Тёмная материя. Что такое темная материя? Существует ли темная материя

12.10.2019

Относится к «Теории мироздания»

Темная материя и темная энергия во Вселенной


В. А. Рубаков,
Институт ядерных исследований РАН, Москва, Россия

1. Введение

Естествознание сейчас находится в начале нового, необычайно интересного этапа своего развития. Он замечателен прежде всего тем, что наука о микромире - физика элементарных частиц - и наука о Вселенной - космология - становятся единой наукой о фундаментальных свойствах окружающего нас мира. Различными методами они отвечают на одни и те же вопросы: какой материей наполнена Вселенная сегодня? Какова была её эволюция в прошлом? Какие процессы, происходившие между элементарными частицами в ранней Вселенной, привели в конечном итоге к её современному состоянию? Если сравнительно недавно обсуждение такого рода вопросов останавливалось на уровне гипотез , то сегодня имеются многочисленные экспериментальные и наблюдательные данные, позволяющие получать количественные (!) ответы на эти вопросы. Это - еще одна особенность нынешнего этапа: космология за последние 10–15 лет стала точной наукой. Уже сегодня данные наблюдательной космологии имеют высокую точность; еще больше информации о современной и ранней Вселенной будет получено в ближайшие годы.

Полученные в последнее время космологические данные требуют кардинального дополнения современных представлений о структуре материи и о фундаментальных взаимодействиях элементарных частиц. Сегодня мы знаем всё или почти всё о тех «кирпичиках», из которых состоит обычное вещество - атомы, атомные ядра, входящие в состав ядер протоны и нейтроны, - и о том, как взаимодействуют между собой эти «кирпичики» на расстояниях вплоть до 1/1000 размера атомного ядра (рис. 1). Это знание получено в результате многолетних экспериментальных исследований, в основном на ускорителях, и теор етического осмысл ения этих экспериментов. Космологические же данные свидетельствуют о существовании новых типов частиц, ещё не открытых в земных условиях и составляющих «темную материю» во Вселенной. Скорее всего, речь идет о целом пласте новых явлений в физике микромира, и вполне возможно, что этот пласт явлений будет открыт в земных лабораториях в недалеком будущем.

Еще более удивительным результатом наблюдательной космологии стало указание на существование совершенно новой формы материи - «темной энерги и».

Каковы свойства темной материи и темной энерги и? Какие космологические данные свидетельствуют об их существовании? О чем оно говорит с точки зрения физики микромира? Каковы перспективы изучения темной материи и темной энерги и в земных условиях? Этим вопросам и посвящена предлагаемая Вашему вниманию лекция.

2. Расширяющаяся Вселенная

Имеется целый ряд фактов, говорящих о свойствах Вселенной сегодня и в относительно недалеком прошлом.

Вселенная в целом однородна : все области во Вселенной выглядят одинаково. Разумеется, это не относится к небольшим областям: есть области, где много звезд - это галактики; есть области, где много галактик, - это скопления галактик; есть и области, где галактик мало, - это гигантские пустоты. Но области размером 300 миллионов световых лет и больше выглядят все одинаково. Об этом однозначно свидетельствуют астрономические наблюдения, в результате которых составлена «карта» Вселенной до расстояний около 10 млрд световых лет от нас . Нужно сказать, что эта «карта» служит источником ценнейшей информации о современной Вселенной, поскольку она позволяет на количественном уровне определить, как именно распределено вещество во Вселенной.

На рис. 2 показан фрагмент этой карты , охватывающий относительно небольшой объем Вселенной. Видно, что во Вселенной имеются структуры довольно большого размера, но в целом галактики «разбросаны» в ней однородно.

Вселенная расширяется : галактики удаляются друг от друга. Пространство растягивается во все стороны, и чем дальше от нас находится та или иная галактика, тем быстрее она удаляется от нас. Сегодня темп этого расширения невелик: все расстояния увеличатся вдвое примерно за 15 млрд лет, однако раньше темп расширения был гораздо больше. Плотность вещества во Вселенной убывает с течением времени, и в будущем Вселенная будет всё более и более разреженной. Наоборот, раньше Вселенная была гораздо более плотной, чем сейчас. О расширении Вселенной прямо свидетельствует «покраснение» света, испущенного удаленными галактиками или яркими звездами: из-за общего растяжения пространства длина волны света увеличивается за то время, пока он летит к нам. Именно это явление было установлено Э. Хабблом в 1927 году и послужило наблюдательным доказательством расширения Вселенной, предсказанного за три года до этого Александром Фридманом.

Замечательно, что современные наблюдательные данные позволяют измерить не только темп расширения Вселенной в настоящее время, но проследить за темпом её расширения в прошлом. О результатах этих измерений и вытекающих из них далеко идущих выводах мы еще будем говорить. Здесь же скажем о следующем: сам факт расширения Вселенной, вместе с теор ией гравитации - общей теор ией относительности - свидетельствует о том, что в прошлом Вселенная была чрезвычайно плотной и чрезвычайно быстро расширялась. Если проследить эволюцию Вселенной назад в прошлое, используя известные законы физики, то мы придем к выводу, что эта эволюция началась с момента Большого Взрыва; в этот момент вещество во Вселенной было настолько плотным, а гравитационное взаимодействие настолько сильным, что известные законы физики были неприменимы. С тех пор прошло 14 млрд лет, это - возраст современной Вселенной.

Вселенная «теплая»: в ней имеется электромагнитное излучение, характеризуемое температурой Т = 2,725 градусов Кельвина (реликтовые фотоны, сегодня представляющие собой радиоволны). Разумеется, эта температура сегодня невелика (ниже температуры жидкого гелия), однако это было далеко не так в прошлом. В процессе расширения Вселенная остывает, так что на ранних стадиях её эволюции температура, как и плотность вещества, была гораздо выше, чем сегодня. В прошлом Вселенная была горячей, плотной и быстро расширяющейся.


Фотоснимок, изображенный на рис. 3 , привел к нескольким важным и неожиданным выводам. Во-первых, он позволил установить, что наше трехмерное пространство с хорошей степенью точности евклидово: сумма углов треугольника в нем равна 180 градусов даже для треугольников со сторонами, длины которых сравнимы с размером видимой части Вселенной, т. е. сравнимы с 14 млрд световых лет. Вообще говоря, общая теор ия относительности допускает, что пространство может быть не евклидовым, а искривленным; наблюдательные же данные свидетельствуют, что это не так (по крайней мере для нашей области Вселенной). Способ измерения «суммы углов треугольника» на космологических масштабах расстояний состоит в следующем. Можно надежно вычислить характерный пространственный размер областей, где температура отличается от средней: на момент перехода плазма-газ этот размер определяется возрастом Вселенной, т. е. пропорционален 300 тыс. световых лет. Наблюдаемый угловой размер этих областей зависит от геометрии трехмерного пространства, что и дает возможность установить, что эта геометрия - евклидова.

В случае евклидовой геометрии трехмерного пространства общая теор ия относительности однозначно связывает темп расширения Вселенной с суммарной плотностью всех форм энерги и , так же как в ньютоновской теор ии тяготения скорость обращения Земли вокруг Солнца определяется массой Солнца. Измеренный темп расширения соответствует полной плотности энерги и в современной Вселенной

В терминах плотности массы (поскольку энерги я связана с массой соотношением Е = 2 ) это число составляет

Если бы энерги я во Вселенной целиком определялась энерги ей покоя обычного вещества, то в среднем во Вселенной было бы 5 протонов в кубическом метре. Мы увидим, однако, что обычного вещества во Вселенной гораздо меньше.

Во-вторых, из фотоснимка рис. 3 можно установить, какова была величина (амплитуда) неоднородностей температуры и плотности в ранней Вселенной - она составляла 10 –4 –10 –5 от средних значений. Именно из этих неоднородностей плотности возникли галактики и скопления галактик: области с более высокой плотностью притягивали к себе окружающее вещество за счет гравитационных сил, становились еще более плотными и в конечном итоге образовывали галактики.

Поскольку начальные неоднородности плотности известны, процесс образования галактик можно рассчитать и результат сравнить с наблюдаемым распределением галактик во Вселенной. Этот расчет согласуется с наблюдениями, только если предположить, что помимо обычного вещества во Вселенной имеется другой тип вещества - темная материя , вклад которой в полную плотность энерги и сегодня составляет около 25%.

Другой этап эволюции Вселенной соответствует еще более ранним временам, от 1 до 200 секунд (!) с момента Большого Взрыва, когда температура Вселенной достигала миллиардов градусов. В это время во Вселенной происходили термоядерные реакции, аналогичные реакциям, протекающим в центре Солнца или в термоядерной бомбе. В результате этих реакций часть протонов связалась с нейтронами и образовала легкие ядра - ядра гелия, дейтерия и лития-7. Количество образовавшихся легких ядер можно рассчитать, при этом единственным неизвестным параметром является плотность числа протонов во Вселенной (последняя, разумеется, уменьшается за счет расширения Вселенной, но её значения в разные времена простым образом связаны между собой).

Сравнение этого расчета с наблюдаемым количеством легких элементов во Вселенной приведено на рис. 4 : линии представляют собой результаты теор етического расчета в зависимости от единственного параметра - плотности обычного вещества (барионов), а прямоугольники - наблюдательные данные. Замечательно, что имеется согласие для всех трех легких ядер (гелия-4, дейтерия и лития-7); согласие есть и с данными по реликтовому излучению (показаны вертикальной полосой на рис. 4, обозначенной СМВ - Cosmic Microwave Background). Это согласие свидетельствует о том, что общая теор ия относительности и известные законы ядерной физики правильно описывают Вселенную в возрасте 1–200 секунд, когда вещество в ней имело температуру миллиард градусов и выше. Для нас важно, что все эти данные приводят к выводу о том, что плотность массы обычного вещества в современной Вселенной составляет

т. е. обычное вещество вкладывает всего 5% в полную плотность энерги и во Вселенной.

4. Баланс энерги й в современной Вселенной

Итак, доля обычного вещества (протонов, атомных ядер, электронов) в суммарной энерги и в современной Вселенной составляет всего 5%. Помимо обычного вещества во Вселенной имеются и реликтовые нейтрино - около 300 нейтрино всех типов в кубическом сантиметре. Их вклад в полную энерги ю (массу) во Вселенной невелик, поскольку массы нейтрино малы, и составляет заведомо не более 3%. Оставшиеся 90–95% полной энерги и во Вселенной - «неизвестно что». Более того, это «неизвестно что» состоит из двух фракций - темной материи и темной энерги и, как изображено на рис. 5 .


При этом вещества в звездах ещё в 10 раз меньше; обычное вещество находится в основном в облаках газа.

5. Темная материя

Темная материя сродни обычному веществу в том смысл е, что она способна собираться в сгустки (размером, скажем, с галактику или скопление галактик) и участвует в гравитационных взаимодействиях так же, как обычное вещество. Скорее всего, она состоит из новых, не открытых еще в земных условиях частиц.


Помимо космологических данных, в пользу существования темной материи служат измерения гравитационного поля в скоплениях галактик и в галактиках. Имеется несколько способов измерения гравитационного поля в скоплениях галактик, один из которых - гравитационное линзирование, проиллюстрированное на рис. 6 .

Гравитационное поле скопления искривляет лучи света, испущенные галактикой, находящейся за скоплением, т. е. гравитационное поле действует как линза. При этом иногда появляются несколько образов этой удаленной галактики; на левой половине рис. 6 они имеют голубой цвет. Искривление света зависит от распределения массы в скоплении, независимо от того, какие частицы эту массу создают. Восстановленное таким образом распределение массы показано на правой половине рис. 6 голубым цветом; видно, что оно сильно отличается от распределения светящегося вещества. Измеренные подобным образом массы скоплений галактик согласуются с тем, что темная материя вкладывает около 25% в полную плотность энерги и во Вселенной. Напомним, что это же число получается из сравнения теор ии образования структур (галактик, скоплений) с наблюдениями.


Темная материя имеется и в галактиках. Это опять-таки следует из измерений гравитационного поля, теперь уже в галактиках и их окрестностях. Чем сильнее гравитационное поле, тем быстрее вращаются вокруг галактики звезды и облака газа, так что измерения скоростей вращения в зависимости от расстояния до центра галактики позволяют восстановить распределение массы в ней. Это проиллюстрировано на рис. 7 : по мере удаления от центра галактики скорости обращения не уменьшаются, что говорит о том, что в галактике, в том числе вдалеке от её светящейся части, имеется несветящаяся, темная материя. В нашей Галактике в окрестности Солнца масса темной материи примерно равна массе обычного вещества.

Что представляют из себя частицы темной материи? Ясно, что эти частицы не должны распадаться на другие, более легкие частицы, иначе бы они распались за время существования Вселенной. Сам этот факт свидетельствует о том, что в природе действует новый , не открытый пока закон сохранения , запрещающий этим частицам распадаться. Аналогия здесь с законом сохранения электрического заряда: электрон - это легчайшая частица с электрическим зарядом, и именно поэтому он не распадается на более легкие частицы (например, нейтрино и фотоны). Далее, частицы темной материи чрезвычайно слабо взаимодействуют с нашим веществом, иначе они были бы уже обнаружены в земных экспериментах. Дальше начинается область гипотез . Наиболее правдоподобной (но далеко не единственной!) представляется гипотез а о том, что частицы темной материи в 100–1000 раз тяжелее протона, и что их взаимодействие с обычным веществом по интенсивности сравнимо с взаимодействием нейтрино. Именно в рамках этой гипотез ы современная плотность темной материи находит простое объяснение: частицы темной материи интенсивно рождались и аннигилировали в очень ранней Вселенной при сверхвысоких температурах (порядка 10 15 градусов), и часть их дожила до наших дней. При указанных параметрах этих частиц их современное количество во Вселенной получается как раз такое, какое нужно.

Можно ли ожидать открытия частиц темной материи в недалеком будущем в земных условиях? Поскольку мы сегодня не знаем природу этих частиц, ответить на этот вопрос вполне однозначно нельзя. Тем не менее, перспектива представляется весьма оптимист ической.

Имеется несколько путей поиска частиц темной материи. Один из них связан с экспериментами на будущих ускорителях высокой энерги и - коллайдерах. Если частицы темной материи действительно тяжелее протона в 100–1000 раз, то они будут рождаться в столкновениях обычных частиц, разогнанных на коллайдерах до высоких энерги й (энерги й, достигнутых на существующих коллайдерах, для этого не хватает). Ближайшие перспективы здесь связаны со строящимся в международном центре ЦЕРН под Женевой Большим адронным коллайдером (LHC), на котором будут получены встречные пучки протонов с энерги ей 7x7 Тераэлектронвольт. Нужно сказать, что согласно популярным сегодня гипотез ам, частицы темной материи - это лишь один представитель нового семейства элементарных частиц, так что наряду с открытием частиц темной материи можно надеяться на обнаружение на ускорителях целого класса новых частиц и новых взаимодействий. Космология подсказывает, что известными сегодня «кирпичиками» мир элементарных частиц далеко не исчерпывается!

Другой путь состоит в регистрации частиц темной материи, которые летают вокруг нас. Их отнюдь не мало: при массе, равной 1000 масс протона, этих частиц здесь и сейчас должно быть 1000 штук в кубическом метре. Проблема в том, что они крайне слабо взаимодействуют с обычными частицами, вещество для них прозрачно. Тем не менее, частицы темной материи изредка сталкиваются с атомными ядрами, и эти столкновения можно надеяться зарегистрировать. Поиск в этом направлении


Наконец, еще один путь связан с регистрацией продуктов аннигиляции частиц темной материи между собой. Эти частицы должны скапливаться в центре Земли и в центре Солнца (вещество для них практически прозрачно, и они способны проваливаться внутрь Земли или Солнца). Там они аннигилируют друг с другом, и при этом образуются другие частицы, в том числе нейтрино. Эти нейтрино свободно проходят сквозь толщу Земли или Солнца, и могут быть зарегистрированы специальными установками - нейтринными телескопами. Один из таких нейтринных телескопов расположен в глубине озера Байкал (НТ-200 , рис. 8 ), другой (AMANDA) - глубоко во льду на Южном полюсе.

Как показано на рис. 9 , нейтрино, приходящее, например, из центра Солнца, может с малой вероятностью испытать взаимодействие в воде, в результате чего образуется заряженная частица (мюон), свет от которой и регистрируется. Поскольку взаимодействие нейтрино с веществом очень слабое, вероятность такого события мала, и требуются детект оры очень большого объема. Сейчас на Южном полюсе началось сооружение детект ора объемом 1 кубический километр.

Имеются и другие подходы к поиску частиц темной материи, например, поиск продуктов их аннигиляции в центральной области нашей Галактики. Какой из всех этих путей первым приведет к успеху, покажет время, но в любом случае открытие этих новых частиц и изучение их свойств станет важнейшим научным достижением. Эти частицы расскажут нам о свойствах Вселенной через 10 –9 с (одна миллиардная секунды!) после Большого Взрыва, когда температура Вселенной составляла 10 15 градусов, и частицы темной материи интенсивно взаимодействовали с космической плазмой.

6. Темная энерги я

Темная энерги я - гораздо более странная субстанция, чем темная материя. Начать с того, что она не собирается в сгустки, а равномерно «разлита» во Вселенной. В галактиках и скоплениях галактик её столько же, сколько вне их. Самое необычное то, что темная энерги я в определенном смысл е испытывает антигравитацию . Мы уже говорили, что современными астрономическими методами можно не только измерить нынешний темп расширения Вселенной, но и определить, как он изменялся со временем. Так вот, астрономические наблюдения свидетельствуют о том, что сегодня (и в недалеком прошлом) Вселенная расширяется с ускорением: темп расширения растет со временем. В этом смысл е и можно говорить об антигравитации: обычное гравитационное притяжение замедляло бы разбегание галактик, а в нашей Вселенной, получается, всё наоборот.

Такая картина, вообще говоря, не противоречит общей теор ии относительности, однако для этого темная энерги я должна обладать специальным свойством - отрицательным давлением. Это резко отличает её от обычных форм материи. Не будет преувеличением сказать, что природа темной энерги и - это главная загадка фундаментальной физики XXI века .

Один из кандидатов на роль темной энерги и - вакуум. Плотность энерги ии вакуума не изменяется при расширении Вселенной, а это и означает отрицательное давление вакуума . Другой кандидат - новое сверхслабое поле, пронизывающее всю Вселенную; для него употребляют термин «квинтэссенция». Есть и другие кандидаты, но в любом случае темная энерги я представляет собой что-то совершенно необычное.

Другой путь объяснения ускоренного расширения Вселенной состоит в том, чтобы предположить, что сами законы гравитации видоизменяются на космологических расстояниях и космологических временах. Такая гипотез а далеко не безобидна: попытки обобщения общей теор ии относительности в этом направлении сталкиваются с серьезными трудностями.

По-видимому, если такое обобщение вообще возможно, то оно будет связано с представлением о существовании дополнительных размерностей пространства, помимо тех трех измерений, которые мы воспринимаем в повседневном опыте.

К сожалению, сейчас не видно путей прямого экспериментального исследования темной энерги и в земных условиях. Это, конечно, не означает, что в будущем не может появиться новых блестящих идей в этом направлении, но сегодня надежды на прояснение природы темной энерги и (или, более широко, причины ускоренного расширения Вселенной) связаны исключительно с астрономическими наблюдениями и с получением новых, более точных космологических данных. Нам предстоит узнать в деталях, как именно расширялась Вселенная на относительно позднем этапе её эволюции, и это, надо надеяться, позволит сделать выбор между различными гипотез ами.

Речь идет о наблюдениях сверхновых типа 1а.

Изменение энерги и при изменении объема определяется давлением, ΔЕ = -p ΔV . При расширении Вселенной энерги я вакуума растет вместе с объемом (плотность энерги и постоянна), что возможно, только если давление вакуума отрицательно. Отметим, что противоположные знаки давления и энерги и вакуума прямо следуют из Лоренц-инвариантности.

7. Заключение

Как часто бывает в науке, впечатляющие успехи физики частиц и космологии поставили неожиданные и фундаментальные вопросы. Мы сегодня не знаем, что представляет собой основная часть материи во Вселенной. Мы можем только догадываться, какие явления происходят на сверхмалых расстояниях, и какие процессы происходили во Вселенной на самых ранних этапах её эволюции. Замечательно, что на многие из этих вопросов ответы будут найдены в обозримом будущем - в течение 10–15 лет, а может быть, и раньше. Наше время - это время кардинального изменения взгляда на природу, и главные открытия здесь еще впереди.

ОБСУЖДЕНИЕ


18.04.2005 09:32 | rykov

Мне лекция Валерия Анатольевича Рубакова чрезвычайно понравилась. Я впервые слышу лекцию с опорой не на теор ию, а на наблюдённые данные. Известно, что теор ий, объясняющих явления, может быть несколько и даже противоречащих между собой. Кроме того, приведенные данные укладываются в гипотез у о природе гравитации и антигравитации в форме зарядовой и магнито-массовой структуры "вакуума". Избыток заряда "вакуума" является источником Кулоновского притяжения между телами из вещества и одновременно источником сил отталкивания одноименного электричекого заряда. Это отталкивание наблюдается в виде расширения Вселенной - в начале быстрого в силу большой плотности заряда, сейчас - замедленное в силу наличия примерно 2000 Кулон/м^3. "Темная" материя в гипотез е существует в форме магнито-массового континуума как источника масс реальных частиц и потоков магнитной индукции.


18.04.2005 15:12 | grechishkin

18.04.2005 16:40 | Markab

Лекция удивила. Как раз большая проблема с наблюдательным материалом. Взяли с потолка с начала темную материю, для того чтобы объяснить недостаток наблюдаемой массы галактик, а затем, для того чтобы объяснить наблюдаемое расширение вселенной, ввели темную энерги ю. Свойства темной материи объяснили очень даже логично: в сильное взаимодействие не вступает (то есть не может объединяться в более тяжелые элементы), электрически нейтральны, с обычным веществом взаимодействует очень слабо(как нейтрино поэтому плохо обнаружима) и обладает очень большой массой покоя. Большая масса покоя вероятно понадобилась докладчику для того, чтобы объяснить почему эта частица не была обнаружена до сих пор. Просто нет пока таких ускорителей. А если бы были, то непременно бы нашли. Нужна скрытая масса - получите. Ситуация как с эфиром в старые времена.
Наблюдательный материал действительно свидетельствует о том, что в галактическом гало сосредоточена не регистрируемая телескопами материя. Вопрос "Что это может быть?" остается пока открытым, но зачем же объяснять проблему скрытой массы через семейство новых частиц??
Относительно темной энерги и. Расширение вселенной факт наблюдаемый пока не объясненный но и не новый. Для объяснения расширения вселенной автору требуется темная энерги я. Математически отталкивание материи ввел Эйнштейн ввиде лямбда-члена, теперь же физически мы объясняем лямбда член темной материей. Одно непонятное -через другое. Вот в философии Ньютона для объяснения устойчивости орбит планет требовался Бог, поскольку иначе в силу гравитации, планеты должны были бы упасть на Солнце. Здесь Богом назвали темную энерги ю.
Не менее интересным представляется и балланс энерги и в современной вселенной. Так на все вещество отводится менее 10%, на выдуманые докладчиком частицы приходится 25% энерги и, ну а все остальное - темная энерги я. Как посчитали: вселенная эвклидова -> скорость расширения известна->применяем ОТО= получаем общую энерги ю Вселенной.
Из того что получили, отняли энерги ю...


18.04.2005 16:43 | Markab

ПРОДОЛЖЕНИЕ
Из того что получили, отняли энерги ю наблюдаемого вещества, а оставшуюся энерги ю поделили между силой расталкивания (темная энерги я) и недостающей массой (темная материя).
Начнем с эвклидовости вселенной. Эвклидовость Вселенной необходимо доказать несколькими независимыми способами. Предложенный метод неубедителен тем, что момент прехода Вселенной плазма-газ можно оценить в лучшем случае со множителем 2 в ту или иную сторону. Поэтому будет ли эвклидова Вселенная если размер ячейки принять 150 или 600 тыс. световых лет? Скорее всего нет. А значит нельзя применять ОТО для оценки общей энерги и во Вселенной.


19.04.2005 19:58 | rykov

В любом исходе контр аргументов Марка, мы наблюдаем удивительное совпадение между "тёмной" материей и магнито-массовым континуумом, между "тёмной" энерги ей и зарядовой структурой "физического вакуума". Поэтому я рассматриваю новое слово в космологии как почти прямое подтверждение распространения света и гравитации в космосе. Это очень хорошее совпадение.


19.04.2005 23:10 | Alex1998

Ладно лапшу людям на уши вешать про "удивительные совпадения". Забыл уже, как тебя в ru.science носом тыкали? У тебя там не только с "темной" материей совпадений не придвидится, но и со школьным курсом физики.

Хотя кадр ты конечно по своей бесцеремонности редкий... И Малдасену уже пожурить успел, и Гинсбурга по плечу похлопать...


10.06.2005 15:15 | rykov

Это Лукьянов?
Почитайте вот это: "Скорость гравитации"
http://www.inauka.ru/blogs/artic le54362/print.html
Для Вашего самообразования. А вообще, в физике очень странная ситуация. По этому поводу:
1. Распространение света (ЭМВ) невозможно в пустоте, лишённой электрических зарядов. Физика утверждает обратное, противореча материальности Вселенной. Пожалуй, это главная прореха в физической теор ии.
2. Постул ат постоянства скорости света для Вселенной приводит к следующему искажению материальности нашего мира: необходимость введения замедления времени для объяснения наблюдаемых явлений. Без этого введения изменений хода времени невозможна вообще любая интерпретация данных опыта.
3. Искривление пространства в качестве модели гравитации и инерции также приводит к отрицанию материальной основы гравитации. При этом нарушается всеобщее значение числа pi в физике, которое реализуется только в неискривлённом пространстве.

Вероятно, это главные заблуждения в физике. Все остальное может быть воспринято как издержки роста понимания в устройстве мира. Вся сложность ситуации идеализма в физике связана с тем, что результаты наблюдений и опытов "подтверждают" физические теор ии. Проблема заключается в способе интерпретации наблюдений и опытов, которая в случае ошибочности и истинности теор ии обязана быть разной. В очерках сделана попытка верной интерпретации в физике, противопоставив интерпретации с нематериалистических позиций. Поэтому вторым (достаточным) условием любой физической теор ии должна быть её материалистическая обоснованность. Например, все ссылки на возможность передачи физических взаимодействий или передачи так называемых физических полей в пустоте лишены материальной основы. Соответствующие разделы теор етической физики должны быть исправлены с учётом материальности мира.


19.04.2005 19:58 | rykov

20.04.2005 12:07 | Markab

По мимо уже сказанного, в рассуждениях автора о темной материи, доклад содержит еще одно "темное место".
1) Из результатов наблюдения, см. рис. 7 доклада, следует, что измеренная скорость вращения звезд с удалением от ядра галактики оказывается выше, вычисленной. На рис. 7 они обозначены "наблюдения" и "без темной материи" (К сожалению не приведен максимум кривой "наблюдения", виден ее ~логарифмический рост). Наблюдаемую "повышенную" скорость автор объясняет наличием темной материи в нашей галактике. На рис. 6(правый) приводится пример восстановления гравитационного поля по наблюдению микролинзирования рис. 6(левый). Полученное гравитационное поле представляет собой суммарное поле, куда вносит вклад и наблюдаемое вещество и темная материя. Из рис. 6(правый) следует, что темная материя распределена по галактике так же как и обычная - она сосредоточается вместе с видимым веществом: в ядре галактики, звездых скоплениях, звездах и темных облаках.
2) Из рис. 5 следует, что темной материи примерно в 5 раз больше обычного вещества. То есть именно она вносит определяющий вклад в гравитационное взаимодействие. Эта материя должна быть и в Солнце, и в Земле, и в Юпитере, и т.д.
3) В Солнечной системе скорость планет с удалением от Солнца не возрастает, а убывает. Более того, нет локального максимума в скоростях планет с удалением от Солнца. Почему же в Галактике по другому? Противоречие??
ЧТО ЭТО МОЖЕТ ОЗНАЧАТЬ?
А) Темной материи в интерпретации автора НЕ СУЩЕСТВУЕТ. Для того чтобы объяснить "повышенную" скорость вращения звезд в галактике надо искать обычное вещество, которое может быть скрыто в молекулярных облаках, черных дырах, остывших нейтронных звездах и белых карликах.
Б) Темная материя в интерпретации автора СУЩЕСТВУЕТ. Не замечаем ее, потому, что к ней привыкли. Кстати, хороший способ похудеть, лучше всякого гербалайфа: выдавите из себя темную материю и станьте в 5 раз легче!


21.04.2005 13:42 | Markab

Подведем итог рассуждения о темной материи. Интерпретация темной материи образом, как это предлагает докладчик неизбежно приводит к пересмотру всей звездной эволюции.
Итак, согласно утверждениям автора темная материя это: частица с массой 100-1000 масс покоя протона, не имеющая электрического заряда, участвующая в гравитационном взаимодействии, не участвующая в сильном взаимодействии. С обычным веществом реагирует слабо, примерно как нейтрино. Подчиняется некому закону сохранения, предотвращающий распад такой частицы.
Масса темной материи примерно в 5 раз больше массы обычного вещества. (По данным доклада). Темная материя сосредоточена в тех же центрах, что и обычное вещество - ядра галактик, звездные скопления, звезды, туманности и т.д. (По данным доклада).
АСТРОФИЗИЧЕСКИЕ ПОСЛЕДСТВИЯ (введения темной материи)
1)На звездах выполняется условия лучистого равновесия с гравитацией. Излучение выделяется в результате ядерных реакций вещества звезды. Темная материя, находящаяся в звезде гравитационно сжимает ее, но не принимает участие в ядерных реакциях. Поэтому гипотетическое введение темной материи в звезду при условии сохранения ее массы приводит к тому, что количество вещества, способного участвовать в ядерных реакциях уменьшается в несколько раз. А значит сокращается в несколько раз(!) время жизни звезды. Что не выполняется хотя бы на примере нашего Солнца, которое благополучно существует ~5 млрд. лет и еще столько же будет существовать.
2) В процессе эволюции доля темной материи на звезде растет, поскольку частицы с массой (100-1000 Мр) не будут покидать звезду ни звездным ветром, ни сбросом оболочки. Более того, ввиду своей массы темная материя будет сосредоточена в ядре звезды. Это значит, что в конце звездной эволюции, когда звезда превращается в белый карлик или нейтронную звезду, подавляющая часть ее массы должна состоять из темной материи! (Причем не известно какой статистике она (ТМ)подчиняется и какими свойствами обладает.) А это в свою очередь должно изменить предел...


21.04.2005 13:44 | Markab

А это в свою очередь должно изменить предел Чандрасекара на белые карлики и Опенгеймера-Волкова на нейтронные звезды. Однако экспериментально не наблюдается смещения по массе предела Чандрасекара белый карлик - нейтронная звезда.
Оба этих аргумента еще раз убеждают в том, что темной материи в интерпретации г-на Рубакова просто нет.


21.04.2005 22:18 | Algen

27.04.2005 10:10 | Markab

Процесс конденсации вещества зависит не от абсолютной скорости вещества (скорости вращения вокруг ядра галактики), а от относительной, т.е. скорости, с которой частицы темной материи движутся относительно обычной материи. Что касается абсолютной величины скорости 100-200 км/с, эта велечина не большая. Например, скорость движения вещества вокруг ядра в окрестности Солнца составляет порядка 250 км/с, что никак не мешает процессу звездообразования.


20.04.2005 00:33 | golos

Многоуважаемый господин Рубаков! С интересом прочёл Вашу лекцию, за которую весьма благодарен. Не буду вдаваться в детали, ибо дилетант.
Господин Рубаков. Меня занимает вопрос, на который не могу получить внятного ответа. Суть вот в чём. Допустим, есть некая масса, вокруг которой на расстоянии миллионов световых лет вращаются массы другие. Допустим гипотетический случай: массу, вокруг которой вращаются другие массы, в течении тысячи лет поглотила черная дыра. Грубо скажем, что причина притяжения вращающихся тел пропала/понятно, что это вовсе не так. Суть не в этом./ Но движущиеся с ускорением тела будут двигаться с прежними ускорениями ещё тысячи лет. До тех пор, пока к ним не придёт возмущение гравполя. Выходит, эти тысячи лет массы взаимодействовали имено с полем? И именно поле их ускоряло? Но если так, то по теор ии близкодействия неизбежно следует, что ускоряющиеся тела вначале взаимодействуют с гравполем, "отталкиваются" от него. Следовательно, поле обладает импульсом и, следовательно, массой. Которая автоматически равна массе ускоряемого полем тела. Но если так, то это означает, что во Вселенной кроме массы наблюдаемого вещества есть такая же точно скрытая масса гравитационного поля. Причем силы, приложенные к этому полю, приложены не к точке, а расплываются в бесконечности. Интуитивно чувствуется, что эта масса может быть причиной расширения пространства Вселенной, ибо явно взаимноотталкивается.
Не буду фантазировать. Мне просто хотелось бы знать Ваше мнение об этих рассуждениях, даже если они будут нелицеприятны. Я дилетант, по этой причине разгромная критика репутации моей никак не повредит. За отсутствием оной.
С уважением.
golos


20.04.2005 09:03 | rykov

Уважаемый Голос! Я тоже дилетант и не примите мой ответ Вам как замену уважаемого Валерия Анатольевича. Как мне кажется, если он и будет отвечать, то на все ремарки сразу. Мой ответ Вы сможите найти на страницах:
РАСПРОСТРАНЕНИЕ СВЕТА И ГРАВИТАЦИЯ В КОСМОСЕ
http://www.inauka.ru/blogs/artic le41392.html
и
Ключ к пониманию Вселенной NEW! 27/12/2004
http://www.worldspace.narod.ru/r u/index.html


21.04.2005 09:03 | rykov

21.04.2005 11:52 | golos

21.04.2005 22:16 | Algen

Начнем с того, что если центральную массу проглотит черная дыра, то с гравитационным полем на отдалении ничего не случится. Оно, каким было, таким и останется.

Тем не менее, ваши рассуждения верны. Действительно удаленные объекты взаимодействуют с гравитационным полем и пока до них не дойдут сигналы об изменениях в центре событий, они будут двигаться как раньше. В противном случае произошло бы нарушение причинности.

Вы делаете правильный вывод о том, что гравитационное поле обладает энерги ей и импульсом. Это действительно физическое поле. Однако вывод о том, что эта энерги я (масса) чему-то там "автоматически" равна, необоснован и неверен.

Вообще вопрос об энерги и гравитационного поля довольно запутанный. По нему у специалистов есть разные мнения. То есть о самом факте наличия энерги и никто не спорит, но не вполне ясно, как указать, где именно эта энерги я локализованы. Об этом довольно хорошо написано у Пенроуз а в книжке "Новый ум короля". Рекомендую почитать.я во Вселенной7.files/f_line.gif">

Уважаемый Algen! Продолжим с того, что черная дыра, поглотившая центральную массу, изменит характеристики вновь возникшей центральной массы. Так что гравитационное поле, на мой взгляд, претерпит, со временем, некоторые изменения. О взаимодействии удалённых объектов с гравполем. Я не имел в виду, что масса его автоматически равна всему звёздному веществу. Я полагал, что масса звёздного вещества автоматически входит в массу гравполя. Согласитесь, это несколько иной смысл . О локализации энерги и гравполя. На мой взгляд, говорить об этом более, чем странно. Энерги я, вложенная звёздным веществом в гравполе, расплывается в бесконечности. Поскольку она, тем не менее, "поступает" от дискретных тел, то скорее всего испытывает взаимооталкивание, являсь одной из причин расширения Вселенной. Разумеется, это всего лишь гипотез а. Но если допустить, что это так, то взаимодействия этих масс/энерги й может быть описываемо геометрией Лобачевского. Интересно, закон взаимного всемирного отталкивания, аналогичный нашему закону всемирного тяготения, как может быть в ней записан?
Разумеется, я отношусь к этому утвердению как к гипотез е.
Благодарю за информацию о книге Пенроуз а. Поищу. Если у Вас есть информация, где и как её можно найти, буду весьма благодарен.


06.05.2005 22:16 | Alex1998

15.05.2005 10:50 | Mihail

Никакой темной материи и тем более темной энерги и в Природе не существует - скорее это темнота в мозгах, пытающихся с завидным упорством "пристегнуть" мироздание к существующим нелепым релятиви стским теор иям. Разумеется, Природа полна и многими другими видами неизвестных пока науке излучений, в том числе главного - гравитонного. Грвитонная материя заполняет всю Вселенную и составляет значительную долю ее массы, однако эта материя сама по себе не обладает гравитацией (но создает ее!). Никакой антигравитации во Вселенной не существует - Природе это не нужно. Понятие антигравитации - плод недомыслия.


23.05.2005 06:30 | kpuser

Обращаю внимание автора и читателей, что природа темной материи, представленная в статье "главной загадкой фундаментальной физики XXI века", легко выявляется в рамках неоклассической концепции физики, базирующейся на описании свободного движения незаряженных тел обобщённым уравнением Лоренца. В этом уравнении представлены две классических силы: ньютоновская сила инерции тела и обобщённая сила Лоренца, которая учитывает упругое взаимодействие тела с собственным физическим или силовым полем.
Решение уравнения указывает на магнитную природу тяготения и приводит к двум формам закона всемирного тяготения. Одна из них - традиционная ньютоновская - применима для локальных космических структур типа Солнечной системы, в которых гравитация обусловлена взаимным притяжением реальных или ВЕЩЕСТВЕННЫХ масс материи. Другая показывает, что в масштабных космических структурах типа галактик и их скоплений проявляются антигравитационные явления, обусловленные взаимным отталкиванием МНИМЫХ масс, в которых превалирует масса силовых полей или ТЁМНАЯ МАТЕРИЯ. Подробнее с этим можно ознакомиться на нашем сайте по адресу: http://www.livejournal.com/commu я во Вселенной7.files/elementy">

To Maxim Chicago
А не могли бы Вы, так сказать, "соответствовать": обосновать свой "приговор" соответствующими аргументами? Что конкретно в моей работе Вам представляется "антифизикой"? Или так Вы оцениваете обобщённое уравнение Лоренца, на котором в работе удалось построить практически законченное здание современной физики? Объяснитесь, пожалуйста.
К. Агафонов


08.06.2005 16:40 | Che
Авторские права сайта Fornit

Статьях цикла мы рассмотрели устройство видимой Вселенной. Поговорили о ее структуре и частицах, которые формируют эту структуру. О нуклонах, играющих главную роль, поскольку именно из них состоит всё видимое вещество. О фотонах, электронах, нейтрино, а также о второстепенных актерах, занятых во вселенском спектакле, что разворачивается 14 миллиардов лет, прошедших с момента Большого взрыва. Казалось бы, рассказывать больше не о чем. Но это не так. Дело в том, что видимое нами вещество — лишь малая часть того, из чего состоит наш мир. Все остальное — нечто, о чем мы почти ничего не знаем. Это загадочное «нечто» получило название темной материи.

Если бы тени предметов зависели не от величины сих последних,
а имели бы свой произвольный рост, то, может быть,
вскоре не осталось бы на всем земном шаре ни одного светлого места.

Козьма Прутков

Что будет с нашим миром?

После открытия в 1929 году Эдвардом Хабблом красного смещения в спектрах удаленных галактик стало ясно, что Вселенная расширяется. Одним из вопросов, возникших в этой связи, был следующий: как долго будет продолжаться расширение и чем оно закончится? Силы гравитационного притяжения, действующие между отдельными частями Вселенной, стремятся затормозить разбегание этих частей. К чему торможение приведет — зависит от суммарной массы Вселенной. Если она достаточно велика, силы тяготения постепенно остановят расширение и оно сменится сжатием. В результате Вселенная в конце концов опять «схлопнется» в точку, из которой когда-то начала расширяться. Если же масса меньше некоторой критической массы, то расширение будет продолжаться вечно. Обычно принято говорить не о массе, а о плотности, которая связана с массой простым соотношением, известным из школьного курса: плотность есть масса, деленная на объем.

Расчетное значение критической средней плотности Вселенной примерно 10 -29 граммов на кубический сантиметр, что соответствует в среднем пяти нуклонам на кубический метр. Следует подчеркнуть, что речь идет именно о средней плотности. Характерная концентрация нуклонов в воде, земле и в нас с вами составляет около 10 30 на кубический метр. Однако в пустоте, разделяющей скопления галактик и занимающей львиную долю объема Вселенной, плотность на десятки порядков ниже. Значение концентрации нуклонов, усредненное по всему объему Вселенной, десятки и сотни раз измеряли, тщательно подсчитывая разными методами количества звезд и газопылевых облаков. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности Вселенной едва дотягивает до нескольких процентов от критической.

Поэтому вплоть до 70-х годов XX столетия общепринятым был прогноз о вечном расширении нашего мира, которое неизбежно должно привести к так называемой тепловой смерти. Тепловая смерть — это такое состояние системы, когда вещество в ней распределено равномерно и разные ее части имеют одну и ту же температуру. Как следствие, невозможна ни передача энергии от одной части системы к другой, ни перераспределение вещества. В такой системе ничего не происходит и никогда уже не сможет произойти. Наглядной аналогией служит вода, разлитая по какой-либо поверхности. Если поверхность неровная и есть хотя бы небольшие перепады высот, вода перемещается по ней с более высоких мест на более низкие и в конце концов собирается в низинах, образуя лужи. Движение прекращается. Оставалось утешаться только тем, что тепловая смерть наступит через десятки и сотни миллиардов лет. Следовательно, еще очень-очень долго об этой мрачной перспективе можно не задумываться.

Однако постепенно стало ясно, что истинная масса Вселенной намного больше видимой массы, заключенной в звездах и газопылевых облаках и, скорее всего, близка к критической. А возможно, в точности равна ей.

Свидетельства существования темной материи

Первое указание на то, что с подсчетом массы Вселенной что-то не так, появилось в середине 30-х годов XX века. Швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления Волосы Вероники (а это одно из самых больших известных нам скоплений, оно включает в себя тысячи галактик) движутся вокруг общего центра. Результат получился обескураживающим: скорости галактик оказались гораздо больше, чем можно было ожидать, исходя из наблюдаемой суммарной массы скопления. Это означало, что истинная масса скопления Волосы Вероники гораздо больше видимой. Но основное количество материи, присутствующей в этой области Вселенной, остается по каким-то причинам невидимой и недоступной для прямых наблюдений, проявляя себя только гравитационно, то есть только как масса.

О наличии скрытой массы в скоплениях галактик свидетельствуют также эксперименты по так называемому гравитационному линзированию. Объяснение этого явления следует из теории относительности. В соответствии с ней, любая масса деформирует пространство и подобно линзе искажает прямолинейный ход лучей света. Искажение, которое вызывает скопление галактик, столь велико, что его легко заметить. В частности, по искажению изображения галактики, которая лежит за скоплением, можно рассчитать распределение вещества в скоплении-линзе и измерить тем самым его полную массу. И оказывается, что она всегда во много раз больше, нежели вклад видимого вещества скопления.

Через 40 лет после работ Цвикки, в 70-е годы, американский астроном Вера Рубин изучала скорости вращения вокруг галактического центра вещества, расположенного на периферии галактик. В соответствии с законами Кеплера (а они напрямую следуют из закона всемирного тяготения), при движении от центра галактики к ее периферии скорость вращения галактических объектов должна убывать обратно пропорционально квадратному корню из расстояния до центра. Измерения же показали, что для многих галактик эта скорость остается почти постоянной на весьма значительном удалении от центра. Эти результаты можно истолковать только одним способом: плотность вещества в таких галактиках не убывает при движении от центра, а остается почти неизменной. Поскольку плотность видимого вещества (содержащегося в звездах и межзвездном газе) быстро падает к периферии галактики, недостающую плотность должно обеспечивать нечто, чего мы по каким-то причинам увидеть не можем. Для количественного объяснения наблюдаемых зависимостей скорости вращения от расстояния до центра галактик требуется, чтобы этого невидимого «чего-то» было примерно в 10 раз больше, чем обычного видимого вещества. Это «нечто» получило название «темная материя» (по-английски «dark matter ») и до сих пор остается самой интригующей загадкой в астрофизике.

Еще одно важное свидетельство присутствия темной материи в нашем мире приходит из расчетов, моделирующих процесс формирования галактик, который начался примерно через 300 тысяч лет после начала Большого взрыва. Эти расчеты показывают, что силы гравитационного притяжения, которые действовали между разлетающимися осколками возникшей при взрыве материи, не могли скомпенсировать кинетической энергии разлета. Вещество просто не должно было собраться в галактики, которые мы тем не менее наблюдаем в современную эпоху. Эта проблема получила название галактического парадокса, и долгое время ее считали серьезным аргументом против теории Большого взрыва. Однако если предположить, что частицы обычного вещества в ранней Вселенной были перемешаны с частицами невидимой темной материи, то в расчетах всё становится на свои места и концы начинают сходиться с концами — формирование галактик из звезд, а затем скоплений из галактик становится возможным. При этом, как показывают вычисления, сначала в галактики скучивалось огромное количество частиц темной материи и только потом, за счет сил тяготения, на них собирались элементы обычного вещества, общая масса которого составляла лишь несколько процентов от полной массы Вселенной. Получается, что знакомый и, казалось бы, изученный до деталей видимый мир, который мы совсем недавно считали почти понятым, — только небольшая добавка к чему-то, из чего в действительности состоит Вселенная. Планеты, звезды, галактики да и мы с вами — всего лишь ширма для громадного «нечто», о котором мы не имеем ни малейшего представления.

Фотофакт

Скопление галактик (в левой нижней части участка, обведенного кружком) создает гравитационную линзу. Она искажает форму расположенных за линзой объектов — вытягивая их изображения в одном направлении. По величине и направлению вытягивания международная группа астрономов из Южной Европейской обсерватории, возглавляемая учеными из парижского Института астрофизики, построила распределение масс, которое и показано на нижнем изображении. Как видно, в скоплении сосредоточено гораздо больше массы, нежели удается разглядеть в телескоп.

Охота на темные массивные объекты — дело небыстрое, и на фотографии результат выглядит не самым эффектным образом. В 1995 году телескоп «Хаббл» заметил, что одна из звездочек Большого Магелланова облака вспыхнула ярче. Это свечение продолжалось три с лишним месяца, но потом звезда вернулась к своему естественному состоянию. А шесть лет спустя рядом со звездой появился какой-то едва светящийся объект. Это и был холодный карлик, который, проходя на расстоянии 600 световых лет от звезды, создал гравитационную линзу, усиливающую свет. Расчеты показали, что масса этого карлика составляет всего 5-10% от массы Солнца.

Наконец, общая теория относительности однозначно связывает темп расширения Вселенной со средней плотностью вещества, заключенного в ней. В предположении о том, что средняя кривизна пространства равна нулю, то есть в нем действует геометрия Эвклида, а не Лобачевского (что надежно проверено, например, в экспериментах с реликтовым излучением), эта плотность должна быть равна 10 -29 граммам на кубический сантиметр. Плотность же видимого вещества примерно в 20 раз меньше. Недостающие 95% от массы Вселенной и есть темная материя. Обратите внимание, что измеренное из скорости расширения Вселенной значение плотности равно критическому. Два значения, независимо вычисленные совершенно разными способами, совпали! Если в действительности плотность Вселенной в точности равна критической, это не может быть случайным совпадением, а представляет собой следствие какого-то фундаментального свойства нашего мира, которое еще предстоит понять и осмыслить.

Что это?

Что же мы знаем сегодня о темной материи, составляющей 95% массы Вселенной? Почти ничего. Но что-то всё же знаем. Прежде всего, нет никаких сомнений в том, что темная материя существует — об этом неопровержимо свидетельствуют факты, приведенные выше. А еще нам доподлинно известно, что темная материя существует в нескольких формах. После того как к началу XXI века в результате многолетних наблюдений в экспериментах SuperKamiokande (Япония) и SNO (Канада) было установлено, что у нейтрино масса есть, стало ясно, что от 0,3% до 3% из 95% скрытой массы заключается в давно знакомых нам нейтрино — пусть масса их чрезвычайно мала, но количество во Вселенной примерно в миллиард раз превышает количество нуклонов: в каждом кубическом сантиметре содержится в среднем 300 нейтрино. Оставшиеся 92-95% состоят из двух частей — темной материи и темной энергии. Незначительную долю темной материи составляет обычное барионное вещество, построенное из нуклонов, за остаток отвечают, по-видимому, какие-то неизвестные массивные слабовзаимодействующие частицы (так называемая холодная темная материя). Баланс энергий в современной Вселенной представлен в таблице, а рассказ о ее трех последних графах — ниже.

Барионная темная материя

Небольшая (4-5%) часть темной материи — это обычное вещество, которое не испускает или почти не испускает собственного излучения и поэтому невидимо. Существование нескольких классов таких объектов можно считать экспериментально подтвержденным. Сложнейшие эксперименты, основанные всё на том же гравитационном линзировании, привели к открытию так называемых массивных компактных галообъектов, то есть расположенных на периферии галактических дисков. Для этого потребовалось следить за миллионами удаленных галактик в течение нескольких лет. Когда темное массивное тело проходит между наблюдателем и далекой галактикой, ее яркость на короткое время уменьшается (или увеличивается, поскольку темное тело выступает в роли гравитационной линзы). В результате кропотливых поисков такие события были выявлены. Природа массивных компактных галообъектов ясна не до конца. Скорее всего, это либо остывшие звезды (коричневые карлики), либо планетоподобные объекты, не связанные со звездами и путешествующие по галактике сами по себе. Еще один представитель барионной темной материи — недавно обнаруженный в галактических скоплениях методами рентгеновской астрономии горячий газ, который не светится в видимом диапазоне.

Небарионная темная материя

В качестве главных кандидатов на небарионную темную материю выступают так называемые WIMP (сокращение от английского Weakly Interactive Massive Particles — слабовзаимодействующие массивные частицы). Особенность WIMP состоит в том, что они почти никак не проявляют себя во взаимодействии с обычным веществом. Именно поэтому они и есть самая настоящая невидимая темная материя, и именно поэтому их чрезвычайно сложно обнаружить. Масса WIMP должна быть как минимум в десятки раз больше массы протона. Поиски WIMP ведутся во многих экспериментах в течение последних 20-30 лет, но, несмотря на все усилия, они до сих пор обнаружены не были.

Одна из идей состоит в том, что если такие частицы существуют, то Земля в своем движении вместе с Солнцем по орбите вокруг центра Галактики должна лететь сквозь дождь, состоящий из WIMP. Несмотря на то что WIMP представляет собой чрезвычайно слабо взаимодействующую частицу, какая-то очень малая вероятность провзаимодействовать с обычным атомом у нее всё же есть. При этом в специальных установках — очень сложных и дорогостоящих — может быть зарегистрирован сигнал. Количество таких сигналов должно меняться в течение года, поскольку, двигаясь по орбите вокруг Солнца, Земля меняет свою скорость и направление движения относительно ветра, состоящего из WIMP. Экспериментальная группа DAMA, работающая в итальянской подземной лаборатории Гран-Сассо, сообщает о наблюдаемых годичных вариациях скорости счета сигналов. Однако другие группы пока не подтверждают этих результатов, и вопрос, по существу, остается открытым.

Другой метод поиска WIMP основан на предположении о том, что в течение миллиардов лет своего существования различные астрономические объекты (Земля, Солнце, центр нашей Галактики) должны захватывать WIMP, которые накапливаются в центре этих объектов, и, аннигилируя друг с другом, рождать поток нейтрино. Попытки детектирования избыточного нейтринного потока из центра Земли в направлении к Солнцу и к центру Галактики были предприняты на подземных и подводных нейтринных детекторах MACRO, LVD (лаборатория Гран-Сассо), NT-200 (озеро Байкал, Россия), SuperKamiokande, AMANDA (станция Скотт-Амундсен, Южный полюс), но пока не привели к положительному результату.

Эксперименты по поиску WIMP активно проводят также на ускорителях элементарных частиц. В соответствии со знаменитым уравнением Эйнштейна Е=mс 2 , энергия эквивалентна массе. Следовательно, ускорив частицу (например, протон) до очень высокой энергии и столкнув ее с другой частицей, можно ожидать рождения пар других частиц и античастиц (в том числе WIMP), суммарная масса которых равна суммарной энергии сталкивающихся частиц. Но и ускорительные эксперименты пока не привели к положительному результату.

Темная энергия

В начале прошлого века Альберт Эйнштейн, желая обеспечить космологической модели в общей теории относительности независимость от времени, ввел в уравнения теории так называемую космологическую постоянную, которую обозначил греческой буквой «лямбда» — Λ. Эта Λ была чисто формальной константой, в которой сам Эйнштейн не видел никакого физического смысла. После того как было открыто расширение Вселенной, надобность в ней отпала. Эйнштейн очень жалел о своей поспешности и называл космологическую постоянную Λ своей самой большой научной ошибкой. Однако спустя десятилетия выяснилось, что постоянная Хаббла, которая определяет темп расширения Вселенной, меняется со временем, причем ее зависимость от времени можно объяснить, подбирая величину той самой «ошибочной» эйнштейновской постоянной Λ, которая вносит вклад в скрытую плотность Вселенной. Эту часть скрытой массы и стали называть «темная энергия».

О темной энергии можно сказать еще меньше, чем о темной материи. Во-первых, она равномерно распределена по Вселенной, в отличие от обычного вещества и других форм темной материи. В галактиках и скоплениях галактик ее столько же, сколько вне их. Во-вторых, она обладает несколькими весьма странными свойствами, понять которые можно, лишь анализируя уравнения теории относительности и интерпретируя их решения. Например, темная энергия испытывает антигравитацию: за счет ее присутствия темп расширения Вселенной растет. Темная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках. А еще темная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению.

Главный кандидат на роль темной энергии — вакуум. Плотность энергии вакуума не изменяется при расширении Вселенной, что и соответствует отрицательному давлению. Еще один кандидат — гипотетическое сверхслабое поле, получившее название квинтэссенция. Надежды на прояснение природы темной энергии связывают прежде всего с новыми астрономическими наблюдениями. Продвижение в этом направлении, несомненно, принесет человечеству радикально новые знания, поскольку в любом случае темная энергия должна представлять собой совершенно необычную субстанцию, абсолютно непохожую на то, с чем имела дело физика до сих пор.

Итак, наш мир на 95% состоит из чего-то, о чем мы почти ничего не знаем. Можно по-разному относиться к такому не подлежащему никакому сомнению факту. Он может вызывать тревогу, которая всегда сопутствует встрече с чем-то неизвестным. Или огорчение, оттого что такой долгий и сложный путь построения физической теории, описывающей свойства нашего мира, привел к констатации: большая часть Вселенной скрыта от нас и неизвестна нам.

Но большинство физиков сейчас испытывают воодушевление. Опыт показывает, что все загадки, которые ставила перед человечеством природа, рано или поздно разрешались. Несомненно, разрешится и загадка темной материи. И это наверняка принесет совершенно новые знания и понятия, о которых мы пока не имеем никакого представления. И возможно, мы встретимся с новыми загадками, которые, в свою очередь, также будут разгаданы. Но это будет совсем другая история, которую читатели «Химии и жизни» смогут прочесть не раньше, чем через несколько лет. А может быть, и через несколько десятилетий.

Теоретическая конструкция в физике, называемая Стандартной моделью, описывает взаимодействия всех известных науке элементарных частиц. Но это всего 5% существующего во Вселенной вещества, остальные же 95% имеют совершенно неизвестную природу. Что представляет из себя эта гипотетическая темная материя и как ученые пытаются ее обнаружить? Об этом в рамках спецпроекта рассказывает Айк Акопян, студент МФТИ и сотрудник кафедры физики и астрофизики.

Стандартная модель элементарных частиц, окончательно подтвержденная после обнаружения бозона Хиггса, описывает фундаментальные взаимодействия (электрослабое и сильное) известных нам обычных частиц: лептонов, кварков и переносчиков взаимодействия (бозонов и глюонов). Однако оказывается, что вся эта огромная сложная теория описывает лишь около 5–6% всей материи, тогда как остальная часть в эту модель никак не вписывается. Наблюдения самых ранних моментов жизни нашей Вселенной показывают нам, что примерно 95% материи, которая окружает нас, имеет совершенно неизвестную природу. Иными словами, мы косвенно видим присутствие этой скрытой материи из-за ее гравитационного влияния, однако напрямую поймать ее пока не удавалось. Это явление скрытой массы получило кодовое название «темная материя».

Современная наука, особенно космология, работает по дедуктивному методу Шерлока Холмса

Сейчас основным кандидатом из группы WISP является аксион, возникающий в теории сильного взаимодействия и имеющий очень малую массу. Такая частица способна в больших магнитных полях превращаться в фотон-фотонную пару, что дает намеки на то, как можно попробовать ее обнаружить. В эксперименте ADMX используют большие камеры, где создается магнитное поле в 80000 гаусс (это в 100000 раз больше магнитного поля Земли). Такое поле в теории должно стимулировать распад аксиона на фотон-фотонную пару, которую и должны поймать детекторы. Несмотря на многочисленные попытки, пока обнаружить WIMP, аксионы или стерильные нейтрино не удалось.

Таким образом, мы пропутешествовали через огромное количество различных гипотез, стремящихся объяснить странное наличие скрытой массы, и, откинув с помощью наблюдений все невозможное, пришли к нескольким возможным гипотезам, с которыми уже можно работать.

Отрицательный результат в науке - это тоже результат, так как он дает ограничение на различные параметры частиц, например отсеивает диапазон возможных масс. Из года в год все новые и новые наблюдения и эксперименты в ускорителях дают новые, более строгие ограничения на массу и другие параметры частиц темной материи. Таким образом, выкидывая все невозможные варианты и сужая круг поисков, мы день ото дня становимся все ближе к понимаю, из чего же все-таки состоит 95% материи в нашей Вселенной.

МОСКВА, 12 дек - РИА Новости. Количество темной материи во Вселенной уменьшилось примерно на 2-5%, что может объяснять расхождения в значении некоторых важных космологических параметров во времена Большого Взрыва и сегодня, заявляют российские космологи в статье, опубликованной в журнале Physical Review D.

"Представим, что темная материя состоит из нескольких компонент, как и обычная. И одна компонента состоит из нестабильных частиц, чье время жизни довольно большое: в эпоху образования водорода, через сотни тысяч лет после Большого взрыва, они еще есть во Вселенной, а сегодня они уже исчезли, распавшись в нейтрино или гипотетические релятивистские частицы. Тогда количество темной материи в прошлом и сегодня будет разным", — заявил Дмитрий Горбунов из Московского Физтеха, чьи слова приводит пресс-служба вуза.

Темная материя — гипотетическое вещество, которое проявляет себя исключительно через гравитационное взаимодействие с галактиками, внося искажения в их движение. Частицы темной материи не взаимодействуют с какими-либо видами электромагнитного излучения, а потому не могут быть зафиксированы во время непосредственных наблюдений. На долю темной материи приходится около 26% массы Вселенной, в то время как "обычная" материя составляет лишь около 4,8% от ее массы — все остальное приходится на не менее загадочную темную энергию.

"Хаббл" помог ученым раскрыть неожиданно быстрое расширение Вселенной Оказалось,что Вселенная расширяется сейчас еще быстрее, чем показывали расчеты, построенные на наблюдениях за "эхом" Большого Взрыва. Это указывает на существование третьей загадочной "темной" субстанции - темного излучения или на неполноту теории относительности.

Наблюдения за распределением темной материи по ближайшим и далеким от нас уголкам мироздания, проведенные при помощи наземных телескопов и зонда "Планк", недавно раскрыли странную вещь - оказалось, что скорость расширения Вселенной, и некоторые свойства "эха" Большого взрыва в далеком прошлом и сегодня заметно отличаются. К примеру, сегодня галактики разлетаются в стороны друг от друга заметно быстрее, чем это следует из результатов анализа реликтового излучения.

Горбунов и его коллеги нашли возможную причину этого.

Год назад один из авторов статьи, академик Игорь Ткачев из Института ядерной физики РАН в Москве, сформулировал теорию так называемой распадающейся темной материи (DDM), в которой, в отличие от общепринятой теории "холодной темной материи" (CDM), часть или все ее частицы являются нестабильными. Эти частицы, как предположили Ткачев и его соратники, должны распадаться достаточно редко, но в заметном количестве для того, чтобы породить отклонения между юной и современной Вселенной.

В своей новой работе Ткачев, Горбунов и их коллега Антон Чудайкин попытались вычислить, как много темной материи должно было распасться, используя данные, собранные "Планком" и другими обсерваториями, изучавшими реликтовое излучение и первые галактики Вселенной.

Как показали их расчеты, распад темной материи действительно может объяснять то, почему результаты наблюдений за этой субстанцией при помощи "Планка" не соответствуют данным наблюдений за ближайшими к нам скоплениями галактик.

Что интересно, для этого требуется распад относительно небольшого количества темной материи - от 2,5 до 5% от ее общей массы, чье количество почти не зависит от того, какими фундаментальными свойствами должна обладать Вселенная. Сейчас, как объясняют ученые, вся эта материя распалась, и остальная темная материя, стабильная по своей природе, ведет себя так, как описывает теория CDM. С другой стороны, возможно и то, что она продолжает распадаться.

"Это означает, что в сегодняшней Вселенной на 5% меньше тёмной материи, чем было в эпоху формирования первых молекул водорода и гелия после рождения Вселенной. Мы сейчас не можем сказать, как быстро распалась эта нестабильная часть, возможно, что темная материя продолжает распадаться и сейчас, хотя это уже другая значительно более сложная модель", — заключает Ткачев.

Известно, что тёмное вещество взаимодействует со «светящимся» (барионным), по крайней мере, гравитационным образом и представляет собой среду со средней космологической плотностью, в несколько раз превышающей плотность барионов. Последние захватываются в гравитационные ямы концентраций тёмной материи. Поэтому, хотя частицы тёмной материи и не взаимодействуют со светом, свет испускается оттуда, где есть тёмное вещество. Это замечательное свойство гравитационной неустойчивости сделало возможным изучение количества, состояния и распределения тёмной материи по наблюдательным данным от радиодиапазона до рентгеновского излучения.

Непосредственное изучение распределения тёмной материи в скоплениях галактик стало возможным после получения их высокодетализированных изображений в 1990-х годах. При этом изображения более удалённых галактик, проецирующихся на скопление, оказываются искажёнными или даже расщепляются из-за эффекта гравитационного линзирования . По характеру этих искажений становится возможным восстановить распределение и величину массы внутри скопления независимо от наблюдений галактик самого скопления. Таким образом, прямым методом подтверждается наличие скрытой массы и тёмной материи в галактических скоплениях.

Опубликованное в 2012 году исследование движения более 400 звёзд, расположенных на расстояниях до 13 000 световых лет от Солнца, не нашло свидетельств присутствия тёмной материи в большом объёме пространства вокруг Солнца. Согласно предсказаниям теорий, среднее количество тёмной материи в окрестности Солнца должно было составить примерно 0,5 кг в объёме земного шара. Однако измерения дали значение 0,00±0,06 кг тёмной материи в этом объёме. Это означает, что попытки зарегистрировать тёмную материю на Земле, например, при редких взаимодействиях частиц темной материи с «обычной» материей, вряд ли могут быть успешными .

Кандидаты на роль темной материи

Барионная тёмная материя

Наиболее естественным кажется предположение, что тёмная материя состоит из обычного, барионного вещества, по каким-либо причинам слабо взаимодействующего электромагнитным образом и потому необнаружимого при исследовании, к примеру, линий излучения и поглощения. В состав тёмного вещества могут входить многие уже обнаруженные космические объекты, как то: тёмные галактические гало , коричневые карлики и массивные планеты, компактные объекты на конечных стадиях эволюции: белые карлики , нейтронные звёзды , чёрные дыры . Кроме того, такие гипотетические объекты, как кварковые звёзды , Q-звёзды и преонные звёзды также могут являться частью барионной тёмной материи.

Проблемы такого подхода проявляются в космологии Большого взрыва : если вся тёмная материя представлена барионами, то соотношение концентраций лёгких элементов после первичного нуклеосинтеза , наблюдаемое в самых старых астрономических объектах, должно быть другим, резко отличающимся от наблюдаемого. Кроме того, эксперименты по поиску гравитационного линзирования света звёзд нашей Галактики показывают, что достаточной концентрации крупных гравитирующих объектов типа планет или чёрных дыр для объяснения массы гало нашей Галактики не наблюдается, а мелкие объекты достаточной концентрации должны слишком сильно поглощать свет звёзд .

Небарионная тёмная материя

Теоретические модели предоставляют большой выбор возможных кандидатов на роль небарионной невидимой материи. Перечислим некоторые из них.

Лёгкие нейтрино

В отличие от остальных кандидатов, нейтрино обладают явным преимуществом: известно, что они существуют. Поскольку число нейтрино во Вселенной сравнимо с числом фотонов, то, обладая даже малой массой, нейтрино вполне могут определять динамику Вселенной. Для достижения , где - так называемая критическая плотность , необходимы нейтринные массы порядка эВ, где обозначает число типов легких нейтрино. Эксперименты, проводимые на сегодняшний день, дают оценку масс нейтрино порядка эВ. Таким образом, лёгкие нейтрино практически исключаются в качестве кандидата на доминирующую фракцию тёмной материи.

Тяжёлые нейтрино

Из данных о ширине распада Z-бозона следует, что число поколений слабо взаимодействующих частиц (в том числе нейтрино) равно 3. Таким образом, тяжёлые нейтрино (по крайней мере, с массой менее 45 ГэВ) с необходимостью являются т. н. «стерильными», то есть не взаимодействующими слабым образом частицами. Теоретические модели предсказывают массу в очень широком диапазоне значений (в зависимости от природы этого нейтрино). Из феноменологии для следует диапазон масс приблизительно эВ, таким образом, стерильные нейтрино вполне могут составлять существенную часть тёмной материи.

Суперсимметричные частицы

В рамках суперсимметричных (SUSY) теорий существует по меньшей мере одна стабильная частица, которая является новым кандидатом на роль тёмной материи. Предполагается, что эта частица (LSP) не принимает участия в электромагнитном и сильном взаимодействиях. В качестве LSP-частицы могут выступать фотино , гравитино , хиггсино (суперпартнеры фотона , гравитона и бозона Хиггса соответственно), а также снейтрино, вино , и зино . В большинстве теорий LSP-частица представляет собой комбинацию перечисленных выше SUSY-частиц с массой порядка 10 ГэВ.

Космионы

Космионы были введены в физику для разрешения проблемы солнечных нейтрино, состоящей в существенном отличии потока нейтрино, детектируемых на Земле, от значения, предсказываемого стандартной моделью Солнца. Однако эта проблема нашла разрешение в рамках теории нейтринных осцилляций и эффекта Михеева - Смирнова - Вольфенштейна, так что космионы, по всей видимости, исключаются из претендентов на роль тёмной материи.

Топологические дефекты пространства-времени

Согласно современным космологическим представлениям энергия вакуума определяется неким локально однородным и изотропным скалярным полем. Это поле необходимо для описания так называемых фазовых переходов вакуума при расширении Вселенной, во время которых происходило последовательное нарушение симметрии, приводящее к разъединению фундаментальных взаимодействий. Фазовый переход - это скачок энергии вакуумного поля, стремящегося к своему основному состоянию (состоянию с минимальной энергией при данной температуре). Различные области пространства могли испытывать такой переход независимо, в результате чего образовывались области с определенной «выстроенностью» скалярного поля, которые, расширяясь, могли войти в соприкосновение друг с другом. В точках встречи областей с различной ориентацией могли образоваться стабильные топологические дефекты различной конфигурации: точечно-подобные частицы (в частности, магнитные монополи), линейные протяжённые объекты (космические струны), двумерные мембраны (доменные стенки), трехмерные дефекты (текстуры). Все эти объекты обладают, как правило, колоссальной массой и могли бы давать доминирующий вклад в тёмную материю. На текущий момент (2012 год) подобные объекты во Вселенной не обнаружены.

Классификация тёмной материи

В зависимости от скоростей частиц, из которых, предположительно, состоит тёмная материя, её можно разделить на несколько классов.

Горячая тёмная материя

Состоит из частиц, движущихся со скоростью, близкой к световой - вероятно, из нейтрино . Эти частицы имеют очень маленькую массу, но всё же не нулевую, и учитывая огромное количество нейтрино во Вселенной (300 частиц на 1 см³), это даёт огромную массу. В некоторых моделях на нейтрино приходится 10 % тёмной материи.

Эта материя из-за своей огромной скорости не может образовывать стабильные структуры, но может влиять на обычное вещество и другие виды тёмной материи.

Тёплая тёмная материя

Материю, движущуюся с релятивистскими скоростями, но ниже, чем у горячей тёмной материи, называют «тёплой». Скорости её частиц могут лежать в пределах от 0,1c до 0,95c. Некоторые данные, в частности, температурные колебания фонового микроволнового излучения, дают основания полагать, что такая форма материи может существовать.

Пока нет никаких кандидатов на роль составляющих тёплой тёмной материи, но возможно, стерильные нейтрино , которые должны двигаться медленнее обычных трёх ароматов нейтрино, могут стать одним из них.

Холодная тёмная материя

Тёмную материю, которая движется при классических скоростях , называют «холодной». Этот вид материи представляет наибольший интерес, так как, в отличие от тёплой и горячей тёмной материи, холодная может образовывать стабильные формирования, и даже целые тёмные галактики .

Пока частицы, подходящие на роль составных частей холодной тёмной материи, не обнаружены. В качестве кандидатов на роль холодной тёмной материи выступают слабо взаимодействующие массивные частицы - вимпы , такие как аксионы и суперсимметричные партнёры-фермионы лёгких бозонов - фотино , гравитино и другие.

Смешанная тёмная материя

В массовой культуре

  • В серии игр Mass Effect тёмная материя и тёмная энергия в форме так называемого «Нулевого элемента» необходимы для движения со сверхсветовыми скоростями. Некоторые люди, биотики, используя тёмную энергию, могут контролировать поля эффекта массы.
  • В мультсериале «Футурама » тёмная материя используется в качестве топлива для космического корабля компании «Межпланетный экспресс». Появляется материя на свет в виде испражнений инопланетной расы «зубастильонцы» и по плотности крайне велика.

См. также

Примечания

Литература

  • Сайт Modern Cosmology , содержащий в том числе подборку материалов по тёмной материи.
  • Г.В.Клапдор-Клайнгротхаус, А.Штаудт Неускорительная физика элементарных частиц. М.: Наука, Физматлит, 1997.

Ссылки

  • С. М. Биленький, Массы, смешивание и осцилляции нейтрино , УФН 173 1171-1186 (2003)
  • В. Н. Лукаш, Е. В. Михеева, Темная материя: от начальных условий до образования структуры Вселенной , УФН 177 1023-1028 (2007)
  • Д.И. Казаков "Темная материя" , из цикла лекций в проекте «ПостНаука» (видео)
  • Анатолий Черепащук. "Новые формы материи во Вселенной, ч. 1" - Тёмная масса и тёмная энергия , из цикла лекций «ACADEMIA» (видео)

Wikimedia Foundation . 2010 .

Смотреть что такое "Тёмная материя" в других словарях:

    ТЁМНАЯ МАТЕРИЯ - (ТМ) необычная материя нашей Вселенной, состоящая не из (см.), т. е. не из протонов, нейтронов, мезонов и др., и обнаруженная по сильнейшему гравитационному воздействию на космические объекты обычной барионной природы (звезды, галактики, чёрные… …

    Тёмная материя The Outer Limits: Dark Matters Жанр фантастика … Википедия

    У этого термина существуют и другие значения, см. Тёмная звезда. Тёмная звезда (англ. Dark star) это теоретически предсказанный тип звёзд, которые могли существовать на раннем этапе формирования Вселенной, ещё до того как могли… … Википедия

    МАТЕРИЯ - объективная реальность, существующая вне и независимо от человеческого сознания и отображаемая им (напр. живая и неживая М.). Единство мира в его материальности. В физике М. все виды существования (см.), которое может находиться в различных… … Большая политехническая энциклопедия



© dagexpo.ru, 2024
Стоматологический сайт