборки для ср. вел-ны

, t – критерий надеж-сти, его вел-на зав-т от уровня задан. вероя-сти P(t)

Если 1) P (t ) = 0,683, то t =1 ; 2) P (t ) = 0,954, то t =2 ; 3) P (t ) = 0,997, то t =3

– среднеквадр. ошибка выборки

– верна для повторного отбора в выборке.

- для бесповторного отбора

Доказано: с задан. уровнем вероя-сти P(t)

– ошибка выборки для доли

, – среднеквадр. ошибка выборки для доли

–для повторного отбора

- для бесповторного отбора

Тема 5: Ряды динамики

Аналит. пока-ли:

1) Абсолют. прирост (разница уровней)

(цепной) ; (базисный)

2) Темп роста (отношение уровней)

(цепной) ; (базисный)

3) Темп прироста

(цепной) ; (базисный)

4) Абсолютное значение 1% прироста

(цепной) ; (базисный)

Средние показатели:

1) ср. уровни динам. ряда ;

2) ср. аналитич. показ-ли динам. ряда .

Расчет ср. уровня зав-т от вида РД:

а) для интерв. РД с равн. периодами вре-ни ср. арифмет. простая

б) для интерв. РД с неравн. периодами вре-ни ср. арифмет. взвешенная

в) для моментных РД с равноотстоящими датами ср. хронологическая

г) для моментных РД с неравноотстоящими датами ср. арифмет. взвешенная

Расчет ср. аналит. показ-лей:

а) ср. абсолют. прирост

б) ср. темп роста

в) ср. темп прироста

Смыкание РД

Для проведения смыкания РД в смыкаемых рядах находится временной момент (дата, период), когда им-ся сведения об изучаемом признаке как в прежних, так и в новых условиях. Рассчитывается коэфф-т, дальнейш. расчеты – по сомкнутом. ряду.

В ходе обработки РД важн. задачей яв-ся выявление основ. тенденции раз-тия явления (тренда) и сглаживание случ. колебаний. Для решения этой задачи сущ-ют особые способы, кот. наз-ют методами выравнивания.

3 основн. способа обработки динамического ряда:

а) укрупнение интервалов РД и расчет средних для кажд. укрупненного интервала;

(переход от менее продолжит.инт-лов к более продолжит. Средняя, рассчитанная по укрупненным инт-лам, позволяет выявить направление и характер (ускорение или замедление) основ. тенденции развития. Средняя рассчитывается по формулам простой средней арифметической.

б) метод скользящей средней;

(вычисл-ся ср. уровень из опред. числа, обычно нечетного, первых по счету уровней ряда. Затем - из такого же числа уровней, но начиная со второго по счету, далее - начиная с третьего и т. д. Т/о, средняя как бы «скользит» по временному ряду от его начала к концу, каждый раз отбрасывая один уровень в начале и добавляя один следующий.

в) аналитическое выравнивание.

Сезонные колебания и волны

Индексами сезонности яв-ся процентные отношения фактических внутригодовых уровней к постоянной или переменной средней. Совокупность этих показателей отражает сезонную волну.

Для выявления сезон. колебаний обычно испо-ют данные за несколько лет, распределенные по месяцам. Для каждого месяца рассчитывается средняя величина уровня, например за 3 года ( ), затем из них вычисляется средний уровень для всего ряда ( ), далее определяется процентное отношение средних для каждого месяца к общему среднемесячному уровню ряда:

где - средний уровень для каждого месяца;

Среднемесячный уровень для всего ряда.

Для наглядного представления сезонной волны индексы сезонности изображают в виде графиков.

Индивидуальные индексы:

себестоимости

стоимости

денежных затрат

затрат труда

i q

i p

i z

i pq

i qz

i qt

Общие индексы:

Общий индекс физического объема

(как в среднем изм-лось кол-во товаров на рынке)

Абсолютное изм-ние стои-сти за счет изм-ния кол-ва товаров

Общий индекс цен

(агрегатный) (как в среднем изм-лись цены на рынке)

Абсолютное изм-ние стои-сти за счет изм-ния цен

Общий индекс товарооборота (стоимости)

общ. относит. изме-ния стои-сти товаров на рынке

Общ. абсолют. изм-ние стои-сти товаров на рынке

Взаимосвязь индексов

I pq = I p I q

Общий индекс себестоимости

Общий индекс физич. объема (по себестоимости)

Взаимосвязь между индексами

Общий индекс затрат на производство

Признаки единиц статистических совокупностей различны по своему значению, например, заработная плата рабочих одной профессии какого-либо предприятия не одинакова за один и тот же период времени, различны цены на рынке на одинаковую продукцию, урожайность сельскохозяйственных культур в хозяйствах района и т.д. Поэтому, чтобы определить значение признака, характерное для всей изучаемой совокупности единиц, рассчитывают средние величины.
Средняя величина это обобщающая характеристика множества индивидуальных значений некоторого количественного признака.

Совокупность, изучаемая по количественному признаку, состоит из индивидуальных значений; на них оказывают влияние, как общие причины, так и индивидуальные условия. В среднем значении отклонения, характерные для индивидуальных значений, погашаются. Средняя, являясь функцией множества индивидуальных значений, представляет одним значением всю совокупность и отражает то общее, что присуще всем ее единицам.

Средняя, рассчитываемая для совокупностей, состоящих из качественно однородных единиц, называется типической средней . Например, можно рассчитать среднемесячную заработную плату работника той или иной профессиональной группы (шахтера, врача библиотекаря). Разумеется, уровни месячной заработной платы шахтеров в силу различия их квалификации, стажа работы, отработанного за месяц времени и многих других факторов отличаются друг от друга, так и от уровня средней заработной платы. Однако в среднем уровне отражены основные факторы, которые влияют на уровень заработной платы, и взаимно погашаются различия, которые возникают вследствие индивидуальных особенностей работника. Средняя заработная плата отражает типичный уровень оплаты труда для данного вида работников. Получению типической средней должен предшествовать анализ того, насколько данная совокупность качественно однородна. Если совокупность состоит их отдельных частей, следует разбить ее на типические группы (средняя температура по больнице).

Средние величины, используемые в качестве характеристик для неоднородных совокупностей, называются системными средними . Например, средняя величина валового внутреннего продукта (ВВП) на душу населения, средняя величина потребления различных групп товаров на человека и другие подобные величины, представляющие обобщающие характеристики государства как единой экономической системы.

Средняя должна вычисляться для совокупностей, состоящих из достаточно большого числа единиц. Соблюдение этого условия необходимо для того, чтобы вошел в силу закон больших чисел, в результате действия которого случайные отклонения индивидуальных величин от общей тенденции взаимно погашаются.

Виды средних и способы их вычисления

Выбор вида средней определяется экономическим содержанием определенного показателя и исходных данных. Однако любая средняя величина должна вычисляться так, чтобы при замене ею каждой варианты осредняемого признака не изменился итоговый, обобщающий, или, как его принято называть, определяющий показатель , который связан с осредняемым показателем. Например, при замене фактических скоростей на отдельных отрезках пути их средней скоростью не должно измениться общее расстояние, пройденное транспортным средством за одно и тоже время; при замене фактических заработных плат отдельных работников предприятия средней заработной платой не должен измениться фонд заработной платы. Следовательно, в каждом конкретном случае в зависимости от характера имеющихся данных, существует только одно истинное среднее значение показателя, адекватное свойствам и сущности изучаемого социально-экономического явления.
Наиболее часто применяются средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая и средняя кубическая.
Перечисленные средние относятся к классу степенных средних и объединяются общей формулой:
,
где – среднее значение исследуемого признака;
m – показатель степени средней;
– текущее значение (варианта) осредняемого признака;
n – число признаков.
В зависимости от значения показателя степени m различают следующие виды степенных средних:
при m = -1 – средняя гармоническая ;
при m = 0 – средняя геометрическая ;
при m = 1 – средняя арифметическая ;
при m = 2 – средняя квадратическая ;
при m = 3 – средняя кубическая .
При использовании одних и тех же исходных данных, чем больше показатель степени m в вышеприведенной формуле, тем больше значение средней величины:
.
Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется правилом мажорантности средних .
Каждая из отмеченных средних может приобретать две формы: простую и взвешенную .
Простая форма средней применяется, когда средняя вычисляется по первичным (несгруппированными) данным. Взвешенная форма – при расчете средней по вторичным (сгруппированным) данным.

Средняя арифметическая

Средняя арифметическая применяется, когда объем совокупности представляет собой сумму всех индивидуальных значений варьирующего признака. Следует отметить, что если вид средней величины не указывается, подразумевается средняя арифметическая. Ее логическая формула имеет вид:

Средняя арифметическая простая рассчитывается по несгруппированным данным по формуле:
или ,
где – отдельные значения признака;
j – порядковый номер единицы наблюдения, которая характеризуется значением ;
N – число единиц наблюдения (объем совокупности).
Пример. В лекции «Сводка и группировка статистических данных» рассматривались результаты наблюдения стажа работы бригады из 10 человек. Рассчитаем средний стаж работы рабочих бригады. 5, 3, 5, 4, 3, 4, 5, 4, 2, 4.

По формуле средней арифметической простой вычисляются также средние в хронологическом ряду , если интервалы времени, за которое представлены значения признака, равны.
Пример. Объем реализованной продукции за первый квартал составил 47 ден. ед., за второй 54, за третий 65 и за четвертый 58 ден. ед. Среднеквартальный оборот составляет (47+54+65+58)/4 = 56 ден. ед.
Если в хронологическом ряду приведены моментные показатели, то при вычислении средней они заменяются полусуммами значений на начало и конец периода.
Если моментов больше двух и интервалы между ними равны, то средняя вычисляется по формуле средней хронологической

,
где n- число моментов времени
В случае, когда данные сгруппированы по значениям признака (т. е. построен дискретный вариационный ряд распределения) средняя арифметическая взвешенная рассчитывается с использовании либо частот , либо частостей наблюдения конкретных значений признака , число которых (k) значительно меньше числа наблюдений (N) .
,
,
где k – количество групп вариационного ряда,
i – номер группы вариационного ряда.
Поскольку , а , получаем формулы, используемые для практических расчетов:
и
Пример. Рассчитаем средний стаж рабочих бригад по сгруппированному ряду.
а) с использованием частот:

б) с использованием частостей:

В случае, когда данные сгруппированы по интервалам , т.е. представлены в виде интервальных рядов распределения, при расчете средней арифметической в качестве значения признака принимают середину интервала, исходя из предположения о равномерном распределении единиц совокупности на данном интервале. Расчет ведется по формулам:
и
где - середина интервала: ,
где и – нижняя и верхняя границы интервалов (при условии, что верхняя граница данного интервала совпадает с нижней границей следующего интервала).

Пример. Рассчитаем среднюю арифметическую интервального вариационного ряда, построенного по результатам исследования годовой заработной платы 30 рабочих (см. лекцию «Сводка и группировка статистических данных»).
Таблица 1 – Интервальный вариационный ряд распределения.

Интервалы, грн.

Частота, чел.

Частость,

Середина интервала,

600-700
700-800
800-900
900-1000
1000-1100
1100-1200

3
6
8
9
3
1

0,10
0,20
0,267
0,30
0,10
0,033

(600+700):2=650
(700+800):2=750
850
950
1050
1150

1950
4500
6800
8550
3150
1150

65
150
226,95
285
105
37,95

грн. или грн.
Средние арифметические, вычисленные на основе исходных данных и интервальных вариационных рядов, могут не совпадать из-за неравномерности распределения значений признака внутри интервалов. В этом случае для более точного вычисления средней арифметической взвешенной следует использовать не средины интервалов, а средние арифметические простые, рассчитанные для каждой группы (групповые средние ). Средняя, вычисленная по групповым средним с использованием взвешенной формулы расчета, называется общей средней .
Средняя арифметическая обладает рядом свойств.
1. Сумма отклонений вариант от средней равна нулю:
.
2. Если все значения вариант увеличиваются или уменьшаются на величину А, то и средняя величина увеличивается или уменьшается на ту же величину А:

3. Если каждую варианту увеличить или уменьшить в В раз, то средняя величина также увеличится или уменьшатся в то же количество раз:
или
4. Сумма произведений вариант на частоты равна произведению средней величины на сумму частот:

5. Если все частоты разделить или умножить на какое-либо число, то средняя арифметическая не изменится:

6) если во всех интервалах частоты равны друг другу, то средняя арифметическая взвешенная равна простой средней арифметической:
,
где k – количество групп вариационного ряда.

Использование свойств средней позволяет упростить ее вычисление.
Допустим, что все варианты (х) сначала уменьшены на одно и то же число А, а затем уменьшены в В раз. Наибольшее упрощение достигается, когда в качестве А выбирается значение середины интервала, обладающего наибольшей частотой, а в качестве В – величина интервала (для рядов с одинаковыми интервалами). Величина А называется началом отсчета, поэтому этот метод вычисления средней называется спосо бом отсчета от условного нуля или способом моментов .
После такого преобразования получим новый вариационный ряд распределения, варианты которого равны . Их средняя арифметическая, называемая моментом первого порядка, выражаетсяформулой и согласно второго и третьего свойств средней арифметической равна средней из первоначальных вариант, уменьшенной сначала на А, а потом в В раз, т. е. .
Для получения действительной средней (средней первоначального ряда)нужно момент первого порядка умножить на В и прибавить А:

Расчет средней арифметической по способу моментов иллюстрируется данными табл. 2.
Таблица 2 – Распределение работников цеха предприятия по стажу работы


Стаж работников, лет

Количество работников

Середина интервала

0 – 5
5 – 10
10 – 15
15 – 20
20 – 25
25 – 30

12
16
23
28
17
14

2,5
7,5
12,7
17,5
22,5
27,5

15
-10
-5
0
5
10

3
-2
-1
0
1
2

36
-32
-23
0
17
28

Находим момент первого порядка . Затем, зная, что А=17,5, а В=5, вычисляем средний стаж работы работников цеха:
лет

Средняя гармоническая
Как было показано выше, средняя арифметическая применяется для расчета среднего значения признака в тех случаях, когда известны его варианты x и их частоты f.
Если статистическая информация не содержит частот f по отдельным вариантам x совокупности, а представлена как их произведение , применяется формула средней гармонической взвешенной . Чтобы вычислить среднюю, обозначим , откуда . Подставив эти выражения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:
,
где - объем (вес) значений признака показателя в интервале с номером i (i=1,2, …, k).

Таким образом, средняя гармоническая применяется в тех случаях, когда суммированию подлежат не сами варианты, а обратные им величины: .
В тех случаях, когда вес каждой варианты равен единице, т.е. индивидуальные значения обратного признака встречаются по одному разу, применяется средняя гармоническая простая :
,
где – отдельные варианты обратного признака, встречающиеся по одному разу;
N – число вариант.
Если по двум частям совокупности численностью и имеются средние гармонические, то общая средняя по всей совокупности рассчитывается по формуле:

и называется взвешенной гармонической средней из групповых средних .

Пример. В ходе торгов на валютной бирже за первый час работы заключены три сделки. Данные о сумме продажи гривны и курсе гривны по отношению к доллару США приведены в табл. 3 (графы 2 и 3). Определить средний курс гривны по отношению к доллару США за первый час торгов.
Таблица 3 – Данные о ходе торгов на валютной бирже

Средний курс доллара определяется отношением суммы проданных в ходе всех сделок гривен к сумме приобретенных в результате этих же сделок долларов. Итоговая сумма продажи гривны известна из графы 2 таблицы, а количество купленных в каждой сделке долларов определяется делением суммы продажи гривны к ее курсу (графа 4). Всего в ходе трех сделок куплено 22 млн. дол. Значит, средний курс гривны за один доллар составил
.
Полученное значение является реальным, т.к. замена им фактических курсов гривны в сделках не изменит итоговой суммы продаж гривны, выступающей в качестве определяющего показателя : млн. грн.
Если бы для расчета была использована средняя арифметическая, т.е. гривны, то по обменному курсу на покупку 22 млн. дол. нужно было бы затратить 110,66 млн. грн., что не соответствует действительности.

Средняя геометрическая
Средняя геометрическая используется для анализа динамики явлений и позволяет определить средний коэффициент роста. При расчете средней геометрической индивидуальные значения признака представляют собой относительные показатели динамики, построенные в виде цепных величин, как отношения каждого уровня к предыдущему.
Средняя геометрическая простая рассчитывается по формуле:
,
где – знак произведения,
N – число осредняемых величин.
Пример. Количество зарегистрированных преступлений за 4 года возросло в 1,57 раза, в т. ч. за 1-й – в 1,08 раза, за 2-й – в 1,1 раза, за 3-й – в 1,18 и за 4-й – в 1,12 раза. Тогда среднегодовой темп роста количества преступлений составляет: , т.е. число зарегистрированных преступлений ежегодно росло в среднем на 12%.

1,8
-0,8
0,2
1,0
1,4

1
3
4
1
1

3,24
0,64
0,04
1
1,96

3,24
1,92
0,16
1
1,96

Для расчета средней квадратической взвешенной определяем и заносим в таблицу и . Тогда средняя величина отклонений длины изделий от заданной нормы равна:

Средняя арифметическая в данном случае была бы непригодна, т.к. в результате мы получили бы нулевое отклонение.
Применение средней квадратической будет рассмотрено далее в показателях вариации.

«Способ моментов» применяется в рядах с равными интервалами на основе свойств средней арифметической. Средняя арифметическая исчисляется по формуле

где i – размер интервала;

m 1 – момент первого порядка (средняя арифметическая из новых упрощенных вариант
;
– новые упрощенные варианты;f – частота);

А – постоянное число (лучше всего взять его равным варианте, у которой наибольшая частота).

Определим среднее значение признака «способом моментов» на следующем примере.

Пример 5 . Имеются следующие данные о распределении магазинов облпотребсоюза по торговой площади (табл. 14).

Таблица 14

Следует определить среднюю площадь магазинов, применив «способ моментов».

Решение

Данные распределения магазинов по торговой площади представлены в виде интервального ряда распределения с равными интервалами (i = 20 м 2), следовательно, расчет средней площади магазина можно провести по формуле
, применив «способ моментов».

Первый и последний интервалы даны открытыми, т. е. не имеют границ нижней и верхней соответственно. Для определения среднего значения в них границы интервалов следует закрыть. Для первой группы с размером площади до 40 м 2 условно считаем, что интервал также равен 20 м 2 , затем вычитаем 20 м 2 из 40 м 2 и находим условную нижнюю границу первого интервала (20 – 40). Условную верхнюю границу последнего интервала определяем аналогично (100 – 120).

Расчеты следует проводить в табл. 15.

Таблица 15

Группировка мага- зинов по торговой площади, м 2 (х )

Удельный вес магазинов, % (f )

Середина интервала (х )

х А

Наибольшая частота f равна 40, следовательно, в качестве постоянной величины А принимаем 70.

Определяем момент первого порядка:
.

Среднее значение признака равно:

+ 70 = = 68 м 2 .

Следовательно, средняя площадь магазина составляет 68 м 2 .

5.3. Структурные средние

В качестве структурных средних чаще всего используют показатели моды и медианы. Мода (Мо ) – наиболее часто повторяющееся значение признака. Медиана (Ме ) – величина признака, которая делит упорядоченный ряд на две равные по численности части.

Если расчет моды и медианы проводится в дискретном ряду, то он опирается на их понятия. В интервальном ряду распределения для расчета моды и медианы применяют следующие формулы.

Мода рассчитывается по формуле

где х Мо – нижнее значение модального интервала;

i Мо – размер модального интервала;

f Мо – частота модального интервала;

f Мо –1 – частота, предшествующая модальной частоте;

f Мо +1 – частота, последующая за модальной частотой.

Модальному интервалу соответствует наибольшая (модальная) частота. Медиана рассчитывается по формуле

,

где х Ме – нижнее значение медианного интервала;

i Ме – размер медианного интервала;

f – сумма частот;

S Ме –1 – сумма частот, предшествующих медианной частоте;

f Ме – медианная частота.

Медианному интервалу соответствует медианная частота. Таким интервалом будет интервал, сумма накопленных частот которого равна или превышает половину суммы всех частот.

Рассмотрим определение моды и медианы на следующих примерах.

Пример 6 . В результате статистического обследования области получены следующие данные по распределению семей по числу детей (табл. 16).

Таблица 16

Следует определить моду и медиану.

Решение

В дискретных рядах модой является варианта с наибольшей частотой. Наибольшая частота – 34, следовательно мода равна 2.

Для вычисления медианы определим сумму частот ряда (f = 100), затем рассчитаем полусумму
.

Так как сумма накопленных частот 5 + 32 + 34 = 71 превышает полусумму (71 > 50), то варианта, имеющая значение 2 и соответствующая этой накопленной сумме частот, и есть медиана.

Пример 7 . В результате статистического обследования получены следующие данные распределения продавцов магазинов облпотребсоюза по возрасту (табл. 17).

Таблица 17

Необходимо определить моду и медиану.

Решение

В интервальных рядах мода и медиана определяются по вышеприведенным формулам.

Сначала определим модальный интервал, он соответствует наибольшей частоте. Так как наибольшая частота равна 35 и является модальной, то интервал 30–40 является модальным интервалом. Затем подставим данные в следующую формулу:

Определим медианный интервал. Полусумма частот равна 50
. Накапливая частоты, определим интересующий интервал. Так как сумма накопленных частот 6 + 24 + 35 = 65 превышает полусумму (65 > 50), значит 35 является медианной частотой, а интервал 30–40 является медианным интервалом.

Затем подставим данные в формулу

Таким образом, мода равна 35,5 лет (больше всего продавцов в возрасте 35,5 лет), медиана – 35,7 лет (50 % продавцов достигли возраста 35,7 лет).

Вариационные ряды распределения состоят их двух элементов вариантов и частот.

Вариантами называются числовые значения колличественного признака в ряду распределения, они могут быть положительными и отрицательными, абсолютными и относительными. Частоты – это численности отдельных вариантов или каждой группы вариационного ряда. Сумма всех частот называется объемом совокупности и определяет число элементов всей совокупности.

Ряды распр-я могут быть образованы по качественному(атрибутивному) и колич-му пр-ку. В первом случае они наз. атрибутивными,а во втором- вариационными.

Вариационные ряды распр-ия по сп-бу постр-ия бывают дискретные и интервальные:

Дискр. вариац. ряд распр-я - группы сост-ны по признаку, изменяющемуся дискретно и приним-му только целые значения. Интервальный вариац. ряд распр-ия - группировачный признак, сост-ий групп-ки, может принимать в опред-ом интервале любые знач-ия. Число ед-ц частоты, приходящиеся на ед-цу инт-ла наз. плотностью распред-я . Ряд накопл-ых частот (кумулятивный)-показ-т число случаев ниже или выше опред-го уровня. Графич изображения ряда распред.: линейные, плоскостные диаграммы, гистограммы, куммулятивная кривая (изображ-ет ряд накопл-х частот)

9. Средняя арифметическая взвешенная.

При расчете средних величин отдельные значения признака, который осредняется, могут повторяться, поэтому расчет средней величины производится по сгруппированным данным. В этом случае речь идет об использовании средней арифметической взвешенной, которая имеет вид: X средн = (EXi*fi)/ Efi

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам.

Расчет средней по способу моментов. Основан на свойствах средней арифметической. В качестве условного ноля – X0 выбирают середину одного из центральных интервалов, обладающего наибольшей частотой.Этот способ используется только в рядах с равными интервалами.

10. Средняя гармоническая простая и взвеш.

Средняя гармоническая. Эту среднюю называют обратной средней арифметической, поскольку эта величина используется при k = -1. Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы. Ее формулу можно вывести из базовой формулы, подставив k = -1:

К примеру, нам нужно вычислить среднюю скорость двух автомашин, прошедших один и тот же путь, но с разной скоростью: первая - со скоростью 100 км/ч, вторая - 90 км/ч. Применяя метод средней гармонической, мы вычисляем среднюю скорость:

В статист практике чаще исп гармонич взвеш , формула кот имеет вид:

Данная формула используется в тех случаях, когда веса (или объемы явлений) по каждому признаку не равны. В исходном соотношении для расчета средней известен числитель, но неизвестен знаменатель.

Например, при расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам не известно количество реализованных единиц (речь идет о разных товарах), но известны суммы реализаций этих различных товаров. Допустим, необходимо узнать среднюю цену реализованных товаров: Вид товара Цена за единицу, руб.Сумма реализаций, руб.

Получаем

Если здесь использовать формулу средней арифметической, то можно получить среднюю цену, которая будет нереальна:

11. Упрощенный расчет средней арифм. (ср. ар.) (способ моментов).

Пользуясь св-ми ср. ар., ее можно рассчитать след. образом: 1) вычесть из всех вариант постоянное число (лучше значение серединной варианты); 2) разделить варианты на постоянное число – на величину интервала; 3) частоты выразить в %. Вычисление ср. ар. первыми двумя способами называется способом отсчета от условного начала (способом моментов). Этот способ применяется в рядах с разными интервалами. Ср. ар. в этом случае опред. по ф-ле:

Где m – момент первого порядка; х 0 – начало отсчета; К – величина интервала.

12. Мода и медиана.

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода, или так называемые структурные средние. Медиана (Ме) - это величина, которая соответствует варианту, находящемуся в середине ранжированного ряда. Для ранжированного ряда с нечетным числом индивидуальных величин (например, 1, 2, 3, 3, 6, 7, 9, 9, 10) медианой будет величина, которая расположена в центре ряда, т.е. пятая величина. Для ранжированного ряда с четным числом индивидуальных величин (например, 1, 5, 7, 10, 11, 14) медианой будет средняя арифметическая величина, которая рассчитывается из двух смежных величин. Для нашего случая медиана равна (7+10) : 2= 8,5. То есть для нахождения медианы сначала необходимо определить ее порядковый номер (ее положение в ранжированном ряду) по формуле Nme=(n+1)/2, где n - число единиц в совокупности. Численное значение медианы определяют по накопленным частотам в дискретном вариационном ряду. Для этого сначала следует указать интервал нахождения медианы в интервальном ряду распределения. Медианным называют первый интервал, где сумма накопленных частот превышает половину наблюдений от общего числа всех наблюдений. Численное значение медианы обычно определяют по формуле----- где xМе - нижняя граница медианного интервала; i - величина интервала; S-1 - накопленная частота интервала, которая предшествует медианному; f - частота медианного интервала.

Модой (Мо) называют значение признака, которое встречается наиболее часто у единиц совокупности. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой. Чтобы найти конкретное значение моды, необходимо использовать формулу

где xМо - нижняя граница модального интервала; iМо - величина модального интервала; fМо - частота модального интервала; fМо-1 - частота интервала, предшествующего модальному; fМо+1 - частота интервала, следующего за модальным.

Мода имеет широкое распространение в маркетинговой деятельности при изучении покупательского спроса, особенно при определении пользующихся наибольшим спросом размеров одежды и обуви, при регулировании ценовой политики.

13. Свойства средней ариф. (ср. ар.)

1.Если из всех вариантов ряда (-) или ко всем вариантам (+) постоянное число, то ср. ар. соответственно уменьшится или увеличится на это число.
.2.Если все варианты ряда умножить или разделить на постоянное число, то ср. ар. соответственно увеличится или уменьшится в это число раз.
3.Если все частоты увеличить или уменьшить в постоянное число раз, то средняя от этого не изменится.
.

4.Сумма отклонений всех вариантов ряда от ср. ар. = 0. (Нулевое свойство средней). . 5.Σf i =Σfix i . Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты.

6.Сумма квадратов отклонений всех вариантов ряда от ср. ар.

Данное св-во положено в основу метода наименьших квадратов, кот. широко применяется в исследовании стат. взаимосвязей.

14. Виды дисперсий. Правило их сложения .

Различают три вида дисперсий: общая; средняя внутригрупповая; межгрупповая. Общая дисперсия ( 2 о ) характеризует вариацию признака всей совокупности под влиянием всех тех факторов, которые обусловили данную вариацию. Эта величина определяется по формуле  2 о =  (X – Xо средн) 2 *f / f, где Xо средн - общая средняя арифметическая всей исследуемой совокупности. Средняя внутригрупп дисперс ( 2 средн ) свидетельствует о случайной вариации, которая может возникнуть под влиянием каких-либо неучтенных факторов и которая не зависит от признака-фактора, положенного в основу группировки. Данная дисперсия рассчитывается следующим образом: сначала рассчитываются дисперсии по отдельным группам ( 2 i ), затем рассчитывается средняя внутригрупповая дисперсия ( 2 i cредн): где ni - число единиц в группе. Межгрупповая дисперсия характеризует систематическую вариацию, т.е. различия в величине исследуемого признака, возникающие под влиянием признака-фактора, который положен в основу группировки. Эта дисперсия рассчитывается по формуле

где - средняя величина по отдельной группе. Все три вида дисперсии связаны между собой: общая дисперсия равна сумме средней внутригрупповой дисперсии и межгрупповой дисперсии:

Данное соотношение отражает закон, который называют правилом сложения дисперсий. Согласно этому закону (правилу), общая дисперсия, которая возникает под влиянием всех факторов, равна сумме дисперсий, которые появляются как под влиянием признака-фактора, положенного в основу группировки, так и под влиянием других факторов. Благодаря правилу сложения дисперсий можно определить, какая часть общей дисперсии находится под влиянием признака-фактора, положенного в основу группировки.

15 . Виды средних. Их исчисление .

16. Показатели вариации, применяемые в статистике.

Вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления. Для измерения вариации в статистике применяют несколько способов. Наиболее простым явл расчет показателя размаха вариации Н как разницы между Xmax и Xmin: H=Xmax - Xmin. Но размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается. Среднее линейное отклонение d - среднее арифметическое значение абсолютных отклонений признака от его среднего уровня: d =  (Xi – X средн) / n. При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной. В статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии: δ =  (Xi – X средн) 2 / n. Показатель s, равный √δ 2 , называется средним квадратическим отклонением. Величина Mx = √(δ 2 /n)-средняя ошибка выборки и явля хар-кой отклонения выборочного среднего значения призн от его истинной средней величины. Показатель средней ошибки использ при оценке достоверности результатов выборочн наблюд. Коэфф осцилляции отражает относит колеблемость крайних значений признака вокруг средней: Ko = (R/X средн)*100%. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины Kd = (d средн/ X средн)*100%. Коэффициент вариации: V = (δ/X средн)*100%

17. Простейшие приёмы обработки рядов динамики.

Простейшими видами обработки рядов динамики являются: укрупнение интервалов, метод скользящей средней, аналитическое выравнивание, экстраполяция и интерполяция.

Укрупнение интервалов. Ряд динамики разделяют на достаточно большое число равных интервалов. Если средн уровни по интервалам не позволяют увидеть тенденцию разв, переходят к расчету уровней за большие промежутки времени, увеличивая длину каждого интервала (уменьшая количество интервалов). Скользящая средняя. В этом методе исходные уровни ряда заменяются средними величинами, которые получают из данного уровня и нескольких симметрично его окружающих. Целое число уровней, по которым рассчитывается среднее значение, называют интервалом сглаживания. Для того чтобы создать модель, выражающую основную тенденцию изменения уровней динамического ряда во вре­мени, используется аналитическое выравнивание ряда динамики. Простейшими моделями, выражаю­щими тенденцию развития, являются: линейная функция прямой, показательная функция, парабола, парабола n-порядка, гипербола, экспонента. Иногда возникает необходимость предвидеть будущий уровень ряда динамики. В таких случаях прибегают к приему обработки рядов динамики, называемому экстраполяцией : y n +1 = y n + ∆y n +∆∆y n , где y n +1 - неизвестный уровень ряда, y n - последний известный уровень ряда, ∆y n - цепной абсолютный прирост последнего уровня ряда (∆y n = y n - y n -1), ∆∆y n - изменение прироста последнего уровня ряда. Наряду с экстраполяцией иногда применяется такой прием обработки рядов динамики, как интерполяция - искусственное нахождение отсутствующих членов внутри динамического ряда. Неизвестный уровень ряда находится по формуле: y i = (y i +1 + y i -1) / 2. Где: y i - неизвестный уровень ряда, y i +1 - последующий за неизвестным уровень ряда, y i -1 - предыдущий уровень ряда.



© dagexpo.ru, 2024
Стоматологический сайт