Уравнения максвелла и их физический смысл. Уравнения Максвелла. Электромагнитные волны

21.09.2019

В электродинамике – это как законы Ньютона в классической механике или как постулаты Эйнштейна в теории относительности. Фундаментальные уравнения, в сущности которых мы сегодня будем разбираться, чтобы не впадать в ступор от одного их упоминания.

Полезная и интересная информация по другим темам – у нас в телеграм .

Уравнения Максвелла – это система уравнений в дифференциальной или интегральной форме, описывающая любые электромагнитные поля, связь между токами и электрическими зарядами в любых средах.

Неохотно принимались и критически воспринимались учеными-современниками Максвелла. Все потому, что эти уравнения не были похожи ни на что из известного людям ранее.

Тем не менее, и по сей день нет никаких сомнений в правильности уравнений Максвелла, они «работают» не только в привычном нам макромире, но и в области квантовой механики.

Уравнения Максвелла совершили настоящий переворот в восприятии людьми научной картины мира. Так, они предвосхитили открытие радиоволн и показали, что свет имеет электромагнитную природу.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

По порядку запишем и поясним все 4 уравнения. Сразу уточним, что записывать их будем в системе СИ.

Современный вид первого уравнения Максвелла таков:

Тут нужно пояснить, что такое дивергенция. Дивергенция – это дифференциальный оператор, определяющий поток какого-то поля через определенную поверхность. Уместным будет сравнение с краном или с трубой. Например, чем больше диаметр носика крана и напор в трубе, тем большим будет поток воды через поверхность, которую представляет собой носик.

В первом уравнении Максвелла E – это векторное электрическое поле, а греческая буква «ро » – суммарный заряд, заключенный внутри замкнутой поверхности.

Так вот, поток электрического поля E через любую замкнутую поверхность зависит от суммарного заряда внутри этой поверхности. Данное уравнение представляет собой закон (теорему) Гаусса .

Третье уравнение Максвелла

Сейчас мы пропустим второе уравнение, так как третье уравнение Максвелла – это тоже закон Гаусса , только уже не для электрического поля, но для магнитного.

Оно имеет вид:

Что это значит? Поток магнитного поля через замкнутую поверхность равен нулю. Если электрические заряды (положительные и отрицательные) вполне могут существовать по отдельности, порождая вокруг себя электрическое поле, то магнитных зарядов в природе просто не существует.

Второе уравнение Максвелла представляет собой ни что иное, как закон Фарадея . Его вид:

Ротор электрического поля (интеграл через замкнутую поверхность) равен скорости изменения магнитного потока, пронизывающего эту поверхность. Чтобы лучше понять, возьмем воду в ванной, которая сливается через отверстие. Вокруг отверстия образуется воронка. Ротор – это сумма (интеграл) векторов скоростей частиц воды, которые вращаются вокруг отверстия.

Как Вы помните, на основе закона Фарадея работают электродвигатели: вращающийся магнит порождает ток в катушке.

Четвертое - самое важное из всех уравнений Максвелла. Именно в нем ученый ввел понятие тока смещения .

Это уравнение еще называется теоремой о циркуляции вектора магнитной индукции. Оно говорит нам о том, что электрический ток и изменение электрического поля порождают вихревое магнитное поле.

Приведем теперь всю систему уравнений и кратко обозначим суть каждого из них:

Первое уравнение: электрический заряд порождает электрическое поле

Второе уравнение: изменяющееся магнитное поле порождает вихревое электрическое поле

Третье уравнение: магнитных зарядов не существует

Четвертое уравнение: электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Решая уравнения Максвелла для свободной электромагнитной волны, мы получим следующую картину ее распространения в пространстве:

Надеемся, эта статья поможет систематизировать знания об уравнениях Максвелла. А если понадобиться решить задачу по электродинамике с применением этих уравнений, можете смело обратиться за помощью в студенческий сервис . Подробное объяснение любого задания и отличная оценка гарантированы.

Используем формулу Стокса , согласно которой циркуляция вектора по замкнутому контуру L равна потоку ротора этого вектора через поверхность, опирающуюся на этот контур. Тогда:

Пусть S произвольная неизменная во времени поверхность, ограниченная контуром L. Тогда система уравнений (1.2.7) перепишется так:

Поскольку контур интегрирования в полученных интегралах произволен, равенство нулю интегралов возможно только при равенстве нулю подынтегральных выражений. Тогда:

Уравнения (1.3.2) и есть уравнения Максвелла.

В большей части курса мы будем рассматривать поля, изменяющиеся во времени по гармоническому закону:

Для которых принята комплексная форма записи:

Где комплексная амплитуда. При комплексной форме записи гармонических полей производная по времени заменяется умножением на .

Тогда уравнения Максвелла (1.3.2) для полей, изменяющихся по гармоническому закону, принимают вид:

Найдем решение уравнений Масквелла для простейшего случая распространения электромагнитной волны в вакууме.

В вакууме , . Поэтому для вакуума уравнения Максвелла (1.3.4) принимают вид:

Исключим Из (1.3.5). Для этого применим операцию Rot К обеим частям первого уравнения: . Теперь подставим значение из второго уравнения. В результате получим:

Используем известное соотношение векторной алгебры

Вспомним, что в соответствии с теоремой Гаусса-Остроградского

И учтем, что в вакууме свободных зарядов нет (т. е. ). Подставим (1.3.8) и (1.3.7) в (1.3.6). В результате получаем:

Полученное уравнение носит название Волновое уравнение . Аналогичным образом можно получить волновое уравнение относительно вектора магнитного поля .

Наиболее наглядным решением волнового уравнения является сферическая волна, распространяющаяся вокруг точечного излучателя. Чтобы получить решение для сферической волны, нужно представить оператор Лапласа в уравнении (1.3.9) в сферической системе координат, что приведет к достаточно громоздким математическим выражениям. С целью упрощения математических процедур мы рассмотрим решение волнового уравнения для плоской волны, являющейся функцией одной координаты.

Рис.1.3.1. показана схема расположения силовых линий сферической электромагнитной волны. Рисунок иллюстрирует тот факт, что на больших расстояниях от излучателя электромагнитное поле можно рассматривать как плоскую волну, распространяющуюся вдоль направления, перпендикулярного плоскости постоянной фазы, причем характеристики волны зависят только от одной координаты вдоль направления распространения. Несмотря на то, что в общем случае волна имеет сферическую симметрию, в ограниченной области, обозначенной квадратом, можно говорить о плоской волне, характеристики которой зависят только от одной координаты.

Примем во внимание, что одномерный оператор Лапласа имеет следующий вид:

И получим одномерное волновое уравнение для плоской волны:

Рис.1.3.1. Схема силовых линий напряженности электрического и магнитного полей сферической электромагнитной волны.

Любое дифференциальное уравнение приобретает физический смысл, если заданы граничные условия для его решения. Решение уравнения (1.3.11) получается в виде двух волн, распространяющихся вдоль положительного и отрицательного направлений оси z. Примем в качестве граничных условий утверждение, что в рассматриваемой среде плоская волна может распространяться только в одном направлении. Итак, мы имеем решение уравнения (1.3.11) для плоской волны, распространяющейся вдоль положительного направления оси z:

Фаза волны:

Где K — волновое число (в общем случае волновой вектор).

Фиксированная ориентация вектора напряженности поля вдоль заданной координатной оси носит название Поляризации волны . Соотношение (1.3.12) задает поляризацию напряженности электрического поля вдоль оси Х .

На рис.1.3.2. показано положение плоскости постоянной фазы для двух моментов времени.

Рис.1.3.2. Движение плоскости постоянной фазы.

Для плоскости постоянной фазы (φ = const), которая движется вдоль оси z, ее производная по времени равна нулю:

В соответствии с (1.1.26) получаем:

Где - скорость движения поверхности неизменной фазы или Фазовая скорость.

Подставив (1.3.12) в (1.3.11) получим

И, сократив , получим Дисперсионное уравнение для плоской волны в свободном пространстве :

Или (1.3.16)

Разные знаки в выражении для K соответствуют волнам, распространяющимся вдоль оси Z в разных направлениях. В соответствии с (1.3.14):

В свободном пространстве , где C — скорость света.

Таким образом, из уравнений Максвелла следует, что скорость света в свободном пространстве определяется диэлектрической и магнитной проницаемостями вакуума:

Диэлектрическая и магнитная проницаемость вакуума – это характеристики пространства, связанные со статическими полями. Первая из них характеризует только диэлектрические свойства среды. А вторая – только магнитные свойства. Результат решения уравнений Масквелла, представленный формулой (1.3.18), связывает воедино электростатику, магнитостатику и динамический процесс распространения света.

Действительно, диэлектрическую проницаемость можно получить экспериментально путем измерения силы взаимодействия двух известных зарядов Q1 и Q2 расположенных на расстоянии R друг от друга:

(закон Кулона).

.

Магнитную проницаемость можно получить, измерив силу взаимодействия двух проводников длиной и с током и соответственно, расположенных на расстоянии R друг от друга:

(закон Био-Савара-Лапласа)

Таким образом, из статического эксперимента можно получить численное значение .

Следовательно, уравнения Максвелла позволяют выразить скорость света через характеристики, полученные с помощью статических измерений.

Уравнения Максвелла связывают воедино электрическое поле, магнитное поле и электромагнитные волны (свет). Создание концепции электромагнитного поля и формулировка уравнений, его описывающих, послужили одной из важнейших отправных точек физики XX века.

Группой дифференциальных уравнений. Дифференциальные уравнения, которым должен удовлетворять каждый из векторов поля отдельно, можно получить исключением остальных векторов. Для области поля, которая не содержит свободных зарядов и токов ($\overrightarrow{j}=0,\ \rho =0$) уравнения для векторов $\overrightarrow{B}$ и $\overrightarrow{E}$ имеют вид:

Уравнения (1) и (2) - это обычные уравнения волнового движения, которые обозначают, что световые волны распространяются в среде со скоростью ($v$) равной:

Примечание 1

Надо заметить, что понятие скорости электромагнитной волны имеет определенный смысл лишь в связи с волнами простого вида, например плоскими. Скорость $v$ не является скоростью распространения волны в случае произвольного решения уравнений (1) и (2), так как эти уравнения допускают решения в виде стоячих волн.

В любой волновой теории света элементарным процессом считают гармоническую волну в пространстве и времени. Если частота этой волны лежит в интервале $4\cdot {10}^{-14}\frac{1}{c}\le \nu \le 7,5\cdot {10}^{-14}\frac{1}{c}$, такая волна вызывает у человека физиологическое ощущение определенного цвета.

Для прозрачных веществ диэлектрическая проницаемость $\varepsilon $ обычно больше единицы, магнитная проницаемость среды $\mu $ почти равна единице, получается, в соответствии с уравнением (3) скорость $v$ меньше скорости света в вакууме. Что было впервые экспериментально показано для случая распространения света в воде учеными Фуко и Физо .

Обычно определяют не саму величину скорости ($v$), а отношение $\frac{v}{c}$, для чего пользуются законом преломления . В соответствии с данным законом при падении плоской электромагнитной волны на плоскую границу, которая разделяет две однородные среды, отношение синуса угла ${\theta }_1$ падения к синусу угла преломления ${\theta }_2$ (рис.1) постоянно и равно отношению скоростей распространения волн в двух средах ($v_1\ и{\ v}_2$):

Значение постоянного отношения выражения (4) обычно обозначают как $n_{12}$. Говорят, что $n_{12}$ -- относительный показатель преломления второго вещества по отношению к первому, который испытывает волновой фронт (волна) при прохождении из первой среды во вторую.

Рисунок 1.

Определение 1

Абсолютным показателем преломления (просто показателем преломления) среды $n$ называют показатель преломления вещества по отношению к вакууму:

Вещество, имеющее больший показатель преломления является оптически более плотным. Относительный показатель преломления двух веществ ($n_{12}$) связан с их абсолютными показателями ($n_1,n_2$) как:

Формула Максвелла

Определение 2

Максвелл получил, что показатель преломления среды зависит от ее диэлектрических и магнитных свойств. Если в формулу(5) подставить выражение для скорости распространения света из уравнения (3), то мы получим:

\ \

Выражение (7) называется формулой Максвелла . Для большинства немагнитных прозрачных веществ, которые рассматриваются в оптике магнитная проницаемость вещества приблизительно можно считать равной единице, поэтому часто равенство (7) применяют в виде:

Часто предполагается, что $\varepsilon $ является постоянной величиной. Однако нам хорошо известны опыты Ньютона с призмой по разложению света, в результате этих экспериментов становится очевидным, что показатель преломления зависит от частоты света. Следовательно, если считать, что формула Максвелла справедлива, то следует признать, что диэлектрическая проницаемость вещества зависит от частоты поля. Связь $\varepsilon $ с частотой поля можно объяснить только в том случае, если принять во внимание атомное строение вещества.

Однако надо сказать, что формула Максвелла с постоянной диэлектрической проницаемостью вещества, в некоторых случаях может быть использована как хорошее приближение. Примером могут служить газы с простой химической структурой, в которых нет существенной дисперсии света, что означает, слабую зависимость оптических свойств от цвета. Формула (8), также хорошо работает для жидких углеводородов. С другой стороны, у большинства твердых тел, например у стекол, и большой части жидкостей наблюдается сильное отклонение от формулы (8), если считать $\varepsilon $ постоянной.

Пример 1

Задание: Какова концентрация свободных электронов в ионосфере, если известно, что для радиоволн с частотой $\nu$ показатель ее преломления равен $n$.

Решение:

За основу решения задачи возьмем формулу Максвелла:

\[\varepsilon =1+\varkappa =1+\frac{P}{{\varepsilon }_0E}\left(1.2\right),\]

где $\varkappa $ -- диэлектрическая восприимчивость, P - мгновенное значение поляризованности. Из (1.1) и (1.2) следует, что:

В том случае, если концентрация атомов в ионосфере равна $n_0,$ то мгновенное значение поляризованности равно:

Из выражений (1.3) и (1.4) имеем:

где $\omega $ -- циклическая частота. Уравнение вынужденных колебаний электрона без учета силы сопротивления можно записать как:

\[\ddot{x}+{{\omega }_0}^2x=\frac{q_eE_0}{m_e}cos\omega t\left(1.7\right),\]

где $m_e$ -- масса электрона, $q_e$ -- заряд электрона. Решением уравнения (1.7) служит выражение:

\ \

Нам известна частота радиоволн, следовательно, можно найти циклическую частоту:

\[\omega =2\pi \nu \left(1.10\right).\]

Подставим в (1.5) правую часть выражения (1.9) вместо $x_{max}$ и используем (1.10), получим:

Ответ: $n_0=\frac{E_0m_e4\pi ^2\nu ^2}{{q_e}^2}\left(1-n^2\right).$

Пример 2

Задание: Объясните, почему формула Максвелла противоречит некоторым экспериментальным данным.

Решение:

Из классической электромагнитной теории Максвелла следует, что показатель преломления среды можно выразить как:

где в оптической области спектра для большинства веществ можно считать, что $\mu \approx 1$. Получается, что показатель преломления для вещества должен быть постоянной величиной, так как $\varepsilon $ -- диэлектрическая проницаемость среды постоянна. Тогда как эксперимент показывает, что показатель преломления зависит от частоты. Трудности, которые возникли перед теорией Максвелла в данном вопросе, устраняет электронная теория Лоренца. Лоренц рассматривал дисперсию света как результат взаимодействия электромагнитных волн с заряженными частицами, которые входят в состав вещества и совершают вынужденные колебания в переменном электромагнитном поле волны света. Используя свою гипотезу, Лоренц получил формулу, связывающую показатель преломления с частотой электромагнитной волны (см. пример 1).

Ответ: Проблема теории Максвелла в том, что она является макроскопической и не рассматривает структуру вещества.

Любой колебательный контур излучает энергию. Изменяющееся электрическое поле возбуждает в окружающем пространстве переменное магнитное поле, и наоборот. Математические уравнения, описывающие связь магнитного и электрического полей, были выведены Максвеллом и носят его имя. Запишем уравнения Максвелла в дифференциальной форме для случая, когда отсутствуют электрические заряды () и токи (j = 0 ):

Величины и - электрическая и магнитная постоянные, соответственно, которые связаны со скоростью света в вакууме соотношением

Постоянные и характеризуют электрические и магнитные свойства среды, которую мы будем считать однородной и изотропной.

В отсутствие зарядов и токов невозможно существование статических электрического и магнитного полей. Однако переменное электрическое поле возбуждает магнитное поле, и наоборот, переменное магнитное поле создает электрическое поле. Поэтому имеются решения уравнений Максвелла в вакууме, в отсутствие зарядов и токов, где электрические и магнитные поля оказываются неразрывно связанными друг с другом. В теории Максвелла впервые были объединены два фундаментальных взаимодействия, ранее считавшихся независимыми. Поэтому мы говорим теперь об электромагнитном поле .

Колебательный процесс в контуре сопровождается изменением окружающего его поля. Изменения, происходящие в окружающем пространстве, распространяются от точки к точке с определенной скоростью, то есть колебательный контур излучает в окружающее его пространство энергию электромагнитного поля.

При строго гармоническом изменении во времени векторов и электромагнитная волна называется монохроматической.

Получим из уравнений Максвелла волновые уравнения для векторов и .

Волновое уравнение для электромагнитных волн

Как уже отмечалось в предыдущей части курса, ротор (rot) и дивергенция (div) - это некоторые операции дифференцирования, производимые по определенным правилам над векторами. Ниже мы познакомимся с ними поближе.

Возьмем ротор от обеих частей уравнения

При этом воспользуемся доказываемой в курсе математики формулой:

где - введенный выше лапласиан. Первое слагаемое в правой части равно нулю в силу другого уравнения Максвелла:

Получаем в итоге:

Выразим rotB через электрическое поле с помощью уравнения Максвелла:

и используем это выражение в правой части (2.93). В результате приходим к уравнению:

Учитывая связь

и вводя показатель преломления среды

запишем уравнение для вектора напряженности электрического поля в виде:

Сравнивая с (2.69), убеждаемся, что мы получили волновое уравнение, где v - фазовая скорость света в среде :

Взяв ротор от обеих частей уравнения Максвелла

и действуя аналогичным образом, придем к волновому уравнению для магнитного поля:

Полученные волновые уравнения для и означают, что электромагнитное поле может существовать в виде электромагнитных волн, фазовая скорость которых равна

В отсутствие среды (при ) скорость электромагнитных волн совпадает со скоростью света в вакууме.

Основные свойства электромагнитных волн

Рассмотрим плоскую монохроматическую электромагнитную волну, распространяющуюся вдоль оси х:

Возможность существования таких решений следует из полученных волновых уравнений. Однако напряженности электрического и магнитного полей не являются независимыми друг от друга. Связь между ними можно установить, подставляя решения (2.99) в уравнения Максвелла. Дифференциальную операцию rot , применяемую к некоторому векторному полю А можно символически записать как детерминант:

Подставляя сюда выражения (2.99), зависящие только от координаты x , находим:

Дифференцирование плоских волн по времени дает:

Тогда из уравнений Максвелла следует:

Отсюда следует, во-первых, что электрическое и магнитное поля колеблются в фазе:

Иными словами и в изотропной среде,

Тогда можно выбрать координатные оси так, чтобы вектор был направлен вдоль оси у (рис. 2.27):


Рис. 2.27. Колебания электрического и магнитного полей в плоской электромагнитной волне

В этом случае уравнения (2.103) приобретают вид:

Отсюда следует, что вектор направлен вдоль оси z:

Иначе говоря, векторы электрического и магнитного поля ортогональны друг другу и оба - направлению распространения волны. С учетом этого факта уравнения (2.104) еще более упрощаются:

Отсюда вытекает обычная связь волнового вектора, частоты и скорости:

а также связь амплитуд колебаний полей:

Отметим, что связь (2.107) имеет место не только для максимальных значений (амплитуд) модулей векторов напряженности электрического и магнитного поля волны, но и для текущих - в любой момент времени.

Итак, из уравнений Максвелла следует, что электромагнитные волны распространяются в вакууме со скоростью света. В свое время этот вывод произвел огромное впечатление. Стало ясно, что не только электричество и магнетизм являются разными проявлениями одного и того же взаимодействия. Все световые явления, оптика, также стали предметом теории электромагнетизма. Различия в восприятии человеком электромагнитных волн связаны с их частотой или длиной волны.

Шкала электромагнитных волн представляет собой непрерывную последовательность частот (и длин волн) электромагнитного излучения. Теория электромагнитных волн Максвелла позволяет установить, что в природе существуют электромагнитные волны различных длин, образованные различными вибраторами (источниками). В зависимости от способов получения электромагнитных волн их разделяют на несколько диапазонов частот (или длин волн).

На рис. 2.28 представлена шкала электромагнитных волн.


Рис. 2.28. Шкала электромагнитных волн

Видно, что диапазоны волн различных типов перекрывают друг друга. Следовательно, волны таких длин можно получить различными способами. Принципиальных различий между ними нет, поскольку все они являются электромагнитными волнами, порожденными колеблющимися заряженными частицами.

Уравнения Максвелла приводят также к выводу о поперечности электромагнитных волн в вакууме (и в изотропной среде): векторы напряженности электрического и магнитного полей ортогональны друг другу и направлению распространения волны.

Дополнительная информация

http://www.femto.com.ua/articles/part_1/0560.html – Волновое уравнение. Материал из Физической Энциклопедии.

http://fvl.fizteh.ru/courses/ovchinkin3/ovchinkin3-10.html – Уравнения Максвелла. Видеолекции.

http://elementy.ru/trefil/24 – Уравнения Максвелла. Материал из «Элементов».

http://nuclphys.sinp.msu.ru/enc/e092.htm – Очень кратко об уравнениях Максвелла.

http://telecomclub.org/?q=node/1750 – Уравнения Максвелла и их физический смысл.

http://principact.ru/content/view/188/115/ – Кратко об уравнениях максвелла для электромагнитного поля.

Эффект Доплера для электромагнитных волн

Пусть в некоторой инерциальной системе отсчета К распространяется плоская электромагнитная волна. Фаза волны имеет вид:

Наблюдатель в другой инерциальной системе отсчета К" , движущейся относительно первой со скоростью V вдоль оси x , также наблюдает эту волну, но пользуется другими координатами и временем: t", r". Связь между системами отсчета дается преобразованиями Лоренца:

Подставим эти выражения в выражение для фазы , чтобы получить фазу волны в движущейся системе отсчета:

Это выражение можно записать как

где и - циклическая частота и волновой вектор относительно движущейся системы отсчета. Сравнивая с (2.110), находим преобразования Лоренца для частоты и волнового вектора:

Для электромагнитной волны в вакууме

Пусть направление распространения волны составляет в первой системе отсчета угол с осью х:

Тогда выражение для частоты волны в движущейся системе отсчета принимает вид:

Это и есть формула Доплера для электромагнитных волн .

Если , то наблюдатель удаляется от источника излучения и воспринимаемая им частота волны уменьшается:

Если , то наблюдатель приближается к источнику и частота излучения для него увеличивается:

При скоростях V << с можно пренебречь отклонением квадратного корня в знаменателях от единицы, и мы приходим к формулам, аналогичным формулам (2.85) для эффекта Доплера в звуковой волне.

Отметим существенную особенность эффекта Доплера для электромагнитной волны. Скорость движущейся системы отсчета играет здесь роль относительной скорости наблюдателя и источника. Полученные формулы автоматически удовлетворяют принципу относительности Эйнштейна, и с помощью экспериментов невозможно установить, что именно движется - источник или наблюдатель. Это связано с тем, что для электромагнитных волн отсутствует среда (эфир), которая играла бы ту же роль, что и воздух для звуковой волны.

Заметим также, что для электромагнитных волн имеет место поперечный эффект Доплера . При частота излучения изменяется:

в то время как для звуковых волн движение в направлении, ортогональном распространению волны, не приводило к сдвигу частот. Этот эффект прямо связан с релятивистским замедлением времени в движущейся системе отсчета: наблюдатель на ракете видит увеличение частоты излучения или, в общем случае, ускорение всех процессов, происходящих на Земле.

Найдем теперь фазовую скорость волны

в движущейся системе отсчета. Имеем из преобразований Лоренца для волнового вектора:

Подставим сюда соотношение:

Получаем:

Отсюда находим скорость волны в движущейся системе отсчета:

Мы обнаружили, что скорость волны в движущейся системе отсчета не изменилась и по-прежнему равна скорости света с . Отметим всё же, что, при корректных выкладках, это не могло не получиться, так как инвариантность скорости света (электромагнитных волн) в вакууме есть основной постулат теории относительности уже «заложенный» в использованные нами преобразования Лоренца для координат и времени (3.109).

Пример 1. Фотонная ракета движется со скоростью V = 0.9 с , держа курс на звезду, наблюдавшуюся с Земли в оптическом диапазоне (длина волны мкм ). Найдем длину волны излучения, которую будут наблюдать космонавты.

Длина волны обратно пропорциональна частоте колебаний. Из формулы (2.115) для эффекта Доплера в случае сближения источника света и наблюдателя находим закон преобразования длин волн:

откуда следует результат:

По рис. 2.28 определяем, что для космонавтов излучение звезды сместилось в ультрафиолетовый диапазон.

Энергия и импульс электромагнитного поля

Объемная плотность энергии w электромагнитной волны складывается из объемных плотностей электрического и магнитного полей.

    Уравнения Максвелла содержат уравнение непрерывности, выражающее закон сохранения заряда. 3. Уравнения Максвелла выполняются во всех инерциальных системах отчета. 4. Уравнения Максвелла симметричны.

6.3.4. Электромагнитные волны

Из уравнений Максвелла следует, что электромагнитное поле способно существовать самостоятельно, без электрических зарядов и токов. Изменяющееся электромагнитное поле имеет волновой характер и распространяется в вакууме в виде электромагнитных волн со скоростью света.

Существование электромагнитных волн вытекает из уравнений Максвелла, которые описываются волновыми уравнениями для векторов исоответственно:


, (5.18)

, (5.19)

Изменение во времени магнитного поля возбуждает переменное электрическое поле и, наоборот, изменение во времени электрического поля возбуждает переменное магнитное поле. Вихревое электрическое поле, индуцированное переменным магнитным полем , образует с векторомлевовинтовую систему (рис. 7.2), а вихревое магнитное поле, индуцированное электрическим полем, образует с векторомправовинтовую систему (рис. 5.2).

Происходит непрерывное их взаимопревращение, что и дает возможность

существовать и распространяться им в пространстве и времени при отсутствии зарядов и токов.

Таким образом, теория Максвелла не только предсказала существование электромагнитных волн, но и установила их важнейшие свойства:

    Скорость распространения электромагнитной волны в нейтральной непроводящей и неферромагнитной среде

(5.20)

где c  скорость света в вакууме.

Рис. 5.3 Рис. 5.4

3. В электромагнитной волне векторыивсегда колеблются в одинаковых фазах (рис. 5.4), причем между мгновенными значениями Е и В в любой точке пространства

существует связь, а именно: Е = vB или
. (5.21)

Существование электромагнитных волн позволило Максвеллу объяснить волновую природу света. Свет  это электромагнитные волны.

6.3.5. Поток энергии электромагнитного поля

При распространении электромагнитных волн в пространстве и времени они несут с собой энергию. Она заключена во взаимно превращающихся электрическом и магнитном полях.

Объемная плотность энергии электрического поля

, (5.22)

где Е  напряженность электрического поля.

Объемная плотность энергии магнитного поля

, (5.23)

где В  индукция магнитного поля.

Следовательно, объемная плотность энергии электромагнитного поля в той области пространства, где находится в произвольный момент времени электромагнитная волна,

W = w э + w м =
. (5.24)

Или с учетом того, что Е = сВ и
, имеем

w =  o E 2 , (5.25)

или
. (5.26)

Энергию, переносимую электромагнитной волной в единицу времени через единичную площадку, называют плотностью потока электромагнитной энергии. Вектор плотности потока электромагнитной энергии называют вектором Пойнтинга.

Направление вектора Пойнтинга совпадает с направлением распространения электромагнитной волны, т. е. с направлением переноса энергии. Скорость переноса энергии равна фазовой скорости этой волны.

Если электромагнитная волна при распространении проходит сквозь некотoрую площадку S, перпендикулярную к направлению распространения ее, например, вдоль оси Х, то за некоторый промежуток времени dt волна пройдет расстояние dx = cdt, где с  скорость распространения волны.

Так как объемная плотность энергии электромагнитной волны

то полная энергия dW электромагнитной волны, заключенная в объеме

dW = wdV =  o E 2 cdtS. (5.27)

Следовательно, плотность потока электромагнитной энергии, проходящей через площадку S за время dt

. (5.28)

Вектор Пойнтинга совпадает по направлению со скоростью распространения электромагнитной волны, которая перпендикулярна и , т. е.

. (5.29)



© dagexpo.ru, 2024
Стоматологический сайт