Ухо и прохождение звука через него. Передача звука во внутреннем ухе в норме. Слух человека: слушаем на самом деле мозгом

28.06.2020

Доктор Говард Гликсмен

Ухо и слух

Успокаивающий звук журчащего ручейка; счастливый смех смеющегося ребенка; нарастающий звук отряда марширующих солдат. Все эти и другие звуки каждый день наполняют наши жизни и являются результатом нашей способности слышать их. Но что же такое на самом деле звук и, каким образом мы можем слышать его? Читайте эту статью, и вы получите ответы на эти вопросы и более того вы поймете, какие логические выводы можно сделать относительно теории макроэволюции.

Звук! О чем речь?

Звук – это ощущение, которое мы испытываем, когда колеблющиеся молекулы окружающей среды (обычно это воздух), ударяются о нашу барабанную перепонку. При нанесении на график этих изменений в давлении воздуха, которые определяются с помощью измерения давления на барабанную перепонку (среднее ухо) по отношению ко времени, образуется форма волны. В общем, чем громче звук, тем больше энергии требуется для его образования, и тем больше диапазон изменения давления воздуха.

Громкость измеряется в децибелах , используя в качестве отправной точки пороговый уровень слуха (то есть такой уровень громкости, который иногда может лишь едва быть услышан человеческим ухом). Шкала измерения громкости логарифмическая, что означает, что любой скачок от одного абсолютного числа к следующему, при условии, что он делиться на десять (и не забывайте, что децибел – это всего лишь одна десятая часть бела), означает увеличение порядка на десять раз. Например, пороговый уровень слуха обозначен как 0, и нормальный разговор происходит приблизительно при 50 децибелах, итак разница громкости составляет 10, возведенная до степени 50, и разделенная на 10, что равно 10 в пятой степени, или сто тысяч раз громкости порогового уровня слуха. Или возьмем, к примеру, звук, который вызывает у вас сильное ощущение боли в ушах и фактически может повредить ухо. Такой звук обычно происходит при амплитуде колебаний приблизительно в 140 децибел; такой звук, как например, взрыв или реактивный самолет, означает такое колебание силы звука, которое в 100 триллион раз превышает пороговый уровень слуха.

Чем меньше расстояние между волнами, то есть чем больше волн вмещается в одной секунде времени, тем больше высота или тем выше частота слышимого звука. Она обычно измеряется в циклах в секунду или герцах (Гц) . Человеческое ухо обычно способно слышать звуки, частота которых колеблется от 20 Гц до 20,000 Гц. Обычный человеческий разговор включает звуки из частотного диапазона от 120 Гц для мужчин, до около 250 Гц для женщин. Нота ‘до’ средней громкости, взятая на пианино, имеет частоту 256 Гц, а нота ‘ля’, взятая на гобое для оркестра, имеет частоту 440 Гц. Человеческое ухо наиболее чувствительно к звукам, которые имеют частоту между 1,000- 3,000 Гц.

Концерт в трех частях

Ухо состоит из трех основных отделов, которые называются внешнее, среднее и внутреннее ухо. Каждый из названных отделов выполняет свою уникальную функцию и является необходимым для того, чтобы мы могли слышать звуки.

Рисунок 2.

  1. Наружная часть уха или ушная раковина внешнего уха действует, как ваша собственная антенна спутниковой связи, которая собирает и направляет звуковые волны в наружный слуховой проход (входящий в слуховой канал). Отсюда звуковые волны проходят дальше по каналу и достигают среднего уха, или барабанной перепонки, которая путем втягивания и выталкивания в ответ на эти изменения в давлении воздуха образует маршрут колебания источника звука.
  2. Три косточки (слуховые косточки) среднего уха, называются молоточек , который непосредственно соединен с барабанной перепонкой, наковальня и стремя , которое соединено с овальным окном улитки внутреннего уха. Вместе эти косточки участвуют в передаче этих колебаний во внутренне ухо. Среднее ухо заполнено воздухом. С помощью евстахиевой трубы , которая находится сразу за носом, и открывается во время глотания, чтобы пропустить наружный воздух внутрь камеры среднего уха, оно способно поддерживать одинаковое давление воздуха с обеих сторон барабанной перепонки. Также, ухо имеет две скелетные мышцы: мышцы, напрягающие барабанную перепонку и стременные мышцы, которые предохраняют ухо от сильно громких звуков.
  3. Во внутреннем ухе, которое состоит из улитки, эти передаваемые колебания проходят через овальное окно , что ведет к образованию волны во внутренних структурах улитки. Внутри улитки расположен Кортиев орган , который является основным органом уха, который способен преобразовывать эти колебания жидкости в нервный сигнал, который затем передается в мозг, где он и обрабатывается.

Итак, это общий обзор. А теперь давайте более подробно рассмотрим каждый из этих отделов.

Что вы говорите?

Очевидно, что механизм слуха начинается во внешнем ухе. Если бы в нашем черепе не было отверстия, которое позволяет звуковым волнам проходить далее к барабанной перепонке, мы бы не имели возможности говорить друг с другом. Может некоторые и хотели бы, чтобы это было именно так! Каким образом это отверстие в черепе, которое называется наружный слуховой проход, могло появиться в результате беспорядочной генетической мутации или случайного изменения? Этот вопрос остается без ответа.

Выявлено, что наружное ухо, или с вашего позволения ушная раковина, является важным отделом локализации звука. Лежащая в основе ткань, которая выстилает поверхность наружного уха и делает её такой эластичной, называется хрящевой и очень похожа на те хрящи, которые обнаруживаются в большинстве связок нашего организма. Если кто-то поддерживает макроэволюционную модель развития слуха, то для того, чтобы объяснить, каким образом клетки, которые способны образовывать хрящи приобрели эту способность, не говоря уже о том, как они после всего этого к несчастью для многих молодых девушек вытянулись из каждой стороны головы, требуется нечто вроде удовлетворительного объяснения.

Те из вас, у кого когда-нибудь была в ухе серная пробка могут оценить тот факт, что, несмотря на то, что они не знают какую пользу приносит эта ушная сера для ушного канала, они конечно рады, что это природное вещество не имеет консистенцию цемента. Более того, те, кто должны общаться с этими несчастными людьми ценят то, что имеют способность повышать громкость своего голоса для того, чтобы производить достаточную энергию звуковой волны, которая должна быть услышана.

Восковидный продукт, обычно называемая ушной серой , представляет собой смесь секретов из различных желез, и содержится во внешнем ушном канале и состоит из материала, в состав которого входят клетки, которые постоянно слущиваются. Этот материал простирается вдоль поверхности слухового канала и образует вещество белого, желтого или коричневого цвета. Ушная сера служит для смазывания наружного слухового прохода и в то же самое время защищает барабанную перепонку от пыли, грязи, насекомых, бактерий, грибков, и всего того, что может попасть в ухо из внешней среды.

Это очень интересно, что ухо имеет свой собственный механизм очищения. Клетки, которые выстилают наружный слуховой канал, расположены ближе к центру барабанной перепонки, далее простираются к стенкам слухового канала и выходят за пределы наружного слухового прохода. На всем пути своего расположения эти клетки покрыты ушным восковидным продуктом, количество которого уменьшается по мере продвижения к наружному каналу. Оказывается, движения челюсти усиливают этот процесс. В действительности вся эта схема похожа на одну большую конвейерную ленту, функцией которой является удаление ушной серы из слухового канала.

Очевидно, что для полного понимания процесса образования ушной серы, её консистенции, благодаря которой мы можем хорошо слышать, и которая одновременно выполняет достаточную защитную функцию, и того, как слуховой канал сам удаляет эту ушную серу, чтобы предотвратить потерю слуха, требуется некое логическое объяснение. Как могли простые постепенные эволюционные новообразования, появившиеся в результате генетической мутации или случайного изменения, быть причиной всех этих факторов и, несмотря на это обеспечить правильное функционирование этой системы на протяжении всего её существования?

Барабанная перепонка состоит из особой ткани, консистенция, форма, крепления, и точное расположение которой позволяют ей находиться в точном месте и выполнять точную функцию. Необходимо учитывать все эти факторы при объяснении того, каким образом барабанная перепонка способна резонировать в ответ на входящие звуковые волны, и таким образом запускать цепную реакцию, которая приводит к колебательной волне внутри улитки. И только потому, что другие организмы имеют отчасти подобные особенности строения, которые позволяют им слышать, само по себе не объясняет того, каким образом появились все эти особенности с помощью ненаправленных природных сил. Здесь мне вспоминается одно остроумное замечание, высказанное Г. K. Честертоном, где он сказал: “Для эволюциониста было бы абсурдно жаловаться и говорить, что для общепризнанно невообразимого Бога просто невероятно сотворить ‘все’ из ‘ничего’, а затем заявить, что то, что ‘ничто’ само превратилось во ‘все’ является более вероятным”. Впрочем, я отклонился от нашей темы.

Правильные колебания

Среднее ухо служит для передачи колебаний барабанной перепонки во внутреннее ухо, где , в которой находится Кортиев орган. Также как сетчатка является “органом глаза” Кортиев орган является настоящим “органом уха”. Поэтому среднее ухо на самом деле является “посредником”, который участвует в слуховом процессе. Как часто бывает в бизнесе, посредник всегда что-то имеет и таким образом уменьшает финансовую эффективность той сделки, которая заключается. Подобным образом, передача колебания барабанной перепонки через среднее ухо приводит к незначительной потере энергии, в результате чего через ухо проводится только 60 % энергии. Однако если бы не энергия, которая распространяется на более большую по размерам барабанную перепонку, которая установлена на более маленьком овальном окне с помощью трех слуховых косточек, вместе с их специфическим уравновешивающим действием, эта передача энергии была бы намного меньше, и нам было бы намного сложнее слышать.

Вырост части молоточка, (первая слуховая косточка), который называется рукоятка , прикреплен прямо к барабанной перепонке. Сам молоточек соединяется со второй слуховой косточкой, наковальней, которая в свою очередь прикреплена к стремечку. Стремечко имеет плоскую часть , которая прикреплена к овальному окну улитки. Как мы уже сказали, уравновешивающие действия этих трех соединенных между собой косточек позволяют передавать колебание в улитку среднего уха.

Обзор двух моих предыдущих разделов, а именно “Гамлет знаком с современной медициной, части I и II”, может позволить читателю увидеть, что необходимо понять относительно самого костеобразования. То, как эти три идеально образованные и взаимосвязанные косточки разместились в точном положении, благодаря которому происходит правильная передача колебания звуковой волны, требует еще одного “такого же” объяснения макроэволюции, на которую мы должны смотреть с недоверием.

Любопытно отметить, что внутри среднего уха расположены две скелетные мышцы, мышцы, напрягающие барабанную перепонку, и стременные мышцы. Мышца, напрягающая барабанную перепонку, прикреплена к рукоятке молоточка и при сокращении она оттягивает барабанную перепонку назад в среднее ухо, таким образом, ограничивая её способность резонировать. Связка стременной мышцы прикреплена к плоской части стремечка и при сокращении она оттягивается от овального окна, таким образом, снижая колебание, которое передается через улитку.

Вместе эти две мышцы рефлексивно пытаются защитить ухо от слишком громких звуков, которые могут вызывать боль и даже повредить его. Время, за которое нервно-мышечная система успевает отреагировать на громкий звук, составляет около 150 миллисекунд, что приблизительно равно 1/6 частям секунды. Поэтому ухо не настолько защищено от внезапных громких звуков, как например звуков артиллерийского огня или взрыва, по сравнению с длительными звуками или шумным окружением.

Опыт свидетельствует о том, что иногда звуки могут причинять боль, также как и слишком яркий свет. Функциональные составляющие части для слуха, такие как барабанная перепонка, слуховые косточки и Кортиев орган, выполняют свою функцию, приходя в движение в ответ на энергию звуковой волны. Слишком сильное движение может вызвать повреждение или боль, также как если вы перенапрягаете локтевые или коленные суставы. Поэтому создается такое впечатление, что ухо имеет своего рода защиту против самоповреждения, которое может произойти при длительных громких звуках.

Обзор трех моих предыдущих разделов, а именно “Не просто для проведения звука, части I, II и III”, в которых говорится о нервно-мышечной функции на бимолекулярном и электрофизиологическим уровнях, позволит читателю лучше понять специфическую сложность механизма, который является естественной защитой от потери слуха. Осталось лишь понять, как эти идеально расположенные мышцы оказались в среднем ухе и стали выполнять ту функцию, которую они выполняют и делают это рефлексивно. Что за генетическая мутация или случайные изменения произошли однажды во времени, которые привели к такому сложному развитию внутри височной кости черепа?

Те из вас, кто бывал на борту самолета и испытывал во время посадки чувство давления на уши, которое сопровождается снижением слуха и ощущением, что вы говорите в пустоту, на самом деле убедились в значимости Евстахиевой трубы (слуховой трубки), которая расположена между средним ухом и задней частью носа.

Среднее ухо представляет собой закрытую, заполненную воздухом камеру, в которой давление воздуха на все стороны барабанной перепонки должно быть равным для того, чтобы обеспечивать достаточную подвижность, которая называется растяжимостью барабанной перепонки . Растяжимость определяет, насколько легко двигается барабанная перепонка при раздражении звуковыми волнами. Чем выше растяжимость, тем легче барабанной перепонке резонировать в ответ на звук, и соответственно чем ниже растяжимость, тем труднее она движется назад и вперед и, следовательно, порог, при котором можно услышать звук повышается, то есть звуки должны быть громче для того, чтобы их можно было услышать.

Воздух в среднем ухе обычно поглощается телом, что приводит к снижению давления воздуха в среднем ухе и уменьшению растяжимости барабанной перепонки. Это происходит в результате того, что вместо того, чтобы оставаться в правильном положении, барабанная перепонка выталкивается в среднее ухо внешним давлением воздуха, которое действует на наружный слуховой канал. Все это является результатом того, что внешнее давление выше, чем давление в среднем ухе.

Евстахиева труба соединяет среднее ухо с задней частью носа и глоткой.

Во время глотания, зевания или жевания, усилиями действия связанных мышц Евстахиева труба открывается, благодаря чему внешний воздух входит и проходит в среднее ухо и замещает тот воздух, который был поглощен телом. Таким образом, барабанная перепонка может поддерживать свою оптимальную растяжимость, что обеспечивает нам достаточный слух.

Теперь давайте вернемся к самолету. Находясь на высоте 35,000 футов, давление воздуха с обеих сторон барабанной перепонки одинаковое, хотя абсолютный объем меньше, чем таковой был бы на уровне моря. Важным здесь является не само давление воздуха, которое действует на обе стороны барабанной перепонки, а то, что независимо от того, какое давление воздуха действует на барабанную перепонку, с обеих сторон оно одинаковое. Когда самолет начинает снижаться, внешнее давление воздуха в салоне начинает подниматься и сразу же действует на барабанную перепонку через внешний слуховой канал. Единственным способом исправить это неравновесие воздушного давления через барабанную перепонку является способность открывать Евстахиеву трубу для того, чтобы впустить новую порцию внешнего давления воздуха. Обычно это происходит при жевании жевательной резинки или сосании леденца, и глотании, именно тогда происходит действие усилия на трубу.

Скорость, при которой происходит снижение самолета, и быстро меняющиеся повышения давления воздуха, заставляют некоторых людей ощущать заложенность в ушах. Кроме того, если у пассажира простуда или он недавно переболел, если у него проблемы с горлом или насморк, их Евстахиева труба может не работать во время этих изменений давления и они могут ощущать сильную боль, длительную заложенность и изредка сильное кровоизлияние в среднее ухо!

Но на этом нарушение функционирования Евстахиевой трубы не заканчивается. Если кто-либо из пассажиров страдает хроническими заболеваниями, со временем эффект вакуума в среднем ухе может вывести жидкость из капилляров, что может привести (если не обратиться к врачу) к состоянию под названием экссудативный отит . Это заболевание можно предупредить и оно лечится с помощью миринготомии и введения трубок . Отоларинголог-хирург делает маленькую дырочку в барабанной перепонке и вставляет трубочки для того, чтобы жидкость, которая находиться в среднем ухе, могла вытекать наружу. Эти трубочки заменяют Евстахиеву трубу до тех пор, пока причина возникновения такого состояния не устранится. Таким образом, эта процедура сохраняет соответствующий слух и предотвращает повреждения внутренних структур среднего уха.

Это замечательно, что современная медицина способна решить некоторые из этих проблем при нарушении функционирования Евстахиевой трубы. Но сразу же всплывает вопрос: как изначально появилась эта труба, какие части среднего уха образовались первыми, и как эти части функционировали без всех остальных необходимых частей? Размышляя об этом разве можно думать о многоэтапном развитии на основе так доселе и не известных генетических мутаций или случайного изменения?

Внимательное рассмотрение составляющих частей среднего уха и их абсолютная необходимость для осуществления достаточно слуха, так необходимого для выживания, показывает, что перед нами система, которая представляет неснижаемую сложность. Но ничего из того, что мы до сих пор рассматривали, не может дать нам способность слышать. Во всей этой головоломке есть один основной компонент, который необходимо рассмотреть, и который сам по себе является примером неснижаемой сложности. Этот замечательный механизм берет колебания из среднего уха и преобразовывает их в нервный сигнал, который поступает в мозг, где затем и обрабатывается. Этим основным компонентом является сам звук.

Система проведения звука

Нервные клетки, которые отвечают за передачу сигнала к мозгу для слуха, расположены в “Кортиевом органе”, который находится в улитке. Улитка состоит из трех, связанных между собой трубчатых канала, которые приблизительно в два с половиной раза свернуты в катушку.

(смотрите рисунок 3). Верхние и нижние каналы улитки окружены костью и называются лестница преддверия (верхний канал) и соответственно барабанная лестница (нижний канал). В обоих этих каналах находится жидкость, называемая перилимфа. Состав ионов натрия (Na+) и калия (K+) этой жидкости очень напоминает состав других внеклеточных жидкостей (вне клеток), то есть они имеют высокую концентрацию ионов Na+ и низкую концентрацию ионов K+ в отличие от внутриклеточных жидкостей (внутри клеток).


Рисунок 3.

Каналы сообщаются между собой на верхушке улитки через маленькое отверстие, называемое геликотрема.

Средний канал, который входит в мембранную ткань, называется средняя лестница и состоит из жидкости, называемой эндолимфа. Эта жидкость имеет уникальное свойство, так как является единственной внеклеточной жидкостью организма с высокой концентрацией ионов K+ и низкой концентрацией ионов Na+. Средняя лестница не связана непосредственно с другими каналами и отделена от лестницы преддверия эластичной тканью, называемой мембрана Рейснера, и от барабанной лестницы эластичной базилярной мембраной (смотрите рисунок 4).

Кортиев орган находится в подвешенном состоянии, подобно мосту над Золотыми Воротами, на базилярной мембране, которая расположена между барабанной лестницей и средней лестницей. Нервные клетки, которые участвуют для образования слуха, называемые волосковые клетки (из-за своих выростов, похожих на волоски), расположены на базилярной мембране, что позволяет нижней части клеток соприкасаться с перилимфой барабанной лестницы (смотрите рисунок 4). Волосоподобные выросты волосковых клеток, известные как стереоцилия, располагаются на верхушке волосковых клеток и таким образом соприкасаются со средней лестницей и эндолимфой, которая содержится внутри ней. Важность этой структуры будет более понятна, когда мы будем обсуждать электрофизиологический механизм, который лежит в основе раздражения слухового нерва.

Рисунок 4.

Кортиев орган состоит примерно из 20,000 таких волосковых клеток, которые размещены на базилярной мембране, покрывающей всю закрученную улитку, и имеет длину 34 мм. Более того, толщина базилярной мембраны меняется от 0.1 мм в начале (в основании) приблизительно до 0.5 мм в конце (на верхушке) улитки. Мы поймем, насколько важна эта особенность, когда будем говорить о высоте или частоте звука.

Давайте вспомним: звуковые волны входят в наружный слуховой канал, где они вызывают резонирование барабанной перепонки при амплитуде и частоте, которые свойственны самому звуку. Внутреннее и внешнее движение барабанной перепонки позволяет колебательной энергии передаваться к молоточку, который соединен с наковальней, которая в свою очередь соединена со стремечком. В идеальных обстоятельствах, давление воздуха на любой стороне барабанной перепонки одинаковое. Благодаря этому, а также способности Евстахиевой трубы пропускать внешний воздух в среднее ухо из задней части носа и горла при зевании, жевании и глотании, барабанная перепонка имеет высокую растяжимость, которая так необходима для движения. Затем колебание передается через стремечко в улитку, проходя через овальное окно. И только после этого запускается слуховой механизм.

Передача колебательной энергии в улитку приводит к образованию волны жидкости, которая должна передаваться через перилимфу в лестницу преддверия улитки. Однако, вследствие того, что лестница преддверия защищена костью и отделена от средней лестницы, не плотной стенкой, а эластичной мембраной, эта колебательная волна также передается посредством мембраны Рейснера в эндолимфу средней лестницы. В результате волна жидкости средней лестницы также заставляет эластичную базилярную мембрану волнообразно колебаться. Эти волны быстро достигают своего максимума, а затем также быстро спадают в области базилярной мембраны в прямой зависимости от частоты звука, который мы слышим. Звуки более высокой частоты вызывают больше движения в основании или более толстой части базилярной мембраны, и более низкая частота звуков вызывает больше движения на вершине или более тонкой части базилярной мембраны, в геликтореме. В результате волна входит в барабанную лестницу через геликторему и рассеивается через круглое окно.

То есть сразу видно, что если базилярная мембрана качается в “бризе” эндолимфатического движения внутри средней лестницы, то подвешенный Кортиев орган, со своими волосковыми клетками, будет прыгать как на батуте в ответ на энергию этого движения волны. Итак, для того, чтобы оценить всю сложность и понять, что же на самом деле происходит для того, чтобы возник слух, читатель должен ознакомиться с функцией нейронов. Если вы еще не знаете, как функционируют нейроны, я рекомендую вам просмотреть мою статью “Не просто для проведения звука, части I и II”, где подробно говорится о функции нейронов.

В состоянии покоя волосковые клетки имеют мембранный потенциал приблизительно 60мВ. Из физиологии нейрона мы знаем, что мембранный потенциал в состоянии покоя существует благодаря тому, что когда клетка не возбуждается ионы K+ покидают клетку через каналы для ионов K+, а ионы Na+ не входят через Na+ ионные каналы. Однако это свойство основывается на том факте, что клеточная мембрана соприкасается с внеклеточной жидкостью, которая обычно имеет мало ионов K+ и насыщена ионами Na+, подобно перилимфе, с которой соприкасается основание волосковых клеток.

Когда действие волны вызывает движение стереоцилии, то есть волосоподобных выростов волосковых клеток, они начинают сгибаться. Движение стереоцилии приводит к тому, что определенные каналы , предназначенные для трансдукции сигналов , и которые очень хорошо пропускают ионы K+, начинают открываться. Поэтому когда на Кортиев орган оказывается скачкоподобное действие волны, которая возникает вследствие колебания при резонансе барабанной перепонки через три слуховые косточки, ионы K+ поступают в волосковую клетку, в результате чего она деполяризуется, то есть её мембранный потенциал становиться менее негативным.

“Но, подождите, – сказали бы вы. – Вы только что рассказали мне все о нейронах, и я понимаю так, что когда каналы для осуществления трансдукции открываются, ионы K+ должны выходить из клетки и вызывать гиперполяризацию, а не деполяризацию”. И вы были бы абсолютно правы, потому что при обычных обстоятельствах, когда определенные ионные каналы открываются для того, чтобы увеличить проходимость этого определенного иона через мембрану, ионы Na+ входят в клетку, а ионы K+ выходят. Это происходит благодаря градиентам относительной концентрации ионов Na+ и ионов K+ через мембрану.

Но нам следует помнить, что наши обстоятельства здесь несколько иные. Верхняя часть волосковой клетки соприкасается с эндолимфой средней лестницы улитки и не соприкасается с перилимфой барабанной лестницы. Перилимфа в свою очередь соприкасается с нижней частью волосковой клетки. Немного раньше в этой статье мы подчеркивали, что эндолимфа имеет уникальную особенность, которая заключается в том, что она является единственной жидкостью, которая находится за пределами клетки и имеет высокую концентрацию ионов K+. Эта концентрация настолько высокая, что когда каналы для осуществления трансдукции, которые пропускают ионы K+, открываются в ответ на движение сгибания стереоцилии, ионы K+ входят в клетку и, таким образом, вызывают её деполяризацию.

Деполяризация волосковой клетки приводит к тому, что в её нижней части потенциалозависимые каналы ионов кальция (Ca++) начинают открываться и пропускать ионы Ca++ в клетку. В результате этого выделяется нейромедиатор волосковой клетки (то есть химический передатчик импульсов между клетками) и раздражает близлежащий нейрон улитки, который в конечном итоге посылает сигнал в мозг.

Частота звука, при которой образуется волна в жидкости, определяет, где вдоль базилярной мембраны волна будет иметь наивысшие точки. Как мы уже говорили, это зависит от толщины базилярной мембраны, в которой более высокие звуки вызывают больше активности в более тонком основании мембраны, а звуки более низкой частоты вызывают больше активности в её более толстой верхней части.

Можно легко увидеть, что волосковые клетки, которые находятся ближе к основанию мембраны, будут максимально реагировать на очень высокие звуки верхней границы человеческого слуха (20,000 гц), а волосковые клетки, которые находятся на противоположной самой верхней части мембраны, будут максимально реагировать на звуки нижней границы человеческого слуха (20 гц).

Нервные волокна улитки иллюстрируют тонотопическую карту (то есть группирования нейронов с близкими частотными характеристиками) в том, что они более чувствительны к определенным частотам, которые в конечном итоге расшифровываются в мозгу. Это означает, что определенные нейроны улитки связаны с определенными волосковыми клетками, и их нервные сигналы в результате передаются в мозг, который затем определяет высоту звука в зависимости от того, на какие волосковые клетки оказывалось раздражение. Более того, было показано, что нервные волокна улитки имеют спонтанную активность, так что когда они раздражаются звуком определенной высоты с определенной амплитудой, это приводит к модуляции их активности, которая в конечном итоге анализируется мозгом и расшифровывается как определенный звук.

В заключение стоит отметить, что волосковые клетки, которые расположены в определенном месте базилярной мембраны, будут максимально сгибаться в ответ на определенную высоту звуковой волны, в результате чего это место на базилярной мембране получает гребень волны. Образовавшаяся в результате деполяризация этой волосковой клетки приводит к тому, что она выделяет нейромедиатор, которые в свою очередь раздражает близлежащий нейрон улитки. Затем нейрон посылает сигнал в мозг (где он расшифровывается) в виде звука, который был услышан при определенной амплитуде и частоте в зависимости от того, какой нейрон улитки послал сигнал.

Учеными было составлено много схем проводящих путей активности этих слуховых нейронов. Существует намного больше других нейронов, которые находятся в соединительных отделах, которые получают эти сигналы, а затем передают их к другим нейронам. В результате сигналы поступают в слуховую кору головного мозга для окончательного анализа. Но до сих пор не известно, каким образом мозг преобразовывает огромное количество этих нейрохимических сигналов в то, что известно нам, как слух.

Препятствия для решения этой проблемы могут быть такими же загадочными и таинственными, как и сама жизнь!

Представленный краткий обзор строения и функционирования улитки уха может помочь читателю подготовиться к вопросам, которые часто задают обожатели теории о том, что все живое на земле возникло в результате действия случайных сил природы без какого-либо разумного вмешательства. Но существуют ведущие факторы, развитие которых должно иметь какое-то правдоподобное объяснение, особенно если принять во внимание абсолютную необходимость этих факторов для функции слуха у людей.

Возможно ли, что эти факторы образовались поэтапно с помощью процессов генетической мутации или случайного изменения? А может быть, каждая из этих частей выполняла какую-то доселе не известную функцию у других многочисленных предков, которые позднее объединились и позволили человеку слышать?

И если предположить, что одно из этих объяснений верное, то, что именно представляли собой на самом деле эти изменения, и каким образом они позволили образоваться такой сложной системе, которая преобразовывает воздушные волны во что-то, что человеческий мозг воспринимает как звук?

  1. Развитие трех трубчатых каналов, называемых: преддверие улитки, средняя лестница и барабанная лестница, которые вместе образуют улитку.
  2. Наличие овального окна, через которое принимается колебание из стремечка, и круглого окна, которые позволяют действию волны рассеиваться.
  3. Наличие мембраны Рейснера, благодаря которой колебательная волна передается в среднюю лестницу.
  4. Базилярная мембрана, с её изменяемой толщиной и идеальным расположением между средней лестницей и барабанной лестницей, играет роль в функции слуха.
  5. Кортиев орган имеет такое строение и положение на базилярной мембране, которое позволяет ему испытывать пружинный эффект, играющий очень важную роль для человеческого слуха.
  6. Наличие волосковых клеток внутри Кортиевого органа, стереоцилия которого также очень важна для человеческого слуха и без которой его бы просто не существовало.
  7. Наличие перилимфы в верхней и нижней лестнице и эндолимфы в средней лестнице.
  8. Наличие нервных волокон улитки, которые располагаются близко к волосковым клеткам, находящимся в Кортиевом органе.

Заключительное слово

Перед тем, как приступить к написанию этой статьи я взглянул на тот учебник по медицинской физиологии, которым я пользовался ещё в медицинском колледже, 30 лет назад. В том учебнике авторы отмечали уникальное строение эндолимфы по сравнению со всеми другими внеклеточными жидкостями нашего организма. В то время ученые еще не “знали” точной причины этих необычных обстоятельств, и авторы свободно признавали, что хотя и известно, что потенциал действия, который образовывался слуховым нервом, был связан с движением волосковых клеток, как именно это происходило, так никто объяснить не мог. Итак, как же нам из всего этого лучше понять, как работает эта система? А очень просто:

Станет ли кто-нибудь думать во время прослушивания своего любимого музыкального произведения, что звучащие в определенном порядке звуки появились в результате случайного действия сил природы?

Конечно же, нет! Мы понимаем, что эта прекрасная музыка была написана композитором для того, чтобы слушатели смогли насладиться тем, что он создал и понять, какие чувства и эмоции он испытывал в тот момент. Для этого он подписывает авторские рукописи своего произведения, чтобы весь мир знал, кто именно написал его. Если кто-то думает по-другому он просто будет выставлен на посмешище.

Подобным образом, когда вы слушаете каденцию, которая исполняется на скрипках, придет ли кому-нибудь на ум, что звуки музыки, издаваемые на скрипке Страдивари, появились просто в результате случайных сил природы? Нет! Интуиция нам подсказывает, что перед нами талантливый виртуоз, который берет определенные ноты для того, чтобы создать звуки, которые должен услышать и которыми должен насладиться его слушатель. И его желание настолько велико, что его имя наносится на упаковки компакт-дисков, чтобы покупатели, которые знают этого музыканта, покупали их и наслаждались любимой музыкой.

Но как же мы вообще можем слышать музыку, которая исполняется? Неужели эта наша способность появилась с помощью ненаправленных сил природы, как полагают биологи-эволюционисты? А может быть однажды, один разумный Создатель решил явить Себя, и если так, то каким образом мы можем обнаружить Его? Подписал ли Он Свое творение и оставил ли в природе Свои имена, которые могут помочь обратить наше внимание на Него?

Существует множество примеров разумного дизайна внутри человеческого тела, которые были описаны мной за последний год в статьях. Но когда я начал понимать, что движение волосковой клетки приводит к открытию каналов для переноса ионов K+, в результате чего ионы K+ поступают в волосковую клетку и деполяризуют её, я был буквально ошеломлен. Я внезапно осознал, что это и есть такая “подпись”, которую оставил нам Создатель. Перед нами пример того, как разумный Творец открывает Себя людям. И когда человечество думает, что знает все тайны жизни и то, как все появилось, ему стоит остановиться и задуматься, так ли это на самом деле.

Помните, что почти универсальный механизм деполяризации нейронов происходит в результате поступления ионов Na+ из внеклеточной жидкости в нейрон через каналы ионов Na+ после того, как они были достаточно сильно раздражены. Биологи, которые придерживаются эволюционной теории, до сих пор не могут объяснить развитие этой системы. Однако вся система зависит от существования и раздражения каналов ионов Na+ в сочетании с тем, что концентрация ионов Na+ выше за пределами клетки, чем внутри. Так работают нейроны нашего организма.

Теперь мы должны понять, что существуют другие нейроны в нашем теле, которые работают с точностью до наоборот. Они требуют, чтобы в клетку для деполяризации входили не ионы Na+, а ионы K+. На первый взгляд может показаться, что это просто невозможно. Ведь все знают, что все внеклеточные жидкости нашего тела содержат небольшое количество ионов K+ по сравнению со внутренней средой нейрона, и поэтому для ионов K+ было бы физиологически невозможно входить в нейрон для того, чтобы вызвать деполяризацию так, как это делают ионы Na+.

То, что однажды считалось “неизвестным” теперь стало совершенно ясным и понятным. Теперь понятно, почему эндолимфа должна обладать таким уникальным свойством, являясь единственной внеклеточной жидкостью организма с высоким содержанием ионов K+ и низким содержанием ионов Na+. Более того она расположена именно в том месте, где и должна располагаться, так что когда канал, через который проходят ионы K+, открывается в мембрану волосковых клеток, происходит их деполяризация. Эволюционно настроенные биологи должны уметь объяснить, как могли появиться эти на вид противоположные условия, и как они могли появиться в определенном месте нашего организма, именно там, где они необходимы. Это также как композитор правильно располагает ноты, а затем музыкант правильно исполняет произведение из этих нот на скрипке. Для меня это – разумный Создатель, который говорит нам: “Видите ли вы ту красоту, которой Я наделил Свое творение?”

Несомненно, для человека, который смотрит на жизнь и на её функционирование через призму материализма и натурализма, идея существования разумного дизайнера является чем-то невозможным. Тот факт, что все вопросы, которые я задавал относительно макроэволюции в этой и других моих статьях, вряд ли будут иметь в будущем правдоподобные ответы, кажется, вовсе не пугает или даже не волнует защитников теории о том, что вся жизнь образовалась в результате естественного отбора, который влиял на случайные изменения.

Как искусно заметил Вильям Дембски в своей работе The Design Revolution : “Дарвинисты используют свое непонимание в работах о ‘невыявленном’ дизайнере не как поправимое заблуждение и не как доказательство того, что способности дизайнера намного превосходят наши способности, но как доказательство того, что нет никакого ‘невыявленного’ дизайнера” .

В следующий раз мы поговорим о том, как наше тело координирует свою мышечную деятельность для того, чтобы мы могли сидеть, стоять и оставаться подвижными: это будет последний выпуск, который посвящен нервно-мышечной функции.

И морфологи эту структуру называют органелуха и равновесия (organum vestibulo-cochleare). В нем выделяют три отдела:

  • наружное ухо (наружный слуховой проход, ушная раковина с мышцами и связками);
  • среднее ухо (барабанная полость, сосцевид­ные придатки, слуховая труба)
  • (перепон­чатый лабиринт, располагающийся в костном лабиринте внутри пирамиды кости).

1. Наружное ухо концентрирует звуковые колебания и направляет их в наружное слуховое отверстие.

2. В слуховой канал проводит звуковые колебания к барабанной перепонке

3. Барабанная перепонка – это мембрана, которая вибрирует под действием звука.

4. Молоточек своей рукояткой прикреплен к центру барабанной перепонки при помощи связок, а его головка соединяется с наковальней (5), которая, в свою очередь, прикреплена к стремени (6).

Крошечные мышцы способствуют передаче звука, регулируя движение этих косточек.

7. Евстахиева (или слуховая) труба соединяет среднее ухо с носоглоткой. При изменении давления окружающего воздуха давление по обе стороны барабанной перепонки выравнивается через слуховую трубу.

Kортиев орган состоит из ряда чувствительных, снабженных волосками клеток (12), которые покрывают базилярную мембрану (13). Звуковые волны улавливаются волосковыми клетками и преобразуются в электрические импульсы. Далее эти электрические импульсы передаются по слуховому нерву (11) в головной . Слуховой нерв состоит из тысяч тончайших нервных волокон. Каждое волокно начинается от определенного участка улитки и передает определенную звуковую частоту. Низкочастотные звуки, передаются по волокнам, исходящим из верхушки улитки (14), а высокочастотные – по волокнам, связанным с ее основанием. Таким образом, функцией внутреннего уха является преобразование механических колебаний в электрические, так как мозг может воспринимать только электрические сигналы.

Наружное ухо является звукоулавливающим аппаратом. Наружный слуховой проход проводит звуковые колебания к барабанной перепонке. Барабанная перепонка, отделяющая наружное ухо от барабанной полости, или среднего уха, представляет собой тонкую (0,1 мм) перегородку, имеющую форму направленной внутрь воронки. Перепонка колеблется при действии звуковых колебаний, пришедших к ней через наружный слуховой проход.

Звуковые колебания улавливаются ушными раковинами (у животных они могут поворачиваться к источнику звука) и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами - так называемый бинауральный слух - имеет значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятитысячных долей секунды (0.0006 с) раньше, чем до другого. Этой ничтожной разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

Среднее ухо является звукопроводящим аппаратом. Оно представляет собой воздушную полость, которая через слуховую (Евстахиеву) трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают соединенные друг с другом 3 слуховые косточки - молоточек, наковальня и стремячко, а последнеe через перпонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе, - перилимфе.

Благодаря особенностям геометрии слуховых косточек стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Кроме того, поверхность стремечка в 22 раза меньше барабанной перепонки, что во столько же раз усиливает его давление на мембрану овального окна. В результате этого даже слабые звуковые волны, действующие на барабанную перепонку, способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям жидкости в улитке.

При сильных звуках специальные мышцы уменьшают подвижность барабанной перепонки и слуховых косточек, адаптируя слуховой аппарат к таким изменениям раздражителя и предохраняя внутреннее ухо от разрушения.

Благодаря соединению через слуховую трубу воздушной полости среднего уха с полостью носоглотки возникает возможность выравнивания давления по обе стороны барабанной перепонки, что предотвращает ее разрыв при значительных изменениях давления во внешней среде - при погружениях под воду, подъемах на высоту, выстрелах и пр. Это барофункция уха.

В среднем ухе расположены две мышцы: напрягающая барабанную перепонку и стременная. Первая из них, сокращаясь, усиливает натяжение барабанной перепонки и тем самым ограничивает амплитуду ее колебаний при сильных звуках, а вторая фиксирует стремечко и тем самым ограничивает его движения. Рефлекторное сокращение этих мышц наступает через 10 мс после начала сильного звука и зависит от его амплитуды. Этим внутреннее ухо автоматически предохраняется от перегрузок. При мгновенных сильных раздражениях (удары, взрывы и т. д.) этот защитный механизм не успевает сработать, что может привести к нарушениям слуха (например, у взрывников и артиллеристов).

Внутреннее ухо является звуковоспринимаюшцм аппаратом. Оно расположено в пирамидке височной кости и содержит улитку, которая у человека образует 2.5 спиральных витка. Улитковый канал разделен двумя перегородками основной мембраной и вестибулярной мембраной на 3 узких хода: верхний (вестибулярная лестница), средний (перепончатый канал) и нижний (барабанная лестница). На вершине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость его заполнена жидкостью - пери-лимфой, а полость среднего перепончатого канала заполнена жидкостью иного состава - эндолимфой. В среднем канале расположен звуковоспринимаюший аппарат- Кортиев орган, в котором находятся механорецепторы звуковых колебаний - волосковые клетки.

Основным путем доставки звуков к уху является воздушный. Подошедший звук колеблет барабанную перепонку, и далее через цепь слуховых косточек колебания передаются на овальное окно. Одновременно возникают и колебания воздуха барабанной полости, которые передаются на мембрану круглого окна.

Другим путем доставки звуков к улитке является тканевая или костная проводимость . При этом звук непосредственно действует на поверхность черепа, вызывая его колебания. Костный путь передачи звуков приобретает большое значение, если вибрирующий предмет (например, ножка камертона) соприкасается с черепом, а также при заболеваниях системы среднего уха, когда нарушается передача звуков через цепь слуховых косточек. Кроме воздушного пути, проведения звуковых волн существует тканевый, или костный, путь.

Под влиянием воздушных звуковых колебаний, а также при соприкосновении вибраторов (например, костного телефона или костного камертона) с покровами головы кости черепа приходят в колебание (начинает колебаться и костный лабиринт). На основании последних данных (Бекеши - Bekesy и др.) можно допустить, что звуки, распространяющиеся по костям черепа, только в том случае возбуждают кортиев орган, если они, аналогично воздушным волнам, вызывают выгибание определенного участка основной мембраны.

Способность костей черепа проводить звук объясняет, почему самому человеку его голос, записанный на магнитофонную пленку, при воспроизведении записи кажется чужим, в то время как другие его легко узнают. Дело в том, что магнитофонная запись воспроизводит ваш голос не полностью. Обычно, разговаривая, вы слышите не только те звуки, которые слышат и ваши собеседники (т. е. те звуки, которые воспринимаются благодаря воздушно-жидкостной проводимости), но и те низкочастотные звуки, проводником которых являются кости вашего черепа. Однако слушая магнитофонную запись собственного голоса, вы слышите только то, что можно было записать, - звуки, проводником которых является воздух.

Бинауральный слух . Человек и животные обладают пространственным слухом, т. е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии бинаурального слуха, или слушания двумя ушами. Для него важно и наличие двух симметричных половин на всех уровнях . Острота бинаурального слуха у человека очень высока: положение источника звука определяется с точностью до 1 углового градуса. Основой этого служит способность нейронов слуховой системы оценивать интерауральные (межушные) различия времени прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и имеет большую силу, чем на другом ухе. Оценка удаленности источника звука от организма связана с ослаблением звука и изменением его тембра.

При раздельной стимуляции правого и левого уха через наушники задержка между звуками уже в 11 мкс или различие в интенсивности двух звуков на 1 дБ приводят к кажущемуся сдвигу локализации источника звука от средней линии в сторону более раннего или более сильного звука. В слуховых центрах есть с острой настройкой на определенный диапазон интерауральных различий по времени и интенсивности. Найдены также клетки, реагирующие лишь на определенное направление движения источника звука в пространстве.

К наружному уху относятся ушная раковина, слуховой проход и барабанная перепонка, которая закрывает внутренний конец слухового прохода. Слуховой проход имеет неправильную изогнутую форму. У взрослого человека длина его составляет около 2,5 см, а диаметр около 8 мм. Поверхность слухового прохода покрыта волосками и содержит железы, выделяющие ушную серу, которая необходима для поддержания влажности кожи. Слуховой проход обеспечивает также постоянную температуру и влажность барабанной перепонки.

  • Среднее ухо

Среднее ухо – это заполненная воздухом полость за барабанной перепонкой. Эта полость соединяется с носоглоткой посредством евстахиевой трубы – узкого хрящевого канала, который обычно находится в закрытом состоянии. Глотательные движения открывают евстахиеву трубу, что обеспечивает поступление воздуха в полость и выравнивание давления по обе стороны барабанной перепонки для ее оптимальной подвижности. В полости среднего уха находятся три миниатюрные слуховые косточки: молоточек, наковальня и стремя. Одним концом молоточек соединен с барабанной перепонкой, другой его конец связан с наковальней, которая, в свою очередь соединена со стременем, а стремя с улиткой внутреннего уха. Барабанная перепонка постоянно колеблется под действием улавливаемых ухом звуков, а слуховые косточки передают ее колебания во внутреннее ухо.

  • Внутреннее ухо

Во внутреннем ухе содержится несколько структур, но к слуху отношение имеет только улитка, получившая свое название из-за спиральной формы. Улитка разделена на три канала, заполненные лимфатическими жидкостями. Жидкость в среднем канале отличается по составу от жидкости в двух других каналах. Орган, непосредственно ответственный за слух (Кортиев орган), находится в среднем канале. Кортиев орган содержит около 30000 волосковых клеток, которые улавливают колебания жидкости в канале, вызванные движением стремени, и генерируют электрические импульсы, которые по слуховому нерву передаются к слуховой зоне коры головного мозга. Каждая волосковая клетка реагирует на определенную звуковую частоту, причем высокие частоты улавливаются клетками нижней части улитки, а клетки, настроенные на низкие частоты, располагаются в верхней части улитки. Если волосковые клетки по каким-либо причинам гибнут, человек перестает воспринимать звуки соответствующих частот.

  • Слуховые проводящие пути

Слуховые проводящие пути – это совокупность нервных волокон, проводящих нервные импульсы от улитки к слуховым центрам коры головного мозга, в результате чего возникает слуховое ощущение. Слуховые центры расположены в височных долях головного мозга. Время, потраченное на прохождение слухового сигнала от внешнего уха к слуховым центрам мозга, составляет около 10 миллисекунд.

Как устроено ухо человека (рисунок предоставлен фирмой Siemens)

Восприятие звука

Ухо последовательно преобразует звуки в механические колебания барабанной перепонки и слуховых косточек, затем в колебания жидкости в улитке и, наконец, в электрические импульсы, которые по проводящим путям центральной слуховой системы передаются в височные доли мозга для распознавания и обработки.
Мозг и промежуточные узлы слуховых проводящих путей извлекают не только информацию о высоте и громкости звука, но и другие характеристики звука, например, интервал времени между моментами улавливания звука правым и левым ухом – на этом основана способность человека определять направление, по которому приходит звук. При этом мозг оценивает как информацию, полученную от каждого уха в отдельности, так и объединяет всю полученную информацию в единое ощущение.

В нашем мозгу хранятся «шаблоны» окружающих нас звуков – знакомых голосов, музыки, опасных звуков и т.д. Это помогает мозгу в процессе обработки информации о звуке быстрее отличить знакомые звуки от незнакомых. При снижении слуха мозг начинает получать искаженную информацию (звуки становятся более тихими), что приводит к ошибкам в интерпретации звуков. С другой стороны, нарушения в работе мозга в результате старения, травмы головы или неврологических болезней и расстройств могут сопровождаться симптомами, похожими на симптомы снижения слуха, например, невнимательность, отрешенность от окружения, неадекватная реакция. Для того чтобы правильно слышать и понимать звуки, необходима согласованная работа слухового анализатора и мозга. Таким образом, без преувеличения можно сказать, что человек слышит не ушами, а мозгом!

В проведении звуковых колебаний принимают участие ушная раковина, наружный слуховой проход, барабанная перепонка, слуховые косточки, кольцевая связка овального окна, мембрана круглого окна (вторичная барабанная перепонка), жидкость лабиринта (перилимфа), основная мембрана.

У человека роль ушной раковины сравнительно невелика. У животных, обладающих способностью двигать ушами, ушные раковины помогают определять направление источника звука. У человека ушная раковина, как рупор, лишь собирает звуковые волны. Однако и в этом отношении ее роль незначительна. Поэтому, когда человек прислушивается к тихим звукам, он приставляет к уху ладонь, благодаря чему поверхность ушной раковины значительно увеличивается.

Звуковые волны, проникнув в слуховой проход, приводят в содружественное колебание барабанную перепонку, которая передает звуковые колебания через цепь слуховых косточек в овальное окно и далее перилимфе внутреннего уха.

Барабанная перепонка отвечает не только на те звуки, число колебаний которых совпадает с ее собственным тоном (800--1000 Гц), но и на любой звук. Такой резонанс носит название универсального в отличие от острого резонанса, когда вторично звучащее тело (например, струна рояля) отвечает только на один определенный тон.

Барабанная перепонка и слуховые косточки не просто передают звуковые колебания, поступающие в наружный слуховой проход, а трансформируют их, т. е. превращают воздушные колебания с большой амплитудой и малым давлением в колебания жидкости лабиринта с малой амплитудой и большим давлением.

Эта трансформация достигается благодаря следующим условиям: 1) поверхность барабанной перепонки в 15--20 раз больше площади овального окна; 2) молоточек и наковальня образуют неравноплечий рычаг, так что экскурсии, совершаемые подножной пластинкой стремени, примерно в полтора раза меньше экскурсий рукоятки молоточка.

Общий эффект трансформирующего действия барабанной перепонки и рычажной системы слуховых косточек выражается в увеличении силы звука на 25--30 дБ.

Нарушение этого механизма при повреждениях барабанной перепонки и заболеваниях среднего уха ведет к соответствующему снижению слуха, т. е. на 25--30 дБ.

Для нормального функционирования барабанной перепонки и цепи слуховых косточек необходимо, чтобы давление воздуха по обе стороны от барабанной перепонки, т. е. в наружном слуховом проходе и в барабанной полости, было одинаковым.

Это выравнивание давления происходит благодаря вентиляционной функции слуховой трубы, которая соединяет барабанную полость с носоглоткой. При каждом глотательном движении воздух из носоглотки поступает в барабанную полость, и, таким образом, давление воздуха в барабанной полости все время поддерживается на уровне атмосферного, т. е. на том же уровне, что и в наружном слуховом проходе.

К звукопроводящему аппарату относятся также мышцы среднего уха, которые выполняют следующие функции: 1) поддержание нормального тонуса барабанной перепонки и цепи слуховых косточек; 2) защиту внутреннего уха от чрезмерных звуковых раздражений; 3) аккомодацию, т. е. приспособление звукопроводящего аппарата к звукам различной силы и высоты.

При сокращении мышцы, натягивающей барабанную перепонку, слуховая чувствительность повышается, что дает основания считать эту мышцу "настораживающей". Стременная мышца играет противоположную роль - она при своем сокращении ограничивает движения стремени и тем самым как бы приглушает слишком сильные звуки.

1. Звукопроводящая и звуковоспринимающая части слухового аппарата.

2. Роль наружного уха.

3. Роль среднего уха.

4. Роль внутреннего уха.

5. Определение локализации источника звука в горизонтальной плоскости - бинауральный эффект.

6. Определение локализации источника звука в вертикальной плоскости.

7. Слуховые аппараты и протезы. Тимпанометрия.

8. Задачи.

Слух - восприятие звуковых колебаний, которое осуществляется органами слуха.

4.1. Звукопроводящая и звуковоспринимающая части слухового аппарата

Орган слуха человека представляет собой сложную систему, состоящую из следующих элементов:

1 - ушная раковина; 2 - наружный слуховой проход; 3 - барабанная перепонка; 4 - молоточек; 5 - наковальня; 6 - стремечко; 7 - овальное окно; 8 - вестибулярная лестница; 9 - круглое окно; 10 - барабанная лестница; 11 - улитковый канал; 12 - основная (базилярная) мембрана.

Строение слухового аппарата показано на рис. 4.1.

По анатомическому признаку в слуховом аппарате человека выделяют наружное ухо (1-3), среднее ухо (3-7) и внутреннее ухо (7-13). По выполняемым функциям в слуховом аппарате человека выделяют звукопроводящую и звуковоспринимающую части. Такое деление представлено на рис. 4.2.

Рис. 4.1. Строение слухового аппарата (а) и элементы органа слуха (б)

Рис. 4.2. Схематическое представление основных элементов слухового аппарата человека

4.2. Роль наружного уха

Функционирование наружного уха

Наружное ухо состоит из ушной раковины, слухового прохода (в виде узкой трубки), барабанной перепонки. Ушная раковина играет роль звукоулавливателя, концентрирующего звуковые

волны на слуховом проходе, в результате чего звуковое давление на барабанную перепонку увеличивается по сравнению со звуковым давлением в падающей волне примерно в 3 раза. Наружный слуховой проход вместе с ушной раковиной можно сравнить с резонатором типа трубы. Барабанная перепонка, отделяющая наружное ухо от среднего уха, представляет собой пластинку, состоящую из двух слоев коллагеновых волокон, ориентированных по-разному. Толщина перепонки около 0,1 мм.

Причина наибольшей чувствительности уха в области 3 кГц

Звук поступает в систему через наружный слуховой канал, который является закрытой с одной стороны акустической трубой длиной L = 2,5 см. Звуковая волна проходит через слуховой проход и частично отражается от барабанной перепонки. В результате происходит интерференция падающей и отраженной волн и образуется стоячая волна. Возникает акустический резонанс. Условия его проявления: длина волны в 4 раза больше длины воздушного столба в слуховом проходе. При этом столб воздуха внутри канала будет резонировать на звук с длиной волны, равной четырем его длинам. В слуховом канале, как в трубе, будет резонировать волна длиной λ = 4L = 4x0,025 = 0,1 м. Частота, на которой возникает акустический резонанс, определяется так: ν = v = 340/(4x0,025) = 3,4 кГц. Этот резонансный эффект объясняет тот факт, что человеческое ухо имеет наибольшую чувствительность на частоте около 3 кГц (см. кривые равной громкости в лекции 3).

4.3. Роль среднего уха

Строение среднего уха

Среднее ухо является устройством, предназначенным для передачи звуковых колебаний из воздушной среды наружного уха в жидкую среду внутреннего уха. Среднее ухо (см. рис. 4.1) содержит барабанную перепонку, овальное и круглое окна, а также слуховые косточки (молоточек, наковальню, стремечко). Оно представляет собой своеобразный барабан (объемом 0,8 см 3), который отделяется от наружного уха барабанной перепонкой, а от внутреннего уха - овальным и круглым окнами. Среднее ухо заполнено воздухом. Любая разность

давлений между наружным и средним ухом приводит к деформации барабанной перепонки. Барабанная перепонка - это воронкообразная мембрана, вдавленная внутрь среднего уха. От нее звуковая информация передается косточкам среднего уха (форма барабанной перепонки обеспечивает отсутствие собственных колебаний, что весьма существенно, так как собственные колебания перепонки создавали бы шумовой фон).

Проникновение звуковой волны через границу «воздух-жидкость»

Для того чтобы понять назначение среднего уха, рассмотрим непосредственный переход звука из воздушной среды в жидкую. На границе раздела двух сред одна часть падающей волны отражается, а другая часть переходит во вторую среду. Доля энергии, перешедшей из одной среды в другую, зависит от величины коэффициента пропускания β (см. формулу 3.10).

То есть при переходе из воздуха в воду уровень интенсивности звука уменьшается на 29 дБ. С энергетической точки зрения такой переход абсолютно неэффективен. По этой причине существует специальный передаточный механизм - система слуховых косточек, которые выполняют функцию согласования волновых сопротивлений воздушной и жидкой сред для уменьшения энергетических потерь.

Физические основы функционирования системы слуховых косточек

Система косточек представляет собой последовательное звено, начало которого (молоточек) связано с барабанной перепонкой внешнего уха, а конец (стремечко) - с овальным окном внутреннего уха (рис. 4.3).

Рис. 4.3. Схема распространения звуковой волны от наружного уха через среднее ухо во внутреннее ухо:

1 - барабанная перепонка; 2 - молоточек; 3 - наковальня; 4 - стремечко; 5 - овальное окно; 6 - круглое окно; 7 - барабанный ход; 8 - улиточный ход; 9 - вестибулярный ход

Рис. 4.4. Схематическое представление расположения барабанной перепонки и овального окна: S бп - площадь барабанной перепонки; S оо - площадь овального окна

Площадь барабанной перепонки равна Б бп = 64 мм 2 , а площадь овального окна S оо = 3 мм 2 . Схематически их

взаимное расположение представлено на рис. 4.4.

На барабанную перепонку действует звуковое давление Р 1 , создающее силу

Система косточек работает как рычаг с соотношением плеч

L 1 /L 2 = 1,3, который дает выигрыш в силе со стороны внутреннего уха в 1,3 раза (рис. 4.5).

Рис. 4.5. Схематическое представление работы системы косточек как рычага

Поэтому на овальное окно действует сила F 2 = 1,3F 1 , создающая в жидкой среде внутреннего уха звуковое давление Р 2 , которое равно

Выполненные расчеты показывают, что при прохождении звука через среднее ухо происходит увеличение уровня его интенсивности на 28 дБ. Потери уровня интенсивности звука при переходе из воздушной среды в жидкую составляют 29 дБ. Общая потеря интенсивности составляет лишь 1 дБ вместо 29 дБ, что имело бы место при отсутствии среднего уха.

Еще одна функция среднего уха - ослабление передачи колебаний в случае звука большой интенсивности. С помощью мышц рефлекторно может быть ослаблена связь между косточками при слишком больших интенсивностях звука.

Сильное изменение давления в окружающей среде (например, связанное с изменением высоты) может вызвать растяжение барабанной перепонки, сопровождающееся болевыми ощущениями, или даже ее разрыв. Для защиты от таких перепадов давления служит небольшая евстахиева труба, которая соединяет полость среднего уха с верхней частью глотки (с атмосферой).

4.4. Роль внутреннего уха

Звуковоспринимающей системой слухового аппарата являются внутреннее ухо и входящая в него улитка.

Внутреннее ухо представляет собой замкнутую полость. Эта полость, называемая лабиринтом, имеет сложную форму и заполнена жидкостью - перилимфой. Она состоит из двух основных частей: улитки, преобразующей механические колебания в электрический сигнал, и полукружия вестибулярного аппарата, обеспечивающего равновесие тела в поле силы тяжести.

Строение улитки

Улитка является полым костным образованием длиной 35 мм и имеет форму конусообразной спирали, содержащей 2,5 завитка.

Сечение улитки показано на рис. 4.6.

По всей длине улитки вдоль нее проходят две перепончатые перегородки, одна из которых называется вестибулярной мембраной, а другая - основной мембраной. Пространство между

Рис. 4.6. Схематическое строение улитки, содержащей каналы: В - вестибулярный; Б - барабанный; У - улитковый; РМ - вестибулярная (рейснерова) мембрана; ПМ - покровная пластина; ОМ - основная (базилярная) мембрана; КО - кортиев орган

ними - улитковый ход - заполнено жидкостью, называемой эндолимфой.

Вестибулярный и барабанный каналы заполнены особой жидкостью - перилимфой. В верхней части улитки они соединяются между собой. Колебания стремечка передаются мембране овального окна, от нее перилимфе вестибулярного хода, а затем через тонкую вестибулярную мембрану - эндолимфе улиточного хода. Колебания эндолимфы передаются основной мембране, на которой находится кортиев орган, содержащий чувствительные волосковые клетки (около 24 000), в которых возникают электрические потенциалы, передаваемые по слуховому нерву в мозг.

Барабанный ход заканчивается мембраной круглого окна, которая компенсирует перемещения перелимфы.

Длина основной мембраны приблизительно равна 32 мм. Она очень неоднородна по своей форме: расширяется и утончается в направлении от овального окна к верхушке улитки. Вследствие этого модуль упругости основной мембраны вблизи основания улитки примерно в 100 раз больше, чем у вершины.

Частотно-избирательные свойства основной мембраны улитки

Основная мембрана является неоднородной линией передачи механического возбуждения. При действии акустического раздражителя по основной мембране распространяется волна, степень затухания которой зависит от частоты: чем меньше частота раздражения, тем дальше от овального окна распространится волна по основной мембране. Так, например, волна с частотой 300 Гц до затухания распространится приблизительно на 25 мм от овального окна, а волна с частотой 100 Гц - приблизительно на 30 мм.

В настоящее время считается, что восприятие высоты тона определяется положением максимума колебаний основной мембраны.

Колебания основной мембраны стимулируют рецепторные клетки, расположенные в кортиевом органе, в результате чего возникают потенциалы действия, передаваемые слуховым нервом в кору головного мозга.

4.5. Определение локализации источника звука в горизонтальной плоскости - бинауральный эффект

Бинауральный эффект - способность устанавливать направление на источник звука в горизонтальной плоскости. Суть эффекта поясняется на рис. 4.7.

Пусть источник звука поочередно располагают в точках А, В и С. Из точки А, находящейся прямо перед лицом, звуковая волна попадает одинаково в оба уха, при этом путь звуковой волны до ушных раковин один и тот же, т.е. для обоих ушей разность хода δ и разность фаз Δφ звуковых волн равны нулю: δ = 0, Δφ = 0. Поэтому приходящие волны имеют одинаковую фазу и интенсивность.

Из точки В звуковая волна приходит в левую и правую ушные раковины в разных фазах и с отличающимися интенсивностями, так как проходит до ушей разное расстояние.

Если источник расположен в точке С, против одной из ушных раковин, то в этом случае разность хода δ можно принять равной расстоянию между ушными раковинами: δ ≈ L ≈ 17 см = 0,17 м. При этом разность фаз Δφ можно рассчитать по формуле: Δφ = (2π/λ) δ. Для частоты ν = 1000 Гц и v « 340 м/с λ = v/ν = 0,34 м. Отсюда получим: Δφ = (2π/λ) δ = (2π/0,340)*0,17 = π. В данном примере волны приходят в противофазе.

Всем реальным направлениям на источник звука в горизонтальной плоскости будут соответствовать разности фаз от 0 до π (от 0

Таким образом, разность фаз и неодинаковость интенсивностей звуковых волн, попадающих в разные уши, обеспечивают бинауральный эффект. Человек с нор-

Рис. 4.7. Различная локализация источника звука (А, В, С) в горизонтальной плоскости: L - расстояние между ушными раковинами

мальным слухом может фиксировать направление на источник звука при разности фаз 6°, что соответствует фиксированию направления на источник звука с точностью до 3°.

4.6. Определение локализации источника звука в вертикальной плоскости

Рассмотрим теперь случай, когда источник звука расположен в вертикальной плоскости, ориентированной перпендикулярно прямой, соединяющей оба уха. В этом случае он одинаково удален от обоих ушей и разности фаз не возникает. Значения интенсивности звука, попадающего в правое и левое ухо, при этом совпадают. На рисунке 4.8 показаны два таких источника (А и С). Различит ли слуховой аппарат эти источники? Да. В данном случае это произойдет благодаря особой форме ушной раковины, которая (форма) способствует определению локализации источника звука.

Звук, исходящий от этих источников, падает на ушные раковины под различными углами. Это приводит к тому, что дифракция звуковых волн на ушных раковинах происходит по-разному. В результате на спектр звукового сигнала, попадающего в наружный слуховой проход, накладываются дифракционные максимумы и минимумы, зависящие от положения источника звука. Эти различия и позволяют определять положение источника звука в вертикальной плоскости. По всей видимости, в результате огромного опыта слушания люди научились ассоциировать различные спектральные характеристики с соответствующими направлениями. Это подтверждается опытными данными. В частности, установлено, что специальным подбором спектрального состава звука ухо можно «обмануть». Так, человек воспринимает звуковые волны, содержащие основную часть энергии в области 1 кГц,

Рис. 4.8. Различная локализация источника звука в вертикальной плоскости

локализованными «сзади» независимо от действительного направления. Звуковая волна с частотами ниже 500 Гц и в области 3 кГц воспринимается локализованной «спереди». Звуковые источники, содержащие большую часть энергии в области 8 кГц, распознаются локализованными «сверху».

4.7. Слуховые аппараты и протезы. Тимпанометрия

Потеря слуха в результате нарушения проведения звука или частичного поражения звуковосприятия может быть компенсирована с помощью слуховых аппаратов-усилителей. В последние годы в этой области происходит большой прогресс, связанный с развитием аудиологии и быстрым внедрением достижений электроакустической аппаратуры на основе микроэлектроники. Созданы миниатюрные слуховые аппараты, работающие в широком частотном диапазоне.

Однако при некоторых тяжелых формах тугоухости и глухоты слуховые аппараты не помогают больным. Это имеет место, например, когда глухота связана с поражением рецепторного аппарата улитки. В этом случае улитка не генерирует электрические сигналы при воздействии механических колебаний. Такие поражения могут быть вызваны неправильной дозировкой лекарственных препаратов, применяемых для лечения заболеваний, совсем не связанных с лор-болезнями. В настоящее время возможна частичная реабилитация слуха и у таких больных. Для этого необходимо имплантировать электроды в улитку и подавать на них электрические сигналы, соответствующие тем, которые возникают при воздействии механического стимула. Такое протезирование основной функции улитки осуществляется с помощью кохлеарных протезов.

Тимпанометрия - метод измерения податливости звукопроводящего аппарата слуховой системы под влиянием аппаратного изменения воздушного давления в слуховом проходе.

Данный метод позволяет оценить функциональное состояние барабанной перепонки, подвижность цепи слуховых косточек, давление в среднем ухе и функцию слуховой трубы.

Рис. 4.9. Определение податливости звукопроводящего аппарата методом тимпанометрии

Исследование начинается с установки зонда с надетым на него ушным вкладышем, который герметично перекрывает слуховой проход в начале наружного слухового прохода. Через зонд в слуховом проходе создается избыточное (+) или недостаточное (-) давление, а затем подается звуковая волна определенной интенсивности. Дойдя до барабанной перепонки, волна частично отражается и возвращается к зонду (рис. 4.9).

Измерение интенсивности отраженной волны позволяет судить о звукопроводящих возможностях среднего уха. Чем больше интенсивность отраженной звуковой волны, тем меньше подвижность звукопроводящей системы. Мерой механической податливости среднего уха является параметр подвижности, измеряемый в условных единицах.

В процессе исследования давление в среднем ухе изменяют от +200 до -200 дПа. При каждом значении давления определяется параметр подвижности. Результатом исследования является тимпанограмма, отражающая зависимость параметра подвижности от величины избыточного давления в слуховом проходе. При отсутствии патологии среднего уха максимум подвижности наблюдается при отсутствии избыточного давления (Р = 0) (рис. 4.10).

Рис. 4.10. Тимпанограммы при различной степени подвижности системы

Повышенная подвижность свидетельствует о недостаточной упругости барабанной перепонки или о вывихе слуховых косточек. Пониженная подвижность указывает на избыточную жесткость среднего уха, связанную, например, с наличием жидкости.

При патологии среднего уха вид тимпанограммы изменяется

4.8. Задачи

1. Размер ушной раковины равен d = 3,4 см. При какой частоте будут наблюдаться дифракционные явления на ушной раковине? Решение

Явление дифракции становится заметным, когда длина волны сравнима с размерами препятствия или щели: λ ≤ d. При меньших длинах волн или больших частотах дифракция становится незначительной.

λ = v/ν = 3,34, ν = v/d = 334/3,34*10 -2 = 10 4 Гц. Ответ: менее 10 4 Гц.

Рис. 4.11. Основные типы тимпанограмм при патологиях среднего уха: А - отсутствие патологии; В - экссудативный средний отит; С - нарушение проходимости слуховой трубы; D - атрофические изменения барабанной перепонки; Е - разрыв слуховых косточек

2. Определить максимальную силу, действующую на барабанную перепонку уха человека (площадь S = 64 мм 2) для двух случаев: а) порог слышимости; б) порог болевого ощущения. Частоту звука принять равной 1 кГц.

Решение

Звуковые давления, соответствующие порогам слышимости и болевого ощущения равны ΔΡ 0 = 3?10 -5 Па и ΔP m = 100 Па, соответственно. F = ΔΡ*S. Подставив пороговые значения получим: F 0 = 310 -5 ?64?10 -6 = 1,9-10 -9 H; F m = 100? 64-10 -6 = 6,410 -3 H.

Ответ: а) F 0 = 1,9 нН; б) F m = 6,4 мН.

3. Разность хода звуковых волн, приходящих в левое и правое ухо человека, составляет χ = 1 см. Определить сдвиг фаз между обоими звуковыми ощущениями для тона с частотой 1000 Гц.

Решение

Разность фаз, возникающая вследствие разности хода, равна: Δφ = 2πνχ/ν = 6,28x1000x0,01/340 = 0,18. Ответ: Δφ = 0,18.



© dagexpo.ru, 2024
Стоматологический сайт