Вирусологические методы исследования. Определение показаний для бактериологического, вирусологического, серологического исследований при расшифровке этиологии оки и оценка результатов Прямые и непрямые вирусологические методы исследования

19.07.2019

Вирусологические методы исследования широко применяются в медицине для диагностики множества инфекционных и некоторых онкологических заболеваний, имеющих вирусную природу.

Вирусологические методы исследования используются также с целью идентификации , изучения их биологии и способности воздействовать на клетки животных и человека, что в дальнейшем помогает понимать патогенез вирусных заболеваний и правильно выбирать методы их лечения. Кроме установления этиологии заболевания и мониторинга эффективности терапии, вирусологические методы исследования имеют большое значение в определении и проведении противоэпидемических мероприятий.

Прямые методы исследования в вирусологии

Прямые вирусологические методы исследования позволяют обнаружить вирус, вирусную нуклеиновую кислоту или вирусный антиген непосредственно в клиническом материале и являются, таким образом, наиболее быстрыми (экспресс-методы – до 24 ч). Данные методы менее информативны и требуют лабораторного подтверждения непрямыми методами диагностики в связи с нередким получением ложноотрицательных или ложноположительных результатов. К прямым относятся следующие методы исследования:

  • электронная микроскопия с окрашиванием вирусов методом негативного контрастирования (позволяет определить наличие вируса и его концентрацию в материале при условии, что в 1 мл содержится не менее 105 вирусных частиц);
  • иммунная электронная микроскопия, основанная на взаимодействии специфических антител с вирусами с образованием комплексов, которые легче обнаруживаются при негативном контрастировании, нежели вирусы отдельно;
  • твердофазный иммуноферментный анализ (ИФА) с использованием меченных ферментами антител, которые связываются с антигенами, образуя комплексы, выявляемые при добавлении субстрата для использованного фермента;
  • реакция иммунофлюоресценции (РИФ) – прямая или непрямая – основана на применении антител, связанных с флюоресцентным красителем;
  • радиоиммунный анализ (РИА) основан на использовании меченных радиоизотопами антител и гамма-счётчиков;
  • цитологические методы основаны на микроскопическом исследовании окрашенных мазков, биоптатов, материалов аутопсии;
  • молекулярные методы – молекулярная гибридизация нуклеиновых кислот и полимеразная цепная реакция (первая основана на выявлении комплементарных нитей нуклеиновых кислот с помощью метки, вторая – на принципе репликации вирусспецифической последовательности ДНК в три этапа).

Существует три варианта молекулярной гибридизации нуклеиновых кислот – точечная гибридизация, блот-гибридизация (используется для диагностики ВИЧ инфекции) и гибридизация in situ (непосредственно в инфицированных клетках). ПЦР (полимеразная цепная реакция) на сегодняшний день всё шире применяется в мониторинге и диагностике вирусных инфекций в связи с высокой чувствительностью и специфичностью данного метода.

Непрямые вирусологические методы исследования

Данные методы основаны на выделении и идентификации вируса. Это более трудоёмкие и длительные методики, однако, более точные. Материалом для таких исследований может быть содержимое везикул, соскобы (при ветряной оспе, герпетическом поражении кожи и слизистых оболочек), носоглоточный смыв (при респираторных инфекциях), кровь и ликвор (при арбовирусных инфекциях), фекалии (при энтеровирусных инфекциях), смывы (при кори, краснухе и др.). В связи с тем, что вирусы способны размножаться только в живых клетках, культивирование вируса осуществляют в культуре ткани, курином эмбрионе или в организме животного (хомяка, белой мыши, собаки, кошки, некоторых видов обезьян). Индикацию вируса проводят по цитопатическому действию, в реакции гемадсорбции, по цветной пробе, по результатам реакции торможения гемагглютинации, по изменениям или их отсутствию в куриных эмбрионах или культурах ткани, по выживаемости чувствительных животных.

Серологические методы диагностики, применяемые в вирусологии

Под серологической подразумеваются вирусологические методы исследования, основанные на реакции антиген-антитело. При этом чаще всего используются парные сыворотки крови, которые берутся с интервалом в несколько недель. При нарастании титра антител в 4 и более раз реакция считается положительной. Для определения типоспецифичности вирусов применяется реакция вируснейтрализации, с целью определения группоспецифичности – реакция связывания комплемента. Также широко применяются реакции пассивной гемагглютинации, торможения гемагглютинации, обратной пассивной гемагглютинации, РИФ и различные варианты иммуноферментного анализа.

Сравнительно недавно в ходе генно-инженерных исследований разработана методика получения моноклональных антител. Узкая специфичность моноклонов преодолевается применением нескольких моноклональных антител к разным вирусным детерминантам. Это повысило чувствительность и специфичность вирусологических методов исследования с определением вирусных антигенов. В настоящее время создано множество различных тест-систем для иммунологической диагностики вирусных инфекций.

Вирусологические методы исследования

методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в патогенезе вирусной инфекции.

В зараженных клеточных культурах вирусы можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса гриппа, дикого или вакцинного штамма вируса полиомиелита и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его - клонированием.

Для выделения вирусов применяют заражение восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект), образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2-3 пассажей вируса.

Для выделения ряда вирусов, например вирусов гриппа, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов - новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит дегенерация ткани, образуются включения и вирусоспецифические антигены . Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный анализ инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. Титр вируса выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциального ультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; выделение вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная диагностика вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная микроскопия , а также иммунофлюоресценция , метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда концентрация вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из везикул , секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. Реакция основана на гибридизации комплементарных нитей ДНК или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. Зонд метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, гибридизация in situ и др.

Антитела класса lgM появляются раньше, чем антитела класса G (на 3-5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- μ-антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования): реакции связывания комплемента, торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую - через 2-3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары антиген - антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. Идентификация антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций - изменчивость вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

Библиогр.: Букринская А.Г. Вирусология , М., 1986; Вирусология, Методы, под ред. Б. Мейхи, пер . с англ., М., 1988; Справочник по микробиологическим и вирусологическим методам исследования, под ред. М.О. Биргера, М., 1982.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

  • Вирусеми́я
  • Вирусология

Смотреть что такое "Вирусологические методы исследования" в других словарях:

    Вирусологические исследования - имеют целью обнаружение вирусов, их отождествление (идентификацию) и изучение биологических свойств. Для выделения вирусов (См. Вирусы) от человека, животных и растений исследуемый материал вводят в организм чувствительных к вирусам… … Большая советская энциклопедия

    ВИРУСОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ - вирусологические исследования, комплекс методов исследования, позволяющих распознать этиологию вирусного заболевания и изучить его возбудителя.Основными этапами В. и. являются выделение вируса от больных и павших животных (взятие, консервирование … Ветеринарный энциклопедический словарь

    ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ - ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ. см. ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ. Важнейшим условием получения достоверных результатов исследований является правильный выбор объектов анализа, своевременный их отбор и формулировка задачи исследования. Правила отбора проб … Болезни рыб: Справочник

    Лаборато́рии медици́нские - учреждения системы здравоохранения либо структурные подразделения лечебно профилактических или санитарно профилактических учреждений, предназначенные для проведения различных медицинских исследований. В эту группу не входят научно… … Медицинская энциклопедия

    Эпидемиология - I Эпидемиология (Эпидемия + греч. logos учение) наука, изучающая закономерности эпидемического процесса и разрабатывающая меры борьбы с заразными болезнями человека. Исторически Э. сложилась как научная дисциплина, объектом изучения которой… … Медицинская энциклопедия

    Вирусология - I Вирусология (вирус [ы] (Вирусы) + греч. logos учение) медико биологическая наука, изучающая вирусы. Возникла в конце 19 в., когда русский ученый Д.И. Ивановский (1892) впервые установил существование мельчайших микроорганизмов, вызывающих… … Медицинская энциклопедия

    Энцефали́т клещево́й - (синонимы: клещевой энцефаломиелит, весенне летний энцефалит, весенне летний менингоэнцефалит, таежный энцефалит, русский дальневосточный энцефалит) инфекционная болезнь, характеризующаяся лихорадкой, интоксикацией и преимущественным поражением… … Медицинская энциклопедия

Вирусологические методы исследования

методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в патогенезе вирусной инфекции.

В зараженных клеточных культурах можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса гриппа, дикого или вакцинного штамма вируса полиомиелита и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его - клонированием.

Для выделения вирусов применяют восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект), образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2-3 пассажей вируса.

Для выделения ряда вирусов, например вирусов гриппа, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов - новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит ткани, образуются и вирусоспецифические . Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциального ультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная , а также , метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из , секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. основана на гибридизации комплементарных нитей или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, in situ и др.

Антитела класса lgM появляются раньше, чем класса G (на 3-5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- μ-антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования): реакции связывания комплемента, торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую - через 2-3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары - антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций - вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

Библиогр.: Букринская А.Г. , М., 1986; Вирусология, Методы, под ред. Б. Мейхи, . с англ., М., 1988; Справочник по микробиологическим и вирусологическим методам исследования, под ред. М.О. Биргера, М., 1982.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Вирусологические методы исследования" в других словарях:

    Имеют целью обнаружение вирусов, их отождествление (идентификацию) и изучение биологических свойств. Для выделения вирусов (См. Вирусы) от человека, животных и растений исследуемый материал вводят в организм чувствительных к вирусам… … Большая советская энциклопедия

    ВИРУСОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ - вирусологические исследования, комплекс методов исследования, позволяющих распознать этиологию вирусного заболевания и изучить его возбудителя.Основными этапами В. и. являются выделение вируса от больных и павших животных (взятие, консервирование … Ветеринарный энциклопедический словарь

    ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ - ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ. см. ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ. Важнейшим условием получения достоверных результатов исследований является правильный выбор объектов анализа, своевременный их отбор и формулировка задачи исследования. Правила отбора проб … Болезни рыб: Справочник

    Учреждения системы здравоохранения либо структурные подразделения лечебно профилактических или санитарно профилактических учреждений, предназначенные для проведения различных медицинских исследований. В эту группу не входят научно… … Медицинская энциклопедия

    I Эпидемиология (Эпидемия + греч. logos учение) наука, изучающая закономерности эпидемического процесса и разрабатывающая меры борьбы с заразными болезнями человека. Исторически Э. сложилась как научная дисциплина, объектом изучения которой… … Медицинская энциклопедия

    I Вирусология (вирус [ы] (Вирусы) + греч. logos учение) медико биологическая наука, изучающая вирусы. Возникла в конце 19 в., когда русский ученый Д.И. Ивановский (1892) впервые установил существование мельчайших микроорганизмов, вызывающих… … Медицинская энциклопедия

    - (синонимы: клещевой энцефаломиелит, весенне летний энцефалит, весенне летний менингоэнцефалит, таежный энцефалит, русский дальневосточный энцефалит) инфекционная болезнь, характеризующаяся лихорадкой, интоксикацией и преимущественным поражением… … Медицинская энциклопедия

Вирусологические методы исследования - методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в е вирусной инфекции.

Вирусологические методы исследования основаны также на иммунологических процессах (взаимодействие антигена с антителами), биологических свойствах вируса (способность к гемагглютинации, гемолизу, ферментативная активность), особенностях взаимодействия вируса с клеткой-хозяином (характер цитопатического эффекта, образование внутриклеточных включений и т.д.).

В диагностике вирусных инфекций, при культивировании, выделении и идентификации вирусов, а также при получении вакцинных препаратов широко применяют метод культуры ткани и клеток. Используют первичные, вторичные, стабильные перевиваемые и диплоидные клеточные культуры. Первичные культуры получают при диспергировании ткани протеолитическими ферментами (трипсином, коллагеназой). Источником клеток могут быть ткани и органы (чаще почки) эмбрионов человека и животных. Суспензию клеток в питательной среде помещают в так называемые матрацы, бутыли или чашки Петри, где после прикрепления к поверхности сосуда клетки начинают размножаться. Для заражения вирусами используют обычно клеточный монослой. Питательную жидкость сливают, вносят вирусную суспензию в определенных разведениях и после контакта с клетками добавляют свежую питательную среду, обычно без сыворотки.

Клетки большинства первичных культур могут быть пересеяны, такая культура называется вторичной. При дальнейшем пассировании клеток формируется популяция фибробластоподобных клеток, способных к быстрому размножению, большая часть которых сохраняет исходный набор хромосом. Это так называемые диплоидные клетки. При серийном культивировании клеток получают стабильные перевиваемые клеточные культуры. При пассажах появляются быстро делящиеся однородные клетки с гетероплоидным набором хромосом. Стабильные линии клеток могут быть однослойными и суспензионными. Однослойные культуры растут в виде сплошного слоя на поверхности стекла, суспензионные - в виде суспензий в различных сосудах с использованием перемешивающих устройств. Существует более 400 линий клеток, полученных от 40 различных видов животных (в т.ч. от приматов, птиц, рептилий, амфибий, рыб, насекомых) и человека.

В искусственных питательных средах можно культивировать кусочки отдельных органов и тканей (органные культуры). Эти типы культур сохраняют структуру ткани, что особенно важно для выделения и пассирования вирусов, которые не репродуцируются в недифференцированных тканевых культурах (например, коронавирусы).

В зараженных клеточных культурах вирусы можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса а, дикого или вакцинного штамма вируса а и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его - клонированием.

Для выделения вирусов применяют заражение восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект),

образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2-3 пассажей вируса.

Для выделения ряда вирусов, например вирусов а, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов - новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит дегенерация ткани, образуются включения и вирусоспецифические антигены. Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный анализ инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. Титр вируса выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциального ультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; выделение вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная диагностика вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная микроскопия,

а также иммунофлюоресценция, метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда концентрация вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из везикул, секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. Реакция основана на гибридизации комплементарных нитей ДНК или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. Зонд метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, гибридизация in situ и др.

Антитела класса lgM появляются раньше, чем антитела класса G (на 3-5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- m -антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования ): реакции связывания комплемента,

торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую - через 2-3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары антиген - антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. Идентификация антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций - изменчивость вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

Библиогр.: Букринская А.Г. Вирусология, М., 1986; Вирусология, Методы, под ред. Б. Мейхи, пер. с англ., М., 1988; Справочник по микробиологическим и вирусологическим методам исследования, под ред. М.О. Биргера, М., 1982.

Лабораторная диагностика вирусных инфекций

Этиологическая диагностика вирусных заболеваний проводится вирусологическим, вирусоскопическим, серологическим и молекулярно-генетическим методами . Три последних метода могут быть использованы как экспресс-диагностические.

Вирусологический метод диагностики.

Конечной целью метода является идентификация вирусов до вида или серологического варианта. Вирусологический метод включает несколько этапов: 1) отбор материала для исследования; 2) обработку вируссодержащего материала; 3) заражение материалом чувствительных живых систем; 4) индикацию вирусов в живых системах; 5) титрование выделенных вирусов; 6) идентификацию вирусов в иммунных реакциях.

1. Отбор материала для исследования. Проводится в ранние сроки заболевания при соблюдении правил, предотвращающих контаминацию материала посторонней микрофлорой и инфицирование медицинского персонала. Для предупреждения инактивации вирусов при транспортировке материала, он помещается в вирусную транспортировочную среду (ВТС), состоящую из сбалансированного солевого раствора, антибиотиков и сывороточного альбумина. Транспортируется материал в специальном контейнере с термоизоляцией и закрытыми пластиковыми пакетами, содержащими лед. При необходимости материал хранят при -20˚С. Каждый образец материала для исследования должен иметь маркировку и этикетку с указанием фамилии больного, типа материала, даты его забора, развернутый клинический диагноз и другие сведения.

В зависимости от характера заболевания, материалом для исследования могут быть: 1) смывы с носовой части глотки и мазок из глотки; 2) спинномозговая жидкость; 3) кал и ректальные мазки; 4) кровь; 5) моча; 6) жидкость из серозных полостей; 7) мазок с конъюнктивы; 8) содержимое везикул; 8) секционный материал.

Для получения смыва из ротоглотки используют 15-20 мл ВТС. Больной тщательно в течение 1 минуты полощет горло ВТС и собирает смыв в стерильный флакон.

Мазок с задней стенки глотки берут стерильным ватным тампоном, надавливая на корень языка шпателем. Тампон помещают в 2-3 мл ВТС, ополаскивают и отжимают.

Спинномозговую жидкость получают при спинномозговой пункции. 1-2 мл спинномозговой жидкости помещают в стерильную посуду и доставляют в лабораторию.

Пробы кала отбирают в течение 2-3 дней в стерильные флаконы. Из полученного материала готовят 10 % суспензию с использованием раствора Хенкса. Суспензию центрифугируют при 3000 об/мин, собирают надосадочную жидкость, вносят в нее антибиотики и помещают в стерильную посуду.

Кровь, полученную при венепункции в объеме 5-10 мл, дефибринируют путем добавления гепарина. Цельную кровь не замораживают, антибиотики не добавляют. Для получения сыворотки пробы крови выдерживают в термостате при 37˚С в течение 60 минут.

Жидкость из серозных полостей получают при их пункции в количестве 1-2 мл. Жидкость используется сразу или сохраняется в замороженном состоянии.

Мазок с конъюнктивы берут стерильным тампоном и помещают в ВТС, после чего проводят центрифугирование взятого материала и его замораживание.

Содержимое везикул отсасывают шприцем с тонкой иглой и помещают в ВТС. Материал посылается в лабораторию в виде высушенных мазков на предметных стеклах или в запаянных стерильных капиллярах или ампулах.

Секционный материал отбирают в возможно ранние сроки, соблюдая правила асептики. Для отбора каждой пробы используют отдельные наборы стерильных инструментов. Количество отбираемых тканей составляет 1-3 г, которые помещают в стерильные флаконы. Вначале берут пробы внеполостных органов (мозг, лимфатические узлы и др.). Ткани грудной полости берут до вскрытия брюшной полости. Полученные образцы тканей растирают в ступке с добавлением стерильного песка и стерильного раствора натрия хлорид, после чего материал центрифугируют. Надосадочную жидкость собирают во флаконы, добавляют антибиотики. Материал для вирусологического исследования используется сразу или хранится при -20˚С.

2. Обработка вируссодержащего материала. Проводится с целью освобождения материала от сопутствующей бактериальной микрофлоры. Для этого используются физические и химические методы. Физические методы: 1) фильтрование через различные бактериальные фильтры; 2) центрифугирование. Химические методы: 1) обработка материала эфиром в случаях выделения вирусов, не имеющих суперкапсида; 2) добавление к материалу смеси гептана и фреона; 3) внесение антибиотиков (пенициллин – 200-300 ЕД/мл; стрептомицин – 200-500 мкг/мл; нистатин – 100-1000 ЕД/мл).

Лабораторные животные . Используются белые мыши, морские свинки, хомяки, кролики и др. Белые мыши наиболее чувствительны к большому числу видов вирусов. Способ заражения животных определяется тропизмом вируса к тканям. Заражение в мозг применяется при выделении нейротропных вирусов (вирусы бешенства, полиовирусы и др.). Интраназальное заражение проводят при выделении возбудителей респираторных инфекций. Широко используются внутримышечный, внутривенный, внутрибрюшинный, подкожный и другие методы заражения. Заболевших животных усыпляют эфиром, вскрывают и производят забор материала из органов и тканей.

Куриные эмбрионы . Широко доступны и просты в работе. Применяют куриные эмбрионы в возрасте от 5 до 14 дней. Перед заражением куриные эмбрионы овоскопируют: определяют их жизнеспособность, отмечают на скорлупе границу воздушного мешка и месторасположение эмбриона («темный глаз» эмбриона). Работа с куриными эмбрионами проводится в стерильном боксе стерильными инструментами (пинцеты, шприцы, ножницы, копье и др.). После выполнения фрагмента работы инструменты погружают в 70 % этиловый спирт и перед следующей манипуляцией прожигают. Перед заражением скорлупу куриного эмбриона протирают горящим спиртовым тампоном и спиртовым раствором йода. Объем исследуемого материала, вводимого в эмбрион, составляет 0,1-0,2 мл. Для выделения вирусов из одного материала используют не менее 4 куриных эмбрионов.


Существует несколько способов заражения куриного эмбриона: в полости амниона и аллантоиса, на хорион-аллантоисную оболочку, в желточный мешок (рис. 1).

Заражение в полость аллантоиса . Куриное яйцо располагают вертикально, воздушным мешком вверх. В центре тупого полюса яйца над воздушным мешком прокалывают скорлупу, вводят иглу для внутримышечных инъекций на 2-3 мм ниже границы воздушного мешка и туберкулиновым шприцем вводят исследуемый материал. Прокол в скорлупе закрывают расплавленным парафином или лейкопластырем.

Заражение в полость амниона . Над воздушным мешком вертикально расположенного яйца прорезают окно размером 1х1 см и осторожно снимают часть хорион-аллантоисной оболочки над телом эмбриона. Пинцетом вводят в него исследуемый материал с помощью туберкулинового шприца. Амниона приводят в исходное положение, отпуская пинцет. Отверстие в скорлупе закрывают лейкопластырем.

Заражение на хорион-аллантоисную оболочку . Над воздушной камерой вертикально расположенного яйца вырезают кусочек скорлупы, создавая окно. Затем отслаивают оболочку под скорлупой, обнажая участок хорион-аллантоисной оболочки, на который наносят исследуемый материал. Отверстие в скорлупе заклеивают лейкопластырем.

Заражение в желточный мешок . Яйцо укладывают горизонтально, чтобы тело эмбриона располагалось внизу, а желток над ним. Через прокол скорлупы в области воздушного мешка вводят иглу для внутримышечных инъекций по центральной оси яйца на глубину 2/3 длины иглы и шприцем вводят исследуемый материал. Отверстие в скорлупе заклеивают лейкопластырем.

После заражения эмбрионы инкубируют в термостате, располагая тупым концом кверху. Температура и продолжительность инкубации зависят от биологических свойств изолируемого вируса. По окончании инкубации эмбрионы охлаждают при +4˚С 16-18 ч. После этого куриный эмбрион стерильно вскрывают, вырезая в скорлупе отверстие над воздушным мешком выше обозначенной границы. Пастеровской пипеткой или шприцем отсасывают аллантоисную, затем амниотическую жидкость, разрезают хорион-аллантоисную оболочку для изучения, остальное содержимое яйца извлекают в чашку Петри. Аллантоисная и амниотическая жидкости используются для индикации вирусов.

Культуры органов. Это правильно приготовленные срезы органов, которые in vitro сохраняют свою структуру и функции в течение нескольких дней, а иногда и недель. Культуры органов выращивают на поверхности жидкой питательной среды с помощью «плота» или «платформы». Заражение культуры органов проводят путем внесения кусочков органа или ткани в пробирку с исследуемым материалом. Адсорбцию вируса проводят в течение 1-2 ч при комнатной температуре. Затем исследуемый материал сливают, фрагменты органа или ткани отмывают в растворе Хенкса, помещают в сосуд для культивирования, вносят питательную среду и выдерживают в термостате. Забор материала для обнаружения вируса в культуре ткани начинают со 2 дня культивирования.

Культуры клеток. Культура клеток – это популяция однотипных клеток организма животных или человека, которая выращивается в искусственных условиях и предназначается для культивирования вирусов. По длительности жизни клеточные культуры подразделяются на: 1) первичные; 2) полуперевиваемые; 3) перевиваемые.

Первичные культуры клеток получают из тканей животных и человека путём их ферментативной дезинтеграции. Кусочки ткани помещают в 0,25 % раствор трипсина при температуре 37˚С и периодически перемешивают. В результате этого происходит отделение клеток ткани друг от друга. Порции клеток собирают по мере их отделения, центрифугируют, трипсин сливают, вносят среду роста и суспендируют в ней клетки. Первичные культуры клеток могут претерпевать до 10 делений in vitro, обладают высокой чувствительностью ко многим вирусам, могут быть получены в большом количестве, безопасны в онкогенном отношении. Недостатком первичных культур является значительная трудоёмкость и длительность получения, а также возможная контаминация латентными вирусами. К первичным культурам клеток относятся клетки почки эмбриона человека, макаки резус, эмбриона свиньи, фибробласты куриных эмбрионов.

Полуперевиваемые культуры клеток представляют собой диплоидные клетки одного типа, которые способны претерпевать in vitro до 100 делений, сохраняя при этом исходный диплоидный набор хромосом. К полуперевиваемым культурам клеток относятся фибробласты эмбриона человека (рис. 2). Эти клетки чрезвычайно требовательны к условиям культивирования, поэтому в практике вирусологических лабораторий имеют ограниченное применение.

Перевиваемые культуры клеток – это однотипные опухолевые или нормальные клетки человека и животных с изменённым кариотипом, способные к неограниченному росту в условиях in vitro. Перевиваемые культуры клеток просты при культивировании, в связи с чем широко используются при лабораторной диагностике вирусных заболеваний у человека. К перевиваемым культурам клеток относятся линии НеLа (клетки карциномы шейки матки человека), КВ (клетки карциномы полости рта человека), Vero (клетки почки зеленой мартышки), СПЭВ (клетки почки эмбриона свиньи) и др.

Выращивание культур клеток независимо от их типа проводится в стерильных условиях в специальных плоских стеклянных сосудах – матрацах, в которые вносится питательная среда. На дне матраца клетки при своем размножении образуют монослой.

Для культивирования культур клеток используются специальные питательные среды, содержащие физиологические количества аминокислот, углеводов, минеральных солей, и имеющие рН=7,2-7,4. Наряду с питательными веществами в средах имеется индикатор, изменяющий цвет среды при сдвиге рН от оптимального значения. Наиболее широко используемыми при работе с культурами клеток являются: среда 199, среда Игла. Среда 199 включает 60 компонентов и применяется для культивирования перевиваемых и первично-трипсинизированных клеток. Среда Игла содержит минимальный набор аминокислот (13) и витаминов (8). Применяется для культивирования диплоидных и перевиваемых клеточных культур.

Выращивание клеток должно проводится в асептических условиях, в связи с чем в питательные среды вносят антибиотики (например, пенициллин и стрептомицин).

4. Индикация вирусов в живых системах. Индикация вирусов – это обнаружение вирусов в исследуемом материале без установления их принадлежности к семейству, роду, виду или сероварианту.

Индикация вирусов на лабораторных животных. О присутствии вирусов в организме прежде всего свидетельствует развитие симптомов заболевания или гибель животного. У погибшего или предварительно усыпленного эфиром животного отбирают образцы пораженных органов и тканей, помещают их в фарфоровую ступку, добавляют солевой раствор и растирают с песком. Полученную суспензию центрифугируют для осаждения тканевого детрита. В надосадочной жидкости проводят индикацию вирусов по гемагглютинирующему, комплементсвязывающему или другим антигенам.

Индикация вирусов на куриных эмбрионах. В амниотической и аллантоисной жидкости индикацию вирусов осуществляют в реакции гемагглютинации (РГА). При заражении куриного эмбриона на хорион-аллантоисную оболочку нередко обнаруживаются бляшки или оспины, являющиеся вирусоспецифическими повреждениями. Индикацию вирусов в хорион-аллантоисной оболочке проводят в реакциях гемагглютинации или связывания комплемента (РСК). Для этого оболочку растирают в ступке, готовят суспензию, которую центрифугируют для осаждения тканевого детрита, а надосадочную жидкость исследуют в РГА или РСК.

Индикация вирусов в культурах органов и клеток проводится по: 1) цитопатическому действию вирусов (ЦПД); 2) образованию внутриклеточных включений; 3) в реакции гемагглютинации; 4) по образованию бляшки; 5) по цветной пробе; 6) по реакции гемадсорбции.

ЦПД – это морфологические изменения в культуре органов и клеток, возникающие в процессе репродукции вирусов в клетках. Вирусы, вызывающие ЦПД, называют цитопатогенными. Характер ЦПД зависит от биологических свойств вирусов, дозы вируса, свойств клеток и условий их культивирования. ЦПД вирусов может проявляться некрозом, гроздьеобразованием, симпласто- и синцитиеобразованием, круглоклеточной дегенерацией, клеточной пролиферацией, очаговой деструкцией.

При некротическом ЦПД вирусов полиомиелита, Коксаки, ЕСНО большинство клеток полностью разрушается, оставшиеся клетки сморщены (пикноз ядра и цитоплазматической мембраны, вакуолизация), для них характерно двойное лучепреломление – сильное свечение при микроскопии.

ЦПД по типу гроздьеобразования характерно для аденовирусов, при этом клетки округляются, увеличиваются, частично сливаются между собой с образованием гроздьевидных скоплений (рис. 3).

Вирусы герпеса, кори, паротита, парагриппа, РС-вирусы вызывают ЦПД по типу симпласто- или синцитиеобразования (рис. 4).

Синцитий состоит из клеток, соединенных цитоплазматическими мостиками, тогда как симпласт – это большая многоядерная клетка, образовавшаяся в результате многократных незавершённых митозов.

ЦПД вирусов по типу круглоклеточной дегенерации характеризуется округлением клеток и утратой ими межклеточных связей. Может наблюдаться также пикноз, сморщивание и деструкция клеток (рис. 5).

У онкогенных вирусов ЦПД может проявиться трансформацией клеток в злокачественные, что сопровождается интенсивной пролиферацией клеток и образованием многослойных клеточных структур. ЦПД некоторых штаммов вирусов гриппа, осповакцины, натуральной оспы проявляется очаговой деструкцией культуры клеток – на фоне сохранившегося в целом монослоя появляются очаги поражения клеток (микробляшки).

При отсутствии или слабо выраженном ЦПД проводят заражение культуральной жидкостью новых культур клеток.

Внутриклеточные включения в цитоплазме или ядре клетки образуются при репродукции в них вирусов бешенства, оспы, гриппа, герпеса, аденовирусов и др. Внутриклеточные включения представляют собой кристалловидные скопления вирионов. Включения обнаруживают при световой иммерсионной микроскопии после окраски стекол с монослоем по Романовскому-Гимзе, или при люминесцентной микроскопии после обработки акридиновым оранжевым. При окраске по Романовскому-Гимзе вирусные включения приобретают розовый или розово-сиреневый цвет. При окраске акридиновым оранжевым ДНК-структуры дают зеленое свечение, а РНК-структуры – красновато-оранжевое. В настоящее время выявление внутриклеточных включений проводят при диагностике бешенства (тельца Бабеша-Негри) (рис. 6). Ранее при натуральной оспе проводилось выявление телец Гварнери.

Образование бляшек . Бляшки – это очаги разрушенных первично инфицированных вирусом клеток монослоя, находящегося под агаровым покрытием. Бляшки выявляются путём окрашивания культуры нейтральным красным, который либо включают в состав агарового покрытия, либо добавляют непосредственно перед учётом результатов. Поскольку бляшки состоят из погибших клеток, не воспринимающих краситель, поэтому они видны в виде светлых пятен на фоне розово-красного монослоя живых клеток. Учёт бляшкообразования проводят для количественного анализа инфекционной активности клеток.

Цветная проба . Среды 199 и Игла, в которых культивируют культуры клеток, имеют малиновый цвет, рН=7,2-7,4 и содержат индикатор, меняющий окраску среды при изменении рН. При культивировании в этих средах клеточных культур, не инфицированных вирусом, вследствие выделения клетками кислых продуктов метаболизма цвет среды изменяется на оранжевый. Вирусинфицированные клетки в результате подавления метаболизма вирусной репродукцией, а также в результате ЦПД вирусов, разрушаются, щелочная цитоплазма клеток попадает в среду, не изменяя её цвета (среда остаётся красной).

Реакция гемагглютинации (РГА) основана на способности некоторых вирусов, содержащих на своей внешней оболочке агглютинин, склеивать (агглютинировать) эритроциты определенных видов животных. Для проведения РГА используют бесклеточный вируссодержащий материал (аллантоисную или амниотическую жидкость, супернатант тканевых культур). Вируссодержащую жидкость смешивают с 0,5 мл изотонического раствора натрия хлорида и 0,5 мл 1 % взвеси отмытых эритроцитов, после чего инкубируют при 37˚, 20˚ или 4˚С в течение 30-60 минут. При отрицательном контроле развитие агглютинации в опыте свидетельствует о присутствии вируса в исследуемой жидкости. Контролем служит смесь 0,5 мл эритроцитов с равным объемом изотонического раствора натрия хлорида, не содержащего вирус.

Реакция гемадсорбции (РГадс) позволяет обнаружить гемагглютининсодержащие вирусы в клеточных культурах до развития ЦПД (рис. 7). Гемадсорбция наблюдается только в том случае, если гемагглютинин вируса присутствует на цитоплазматической мембране клеток культуры. Ргадс проводится путём внесения в клеточную культуру 0,2 мл 0,5 % взвеси эритроцитов, после чего клетки выдерживают 15-20 минут при 37˚, 20˚ или 4˚С (в зависимости от свойств вируса). Затем пробирки встряхивают для удаления неадсорбированных эритроцитов и учитывают под малым увеличением микроскопа скопление их на отдельных клетках или на всем монослое. На неинфицированных вирусами клетках адсорбции эритроцитов не наблюдается.

5. Титрование выделенных вирусов - это обязательный этап вирусологического метода диагностики, целью которого является количественное определение содержания вирусных частиц в единице объема исследуемого материала.

Методы титрования вирусов, выделенных на лабораторных животных предусматривают определение дозы (титра), при которой возбудитель вызывает гибель 50 % инфицированных животных или характерные симптомы заболевания. Титр вирусов выражают в ЛД 50 – летальная доза или в ИД 50 – инфицирующая доза.

Титрование вирусов, выделенных на куриных эмбрионах и обладающих гемагглютинирующей активностью проводят в реакции гемагглютинации. РГА проводят в пробирках или в специальных планшетах. Из вируссодержащего материала готовят двукратные разведения в 0,5 мл изотонического раствора натрия хлорид. Во все пробирки добавляют 0,5 мл взвеси эритроцитов. Контролем служит смесь 0,5 мл эритроцитов с таким же объемом изотонического раствора натрия хлорида, не содержащего вирусов. В зависимости от свойств изучаемого вируса инкубацию смеси проводят в термостате при 37˚, 20˚ и 4˚С. Результаты реакции учитывают через 30-60 минут после полного оседания эритроцитов в контроле: (++++) – интенсивная и быстрая агглютинация эритроцитов, осадок имеет звездчатую форму с фестончатыми краями («зонтик»); (+++) – осадок эритроцитов имеет просветы; (++) – менее выраженный осадок; (+) – хлопьевидный осадок эритроцитов, окруженный зоной комочков агглютинированных эритроцитов и (-) – резко очерченный осадок эритроцитов («монетный столбик»), такой же, как в контроле. Титром вируса при проведении РГА называется наибольшее его разведение, при котором еще наблюдается агглютинация эритроцитов. Это разведение считают содержащим одну гемагглютинирующую единицу вируса (1 ГАЕ). Разведения, которые предшествуют 1 ГАЕ, будут содержать в 2 раза больше ГАЕ по сравнению с последующим от них разведением. Например, если 1 ГАЕ соответствует разведению 1:64, то разведение 1:32 будет соответствовать 2 ГАЕ, а разведения 1:16 и 1:8 – 4 и 8 ГАЕ соответственно. Для идентификации вирусов, как правило, используется титр вируса, равный 4 ГАЕ.

Титрование вирусов в культурах клеток проводят по ЦПД, бляшкообразованию и цветной пробе.

Титром вируса при его определении в культурах клеток по ЦПД называется то наибольшее разведение вируссодержащего материала, в котором вирус способен вызвать ЦПД у 50 % инфицированных культур клеток. Эта величина называется 50 % тканевой цитопатической дозой (ТЦД 50). Титрование вируса по ЦПД включает следующие этапы: 1) посев, выращивание и отбор пробирочных культур клеток, имеющих сформировавшийся монослой; 2) получение 10-кратных разведений вируссодержащего материала; 3) инфицирование культур клеток разными разведениями вируса; 4) выдерживание –культур клеток в термостате при 37˚; 5) учет результатов на 5-7 сутки по системе плюсов (++++) и статистическую обработку результатов. Для получения статистически достоверных результатов необходимо соблюдение ряда правил: а) использование не менее 4 пробирочных культур клеток для заражения 1 разведением вируса; б) включение в титровальный ряд 2 разведений вируса – ниже и выше ЦПД 50 .

Титрование вирусов в культурах клеток по бляшкообразованию является одним из наиболее чувствительных и точных методов количественного определения вирусов. Вместе с тем, метод технически сложен и, в основном, используется при проведении научных исследований.

Титрование вирусов в культурах клеток методом цветной пробы призвано определить наибольшее разведение вируссодержащего материала, при котором происходит изменение цвета среды, содержащей суспензию клеток в концентрации 200 тысяч клеток в 1 мл. После установления титра вируса готовят рабочую дозу – 100 ТЦД 50 , которую используют при идентификации вирусов.

6. Идентификация вирусов в иммунных реакциях. Идентификация, или титрование вирусов – это установление их вариантной, видовой, родовой и семейственной принадлежности. Идентификация вирусов проводится по принципу: определение неизвестного по известному. Известным компонентом при идентификации вирусов являются специфические противовирусные сыворотки (противогриппозные, противокоревые и др.), которые используют в серологических реакциях нейтрализации (РН), торможения гемадсорбции (РТГадс), торможения гемагглютинации (РТГА), РПГА, РСК, а также при ИФА и РИА. Эти сыворотки содержат специфические противовирусные антитела и называются диагностическими.

Реакция нейтрализации (РН) может быть проведена на культуре клеток, куриных эмбрионах и животных. В пробирках готовят нейтрализационные смеси, состоящие из равных объемов вируссодержащего материала (обычно 100 ТЦД50 вируса в 1,0 мл) и диагностической сыворотки (1,0 мл). После тщательного встряхивания приготовленные смеси выдерживают для взаимодействия в течение 3 ч при 37˚С. Затем нейтрализационные смеси вносят в чувствительную клеточную культуру, которую инкубируют при 37˚С 5-7 суток, после чего учитывают результаты по ЦПД и цветной пробе (табл. 1).



© dagexpo.ru, 2024
Стоматологический сайт